Packaged microelectronic device for a package-on-package device

Information

  • Patent Grant
  • 10043779
  • Patent Number
    10,043,779
  • Date Filed
    Wednesday, November 16, 2016
    8 years ago
  • Date Issued
    Tuesday, August 7, 2018
    6 years ago
Abstract
Methods and apparatuses relate generally to a packaged microelectronic device for a package-on-package device (“PoP”) with enhanced tolerance for warping. In one such packaged microelectronic device, interconnect structures are in an outer region of the packaged microelectronic device. A microelectronic device is coupled in an inner region of the packaged microelectronic device inside the outer region. A dielectric layer surrounds at least portions of shafts of the interconnect structures and along sides of the microelectronic device. The interconnect structures have first ends thereof protruding above an upper surface of the dielectric layer a distance to increase a warpage limit for a combination of at least the packaged microelectronic device and one other packaged microelectronic device directly coupled to protrusions of the interconnect structures.
Description
FIELD

The following description relates to microelectronic devices. More particularly, the following description relates to a packaged microelectronic device for a package-on-package device to provide enhanced tolerance for warping.


BACKGROUND

Package-on-package microelectronic devices conventionally include two or more packaged microelectronic devices stacked on one another. More recently, one or more of these packaged microelectronic devices is so thin as to make warpage a more significant yield and/or reliability limiting factor.





BRIEF DESCRIPTION OF THE DRAWING(S)

Accompanying drawing(s) show exemplary embodiment(s) in accordance with one or more aspects of exemplary apparatus(es) or method(s). However, the accompanying drawings should not be taken to limit the scope of the claims, but are for explanation and understanding only.



FIGS. 1-1 through 1-10 are a progression of block diagrams illustratively depicting exemplary process flows and structures for a “redistribution layer first” formation of a packaged microelectronic device.



FIGS. 2-1 through 2-3 are block diagrams illustratively depicting a package-on-package device including the packaged microelectronic device of FIG. 1-10 at different states of warpage.



FIGS. 3-1 through 3-3 are a progression of block diagrams illustratively depicting exemplary process flows and structures for a “redistribution layer first” formation for another packaged microelectronic device for a package-on-package device.



FIGS. 4-1 through 4-3 are a progression of block diagrams illustratively depicting exemplary process flows and structures for a “redistribution layer first” formation for yet another packaged microelectronic device for a package-on-package device.



FIG. 5 is a flow diagram illustratively depicting an exemplary “redistribution layer first” process flow for a packaged microelectronic device in accordance with any and all of FIGS. 1-1 through 4-3.



FIGS. 6-1 through 6-4B are progressions of block diagrams illustratively depicting exemplary process flows and structures for a “redistribution layer last” formation for still yet another packaged microelectronic device for a package-on-package device.



FIGS. 7-1 and 7-2 are a progression of block diagrams illustratively depicting exemplary process flows and structures for a “redistribution layer-less” formation for further yet another packaged microelectronic device for a package-on-package device.



FIG. 8 is a flow diagram illustratively depicting an exemplary “redistribution layer last” and “redistribution layer-less” process flow for a packaged microelectronic device in accordance with any and all of FIGS. 6-1 through 7-2.





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to provide a more thorough description of the specific examples described herein. It should be apparent, however, to one skilled in the art, that one or more other examples or variations of these examples may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the description of the examples herein. For ease of illustration, the same number labels are used in different diagrams to refer to the same items; however, in alternative examples the items may be different.


Exemplary apparatus(es) and/or method(s) are described herein. It should be understood that the word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any example or feature described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other examples or features.


The following description includes description of package-on-package microelectronic devices (“PoPs”). Along those lines, one microelectronic package of a PoP may be configured to accommodate warpage of another microelectronic package. Optionally, microelectronic packages of a PoP may be configured to accommodate warpage between directly coupled microelectronic packages of a PoP.


Some microelectronic packages are presently in a range of approximately 150 to 400 microns thick (0.150 to 0.400 millimeters (mm) thick), for a microelectronic package in total height, excluding solder ball or other external interconnects. Overall height of a PoP is presently conventionally approximately 800 to 1200 microns (0.800 to 1.200 mm). As one or more microelectronic packages in a PoP may be in a range of approximately 150 to 400 microns thick, likelihood of warping of such one or microelectronic packages may be higher than if such one or more microelectronic packages were thicker than 400 microns.


As described below in additional detail, one or more interconnect structures are provided with protruding ends (“protrusions”) above a molding or encapsulation surface of one or more of such microelectronic packages of a PoP. Heights of these protrusions allow for more surface area in a vertical or z-axis direction. However, height of these protrusions is limited by an overall height allowance of such PoPs.


Microelectronic packages of a PoP directly coupled to one another warp away one from the other. Furthermore, directly coupled microelectronic packages of a PoP may both warp in opposing directions away from one another. However, surface area of such protrusions may allow solder masses or other electrically conductive eutectic bonding masses (“bonding masses”) to more readily stay adhered in the presence of such warpage. Increased surface area provided by such protrusions to which such bonding masses are attached at least in part may allow for an increase in allowable warpage. Whether either or both microelectronic packages directly coupled to one another warp, height of protrusions therebetween in excess of convention allows for an increased tolerance for such warpage.


Along those lines, a method relates generally to forming a packaged microelectronic device. In such a method, at least one redistribution layer is formed having an inner region and an outer region outside the inner region. The forming of the at least one redistribution layer includes forming first interconnect pads in both the inner region and the outer region on a lower surface and second interconnect pads in the outer region on an upper surface of the at least one redistribution layer. Interconnect structures are formed on and extend away from corresponding upper surfaces of the second interconnect pads in the outer region. A microelectronic device is coupled to an upper surface of the at least one redistribution layer in the inner region. A dielectric layer is formed to surround at least portions of shafts of the interconnect structures. The interconnect structures have upper ends thereof protruding above an upper surface of the dielectric layer a distance to increase a warpage limit for a combination of at least the packaged microelectronic device and one other packaged microelectronic device directly coupled to protrusions of the interconnect structures.


An apparatus relates generally to a packaged microelectronic device. In such a packaged microelectronic device, at least one redistribution layer has an inner region and an outer region outside the inner region. The at least one redistribution layer includes first interconnect pads in both the inner region and the outer region on a lower surface and second interconnect pads in the outer region on an upper surface of the at least one redistribution layer. Interconnect structures are on and extend away from corresponding upper surfaces of the second interconnect pads in the outer region. A microelectronic device is coupled to an upper surface of the at least one redistribution layer in the inner region. A dielectric layer surrounds at least portions of shafts of the interconnect structures. The interconnect structures have upper ends thereof protruding above an upper surface of the dielectric layer a distance to increase a warpage limit for a combination of at least the packaged microelectronic device and one other packaged microelectronic device directly coupled to protrusions of the interconnect structures.


Another method relates generally to forming a packaged microelectronic device. In such other method, interconnect structures are formed in an outer region of the packaged microelectronic device. A microelectronic device is coupled in an inner region of the packaged microelectronic device inside the outer region. A dielectric layer is formed to surround at least portions of shafts of the interconnect structures and along sides of the microelectronic device. The interconnect structures have first ends thereof protruding above an upper surface of the dielectric layer a distance to increase a warpage limit for a combination of at least the packaged microelectronic device and one other packaged microelectronic device directly coupled to protrusions of the interconnect structures.


Another apparatus relates generally to another packaged microelectronic device. In such other packaged microelectronic device, interconnect structures are in an outer region of the packaged microelectronic device. A microelectronic device is coupled in an inner region of the packaged microelectronic device inside the outer region. A dielectric layer surrounds at least portions of shafts of the interconnect structures and along sides of the microelectronic device. The interconnect structures have first ends thereof protruding above an upper surface of the dielectric layer a distance to increase a warpage limit for a combination of at least the packaged microelectronic device and one other packaged microelectronic device directly coupled to protrusions of the interconnect structures.


Other features will be recognized from consideration of the remainder of the Detailed Description and Claims, which follow.


RDL First Examples with “Straight” Interconnect Structures


FIGS. 1-1 through 1-10 are a progression of block diagrams illustratively depicting exemplary process flows and structures for a packaged microelectronic device (“packaged device”) 100. With simultaneous reference to FIGS. 1-1 through 1-10, formation of a packaged device 100 is further described.


At 201, a carrier substrate 101 may be obtained having an upper surface 121 and a lower surface 104 opposite upper surface 121. Carrier substrate 101 may be any support platform, including without limitation a carrier wafer, used to provide temporary support for formation of a plurality of substrate assemblies thereon, including a plurality of packaged devices 100 even though formation of a single packaged device 100 is illustratively depicted for purposes of clarity and not limitation.


An adhesive layer 102, such as an adhesive tape or other adhesive layer, may optionally be formed, put upon or otherwise adhered to an upper surface 121 of carrier substrate 101 in direct contact therewith.


A metal layer 103, such as a metal foil including without limitation a copper foil, may be formed, put on or otherwise applied to an upper surface 122 of adhesive layer 102 in direct contact therewith. If optional adhesive layer 102 is not used, then metal layer 103 may be placed on upper surface 121 of carrier substrate 101 in direct contact therewith.


At 202, metal layer 103 may be patterned to form conductive pads 103. Formation of conductive pads 103 may be by masking, lithographic patterning and metal etching, direct write e-beam or laser patterning, or other suitable means for removing a part of metal layer 103 to form electrically conductive interconnect pads (“conductive pads”) 103.


Conductive pads 103 may generally be located in either of two regions, an inner region 104 or an outer region 129. Outer region 129 may generally be thought of as a peripheral layout region, and inner region 104 may generally be thought of as an area array layout region.


Formation of conductive pads 103 may be considered an initial metal layer for formation of a redistribution layer (“RDL”) 107. Conductive pads 103 may in whole or in part form an area array layout. Optionally, a dielectric layer may be used, and such dielectric layer may be patterned at 202 to form recesses for conductive pads 103 followed by deposition of a metal layer 103 including into such recesses followed by etching, polishing or grinding back for providing conductive pads 103.


At 203, one or more dielectric layers, such as one or more spin coat layers, may be used to form at least one dielectric layer 118 for a redistribution layer 107. As is known, a redistribution layer 107 may include one or more dielectric layers and one or more metal layers.


Dielectric layer 118 may be patterned to form recesses associated with conductive pads, illustratively depicted as recesses 156. A metal layer 119 may be conformally deposited onto an upper surface of such patterned dielectric layer 118.


At 204, such metal layer 119 may be polished or ground down to dielectric layer 118 to in effect provide electrically conductive vias (“vias”) 119V to conductive pads 103. Optionally, pad level electrically conductive traces (“traces”) 119T may be provided with metal layer 119. Optionally, recesses for surface traces may be formed in an upper surface of dielectric layer 118 for conformal deposition of metal layer 119 therein to form traces 119T, which may or may not be interconnected to vias 119V for electrical conductivity.


At 205, a capping dielectric layer 105 may be deposited to fill recesses formed, such as for forming vias 119V for example, for redistribution layer 107. Such capping dielectric layer 105 may be polished or ground back to provide an upper surface 123.


At 206, interconnect pads 108 of a redistribution layer 107 may be formed, such as in any of the above-described ways of forming conductive pads 103, on upper surface 123. Interconnect pads 108 in this example are formed only in outer region 129. In contrast, conductive pads 103 in this example are formed in both inner region 104 and outer region 129.


Optionally, a lower redistribution layer 107-1 may be formed followed by optional formation of an upper redistribution layer 107-2 interconnected to redistribution layer 107-1. However, for purposes of clarity by way of example and not limitation, it shall be assumed that a single redistribution layer 107 is used in this example.


Before or after formation of interconnect pads 108, at 207A contacts 111, which may include electrically conductive solder or other eutectic masses, may be formed or put in an inner region 104 on an upper surface 123 of dielectric layer 105. Contacts 111 may be for interconnection of an integrated circuit microelectronic device (“microelectronic device”) 109.


Microelectronic device 109 may be positioned in inner region 104 in a “face-down” orientation for interconnection through contacts 111 with vias 119V and/or traces 119T. In an example, microelectronic device 109 may be an active device, such as for example an active area array microelectronic device. In another example, microelectronic device 109 may be a passive device, such as for example a passive area array microelectronic device. In yet another example, microelectronic device 109 may include an interposer having one or more integrated circuit dies coupled thereto. In still yet another example, microelectronic device 109 may include one or more stacks of integrated circuit dies.


Microelectronic device 109 may be a bare or packaged device. In an example, microelectronic device 109 may optionally include a backside redistribution layer 199. Backside redistribution layer 199 may or may not be interconnected internally within microelectronic device 109 to one or more active devices, such as an integrated circuit die component of microelectronic device 109. Such integrated backside redistribution layer 199 may for example be a passive device for routing of signals and/or voltages.


Optionally at 207B, before or after formation of interconnect pads 108, at 207B an adhesive layer 128, such as for a die attach pad for example, may be formed or positioned in an inner region 104 on an upper surface 123 of dielectric layer 105 for interconnection of microelectronic device 109. Microelectronic device 109 may be positioned in a “face-up” or a “face-down” orientation for attachment to an upper surface 123 of dielectric layer 105 through use of adhesive layer 128. For purposes of clarity by way of example and not limitation, a face-down orientation of microelectronic device 109 is further described.


At 208, interconnect structures 115 may be formed on and extending away from corresponding upper surfaces 124 of interconnect pads 108 in outer region 129. Generally, in this example interconnect structures 115 are “straight”, namely there is no intentional bend in interconnect structures 115 in this example. In an example, interconnect structures 115 can be formed as wire bond wires or other extruded electrical conductor bonded to upper surfaces 124.


In another example, interconnect structures 115 may be formed as plated wires. Plated wires may be formed including depositing a resist, masking and patterning such resist, removing portions of such resist to form holes with corresponding upper surfaces 124 as bottom surfaces respectively thereof. Such holes may be plated with one or more layers of material, including at least one electrically conductive material. Generally, solid or hollow metal posts may be formed in part by plating. In another example, metal coated dielectric posts may be formed.


Interconnect structures 115 implemented as wire bond wires may have a thickness 114 in a range of approximately 15 to 45 microns. Interconnect structures implemented as plated posts may have a thickness 114 in a range of approximately 1 to 45 microns.


In another example, additional surface area for plated posts may be formed by optionally forming contact pads 198. Contact pads 198 may be formed same or similar to plated posts, as bases of protrusions 220. However, for purposes of clarity by way of example and not limitation, it shall be assumed that optional contact pads 198 are not formed in this example.


Generally, interconnect structures 115 may be formed by dipping, transferring, depositing, placing, or a combination thereof, to form pins, posts, pillars, leads, wires, or other similar structures having a vertical orientation which may or may not be perpendicular to upper surfaces of corresponding interconnect pads 108.


Interconnect structures 115 may be solid or hollow, fully or partially electrically conductive, and/or supported partially by a semiconductor or dielectric material. For purposes of clarity by way of example and not limitation, an example with plating-formed posts for interconnect structures 115 is further described.


At 209, optionally with formation of interconnect structures 115 at 208, interconnect structures 116 may simultaneously be formed though extending away from an upper surface 129 of a microelectronic device 109. In an example, interconnect structures 116 may be interconnected to through-silicon-vias (not shown) of microelectronic device 109. Optionally, interconnect structures 116 may be formed in separate operations than interconnect structures 115.


For an optional backside redistribution layer 199 included with microelectronic device 109, a fan-in or fan-out pitch may be used by interconnect structures 116 for interconnection with such backside redistribution layer 199. Optionally, microelectronic device 109 may include a front side redistribution layer or interposer 197 for a fan-in or fan-out pitch for coupling to contacts 111. Optionally, both optional redistribution layers 197 and 199 may be included in microelectronic device 109.


Assuming no TSVs in microelectronic device 109, optional backside redistribution layer 199 may not be internally interconnected within microelectronic device 109 to an IC die thereof for signaling. However, a front side redistribution layer 197 may be internally interconnected within microelectronic device 199 to an IC die thereof for signaling.


Optionally, interconnect structures 115 may be straight but slanted or tilted, as generally indicated with dashed line 196, to increase pitch. For purposes of clarity by way of example and not limitation, it shall be assumed that optional redistribution layers 197 and 199 are not included in microelectronic device 109 and that interconnect structures 115 are not slanted.


For purposes of clarity by way of example and not limitation, an example of plating-formed posts for interconnect structures 116 is further described. Generally, solid or hollow metal posts may be formed in part by plating. In another example, metal coated dielectric posts may be formed. In yet another example, interconnect structures 116 may be wire bond wires or one or more of the other examples for interconnect structures 115. Optionally, a combination of two or more different forms of interconnect structures 115 and/or 116 may be implemented.


Interconnect structures 115 may be used to increase a warpage limit with respect to outer region 129. Inner interconnect structures 116 may be used to increase a warpage limit with respect to inner region 104.


At 210, a dielectric layer 117 may be formed surrounding at least portions of shafts 115S of interconnect structures 115 and along sides 167 of and over and on an upper surface 168 of microelectronic device 109. Optionally, dielectric layer 117 may be formed surrounding at least portions of shafts 116S of interconnect structures 116.


Interconnect structures 115 and/or 116 may respectively have corresponding upper ends 115E and/or 116E, as well as corresponding portions of shafts 115S and/or 116S, protruding above an upper surface 126 of dielectric layer 117. Interconnect structures 115 and/or 116 may protrude a distance of protrusion height 137 to provide protrusions 220 for at least some if not all of interconnect structures 115 and/or 116. Protrusions 220 may have portions of shafts 115S and 116S for providing wicking lengths for adherence of solder or other electrically conductive bonding masses 131 at 211.


Protrusions 220 may increase a warpage limit for a combination of a packaged device 100 with another packaged device directly coupled to upper ends 115E and 116E respectively of corresponding interconnect structures 115 and/or 116 with bonding masses 131. While some numerical examples of heights for protrusions 220 are provided herein, generally protrusion height 137 is at least 30% of a distance 112 of separation between an upper surface 126 of packaged device 100 and a lower surface 120 of a package device 130.


Dielectric layer 117 may be injection molded with a mold assist film to leave protrusions 220 out of molding material to form an upper surface 126 of dielectric layer 117 below upper ends 115E and/or 116E by a distance or protrusion height 137. Optionally, dielectric layer 117 may be formed by an encapsulant, molding or composite material, which may be molded, potted, spun on, laminated, screen printed, applied, or otherwise suitably formed. If upper ends 115E and/or 116E are covered by a material used to form dielectric layer 117, subsequent polishing, grinding, and/or etching back may be used to reveal protrusions 220.


Protrusions 220 may have portions of shafts 115S at least temporarily exposed for wettable surfaces by an electrically conductive bonding material.


With additional reference to FIGS. 2-1 through 2-3, formation of a PoP 139 is described.


At 211, packaged device 100 may be singulated from carrier substrate 101. Carrier substrate 101 and adhesive layer 102 may be removed from packaged device 100.


Further, at 211 another package device 130 may be directly coupled to upper ends 115E and/or 116E and/or at least portions of shafts 115S and/or 116S of protrusions 220 with solder balls or other electrically conductive bonding masses 131 to provide a PoP 139. Bonding masses 131 may be deposited or otherwise formed over upper ends 115E and/or 116E as well as along at least portions of shafts 115S and/or 116S of protrusions 220.


Protrusion height 137 for wicking of bonding masses 131 may be in a range above a conventional height of micro pillars on pads for a PoP, which conventional height is generally in a range of approximately 30 to 40 microns. Protrusion height 137 may be in a range of approximately 75 to 120 microns or more. In other words, protrusion height 137 may be more than double the height of conventional micro pillars.


Generally height of bonding masses 131 is at least approximately 200 to 250 microns after collapse for approximately a 300 to 400 micron pitch of such bonding masses. Thus no additional height need be added by protrusions 220, as the entire length of protrusions 220 may be covered by bonding masses 131. In other words, protrusion height 137 is less than overall height of bonding masses 131, and so protrusions 220 may be used without adding to height or thickness of PoP 139.


Solder balls or other electrically conductive bonding masses 155 may be attached to corresponding undersides of conductive pads 103, which are exposed after removal of carrier substrate 101, as well as possibly optional adhesive layer 102. In another example, electrically conductive bonding masses 155 may be for a surface mount interconnection.


In this example, packaged device 130 is of a different configuration than packaged device 100. However, in another example packaged device 130 may have a same general configuration as packaged device 100.


In this example configuration of packaged device 130, packaged device 130 includes an interposer 133 having conductive routings 134 interconnected to an integrated circuit die 132 with under bump metalization 135. A molding/encapsulating layer 136 of packaged device 130 may be used to cover integrated circuit die 132.


Packaged device 130 may have a packaged device height or thickness 158 from an upper surface of molding/encapsulating layer 136 to upper ends 115E and 116E, namely including a portion, if any, of the thickness of bonding masses 131 trapped between upper ends 115E or 116E and a lower surface of interposer 133. packaged device height or thickness 158 for in such example may be in a range of approximately 800 to 1200 microns. Generally, packaged device 130 at least as thick as 800 microns is not as susceptible to warping as packaged device 100.


Packaged device 100 may have an overall height or thickness 157 from upper ends 115E and 116E to bottom surface 122 of redistribution layer 107, namely excluding bonding masses 155. A packaged device 100 may have a “body” thickness in a range of approximately 150 to 400 microns, excluding heights of conductive bonding masses 155 and protrusions 220. Assuming bonding masses 155 have a height in a range of approximately 300 to 400 microns, total height or thickness 159 of PoP 139 may thus be in a range of approximately 1350 (i.e., 800+150+100+300) microns to 2120 (i.e., 1200+400+120+400) microns.


For purposes of clarity by way of example and not limitation, assuming no warpage in packaged devices 100 and 130 in FIG. 2-1, PoP 139 of FIG. 2-1 may be in a state of no warpage and thus may be a reference for determining a warpage measurement 138. Warpage measurement 138 (illustratively depicted in FIGS. 2-2 and 2-3) may be for a greatest amount of warpage.


With reference to FIG. 2-2 for purposes of clarity by way of non-limiting example, packaged device 100 may be turned up at either or both ends with reference to packaged device 130, assuming packaged device 130 has no warpage for purposes of a reference. With reference to FIG. 2-3 for purposes of clarity by way of non-limiting example, packaged device 100 may be bowed upward in a middle section thereof with reference to packaged device 130, assuming packaged device 130 has no warpage for purposes of a reference.


In either of these examples, a warpage measurement 138 may be obtained. This warpage measurement 138 may be a bounded parameter to a maximum warpage of approximately 60 (i.e., 100-40) to 90 (i.e., 120-30) microns in excess of a conventional limit therefor due to use of protrusions 220. In other words, bonded masses 131 may be within tolerance for reliably maintaining a direct coupling of packaged device 100 and 130 one to another even with a warpage in excess of a conventional limit therefor.


For purposes of clarity by way of non-limiting example, if height of protrusions is 100 microns and warpage tolerance without such additional protrusion heights is 100 microns with 40 micron high micro pillars, then overall warpage tolerance may be increased to approximately 160 microns by use of protrusions as described herein. This is just one example, and other values may be used in accordance with the description herein.


By increasing tolerance for warpage between two packaged devices with no increase in overall height, yield and/or product reliability of PoPs may be increased. Additionally, if protrusions 220 do not include optional contact pads 198, then surface area for wicked adherence of bonding masses 131 may be limited to upper ends 115E and at least portions of shafts 115S of protrusions 220 for interconnect structures 115 for example. Thus, contact area reliability and warpage tolerance height are both dependent on protrusions 220. In contrast to conventional micro pillars, which use a pad to provide sufficient contact surface area for reliable adherence, protrusions 220 do not necessarily require use of a pad for contact area.


If, however, optional contact pads 198 are implemented, then surface areas for contact with bonding masses 131 may be substantially provided by such contact pads 198 in comparison with surface areas of protrusions 220. In this example, warpage tolerance height may be based primarily on protrusions 220. In other words, if optional contact pads 198 are used, then shorter protrusions 220 may be used. However, less warpage tolerance may be provided by use of shorter protrusions 220 in comparison to taller protrusions 220.


RDL First Examples with “Bent” Interconnect Structures


FIGS. 3-1 through 3-3 are a progression of block diagrams illustratively depicting exemplary process flows and structures for other examples of packaged device 100. FIG. 3-1 continues after FIG. 1-7B, and so the previous description is not repeated for purposes of clarity and not limitation.


Again, a face-down orientation for microelectronic device 109 is assumed for purposes of clarity and not limitation. Optional interconnect structures 116 whether intentionally straight and/or intentionally bent to have lateral sections may be implemented in accordance with the description herein. For these examples, it is assumed that optional interconnect structures 116 are not implemented.


With simultaneous reference to FIGS. 1-1 through 3-3, such exemplary process flows and structures for other examples of packaged device 100 are further described.


At 221, one or more bent interconnect structures 115 are formed with lateral sections 115L. Interconnect structures 115 in previously described examples were intentionally straight. For FIGS. 3-1 through 3-3, one or more of interconnect structures 115 may be intentionally formed with one or more bends 160 at one or more ends of lateral sections 115L of such interconnect structures 115.


Bases 115B of bent interconnect structures 115 may be ball, stitch or otherwise bonded to upper surfaces 124 of corresponding interconnect pads 108. A wire bond forming tool (not shown) may be used to extend bases 115B vertically away from upper surfaces 124 and then bend wire bond wires, right or left, to initiate a bend 160 at an end of a lateral section 115L within a shaft 115S of such a bent interconnect structure 115. Lateral sections 115L may be bent at an acute angle 161 with reference to a horizontal plane of an upper or lower surface of a redistribution layer 107.


Optionally, a portion of a lateral section 115L may overlap an upper surface 125 of microelectronic device 109, as illustratively indicated with a dashed line. Optionally, a portion of a lateral section 115L of a bent interconnect structure 115 may overlap a portion of an adjacent neighboring interconnect pad 108, as illustratively indicated with a dashed line. Optionally, a portion of a lateral section 115L of a bent interconnect structure 115 may overlap a portion of an adjacent neighboring bent interconnect structure 115, as illustratively indicated with a dashed line.


Pitch P1 between bases 115B of adjacent neighboring interconnect structures 115, including at least one bent interconnect structure 115 thereof, may be substantially narrower than pitch P2 between upper ends 115E of such adjacent neighboring interconnect structures 115. Along those lines, there may be more area for wider pitches by extending one or more upper ends 115E of interconnect structures from outer region 129 into inner region 104. Wider pitch P2 may be used to fan-out or fan-in signals and/or voltages from and/or to microelectronic device 109.


At 222, a dielectric layer 117 may be formed surrounding at least portions of shafts 115S of interconnect structures 115, as previously described. Interconnect structures 115 may have corresponding upper ends 115E, as well as corresponding portions of shafts 115S and/or 116S, protrude above an upper surface 126 of dielectric layer 117 a distance or height 137. Interconnect structures 115 may protrude a distance of protrusion height 137 to provide protrusions 220 for at least some if not all of straight and/or bent interconnect structures 115.


Protrusions 220 may increase a warpage limit for a combination of a packaged device 100 with one other packaged device directly coupled to upper ends 115E of corresponding bent and/or straight interconnect structures 115 with bonding masses 131. Protrusions 220 may be straight, whether perpendicular or not with respect to upper surface 126.


Upper ends 115E of protrusions 220 of bent interconnect structures 115 may be are laterally displaced a distance 224 with respect to corresponding bases 115B of such bent interconnect structures. Bent, slanted, and/or straight interconnect structures 115 may all have a same protrusion height 137.


Prior to attachment of upper ends 115E at least some, if not all, of bent interconnect structures 115 have cantilevered portions of shafts 115S. Cantilevered portions of shafts 115S may correspond to upper ends 115E and may be strait for interconnection with a packaged device 130.


At least some of bent interconnect structures 115 are wire bond wires bonded to upper surfaces 124 of interconnect pads 108 with cantilevered shafts being bonding tool formed. Optionally, a portion of such at least some of bent interconnect structures 115 may have cantilevered portions of shafts 115S extending over upper surface 125 of a microelectronic device 109. Again, microelectronic device 109 may be an area array microelectronic device.


Optionally, at least some of interconnect structures 115 may have different pitches as between ends 115E and bases 115B thereof. Optionally, at least some of interconnect structures 115 may be shaped leads.


At 223, packaged device 100 may be singulated from carrier substrate 101. Carrier substrate 101 and adhesive layer 102 may be removed from packaged device 100 as previously described for operations at 211.


At 223, another package device 130 may be directly coupled to upper ends 115E, and/or 116E, and at least portions of shafts 115S, and/or 116S, of protrusions 220 as previously described with reference to operations at 211. Bonding masses 131 may be deposited or otherwise formed as previously described.


Protrusion height 137 may be as previously described. Bonding masses 131 may be as previously described, so as to not add any additional height or thickness to PoP 139.


Solder balls or other electrically conductive bonding masses 155 may be attached as previously described. Packaged device 130 may be as previously described. Packaged device 100 may be as previously described with respect to an overall height or thickness 157 from upper ends 115E and 116E to bottom surface 122 of redistribution layer 107, namely excluding bonding masses 155.



FIGS. 4-1 through 4-3 are a progression of block diagrams illustratively depicting exemplary process flows and structures for still other examples of packaged device 100. FIG. 4-1 continues after FIG. 1-8 or optionally FIG. 1-9, and so the previous description is not repeated for purposes of clarity and not limitation.


At 231, a stiffening or other reinforcing layer (“reinforcing layer”) 127 may be dispensed, deposited, spun on, or otherwise used to coat an in-process packaged device 100. Reinforcing layer 127 may be a stiffener material. Reinforcing layer 127 may be deposited as a wicking layer to exposed surfaces of an in-process packaged device 100. Reinforcing layer 127 may be used prior to formation of dielectric layer 117 to be beneath dielectric layer 117. Stiffener material may adhere to exterior surfaces, including in at least in part exterior surfaces of interconnect structures 115. Stiffener material may adhere to at least sides of microelectronic device 109.


Reinforcing layer 127 may be a dielectric composition stiffener material which wets exterior surfaces, including exterior surfaces of shafts 115S of interconnect structures 115. Such a stiffener material may be a viscous material. Along those lines, reinforcing layer 127 may wick-up sides of shafts 115S of interconnect structures 115. For example, a stiffener material may be an epoxy or other suitable polymeric material.


Optionally, at 231 an etch back 234 may be used to remove upper residual stiffener material on sides of protrusions 220, including upper ends 115E.


At 232, a dielectric layer 117 may be formed surrounding at least remaining portions of shafts 115S of interconnect structures 115. Optionally, dielectric layer 117 may be formed surrounding at least remaining portions of shafts 116S of interconnect structures 116. The remainder of the above-description of formation of dielectric layer 117 and other description for any and all operations at 232 is the same as at 210, and thus is not repeated.


At 233, packaged device 100 may be singulated from carrier substrate 101. Carrier substrate 101 and adhesive layer 102 may be removed from packaged device 100 as previously described for operations at 211.


At 233 another package device 130 may be directly coupled to upper ends 115E, and/or 116E, and at least portions of shafts 115S, and/or 116S, of protrusions 220, as previously described for operations at 211.


Protrusion height 137 may be as previously described. Bonding masses 131 may be as previously described, so as to not add any additional height or thickness to PoP 139.


Solder balls or other electrically conductive bonding masses 155 may be attached as previously described. Packaged device 130 may be as previously described. Packaged device 100 may be as previously described with respect to an overall height or thickness 157 from upper ends 115E and 116E to bottom surface 122 of redistribution layer 107, namely excluding bonding masses 155.


With reference to FIG. 5, a flow diagram illustrative depicts an exemplary “redistribution layer first” process flow (“process flow”) 140 for a packaged device 100. Process flow 140 follows from one or more of the above-described operations, and thus is a general recapitulation thereof for purposes of clarity and not limitation.


At 141, at least one redistribution layer 107 having an inner region and an outer region outside the inner region is formed. Such forming of at least one redistribution layer 107 may include forming first interconnect pads 103 in both the inner region and the outer region at a lower surface and second interconnect pads 108 in the outer region at an upper surface of at least one redistribution layer 107. Formation at 141 may include at least some of operations 151 through 154.


At 151, a carrier substrate having an upper surface and a lower surface opposite the upper surface is obtained. At 152, an adhesive layer 102 is optionally adhered to the upper surface of carrier substrate 101. At 153, a metal layer 103 is applied to either an upper surface of adhesive layer 102 or the upper surface of carrier substrate 101. At 154, first interconnect pads 103 are patterned out of metal layer 103. Patterning at 154 may include forming an area array layout for a subset of first interconnect pads 103 in the inner region.


After 141, at 142 interconnect structures 115 are formed directly or indirectly on and extend away from corresponding upper surfaces of the second interconnect pads in the outer region. At 143, a microelectronic device 109 is coupled to an upper surface of at least one redistribution layer 107 in the inner region.


Optionally at 144, a stiffening layer 127 may be formed with a stiffener material. Optionally, at 145, residual portions of the stiffener material at upper ends of interconnect structures 115 are etched back.


At 146, a dielectric layer 117 is formed surrounding at least portions of shafts of interconnect structures 115. At 147, optionally residual portions of dielectric layer 117 at the upper ends of interconnect structures 115 are etched back.


At this juncture, interconnect structures 115 have upper ends protruding above an upper surface of dielectric layer 117 a distance to increase a warpage limit. Increased warpage limit is for a combination of at least packaged device 100 and one other packaged device 130 directly coupled to protrusions 220 of interconnect structures 115.


At 148, a packaged device 100 may be singulated from carrier substrate 101. At 149, carrier substrate 101 and adhesive layer 102 can be removed from packaged device 100. For forming a PoP 139, optionally at 150 another packaged device 130 is coupled to the upper ends of interconnect structures 115 with electrically conductive bonding masses 131 to provide a PoP 139.


“RDL Last” or “RDL-Less” Examples with “Straight” and/or “Bent” Interconnect Structures

With reference to FIG. 6-1, at 241 a carrier substrate 101 having an upper surface 171 and a lower surface opposite thereof has formed on an upper surface 171 thereof a metal layer 179. As many features of the following description have been previously described, though in different sequences, multiple operations are combined at 241 for purposes of clarity and not limitation.


Optionally, metal layer 179 may be patterned to form interconnect pads 108 in outer region 129 and a heat spreader 176 in inner region 104. For purposes of clarity and not limitation, it shall be assumed that interconnect pads 108 and heat spreader 176 are not formed of metal layer 179.


A same metal layer 179, or optionally another metal layer 177, may be formed. For purposes of clarity by way of example and not limitation, it shall be assumed that another metal layer 177 is formed on an upper surface 172 of metal layer 179. In this example, metal layer 179 is a sacrificial metal layer.


Metal layer 177 may be patterned on metal layer 179 to form interconnect pads 108 in outer region 129. Metal layer 177 may be at least essentially removed from inner region 104.


An adhesive or die pad layer 162 may be deposited or otherwise adhered to an upper surface 172 of metal layer 179 in inner region 104. An upper surface 173 of adhesive layer 162 may be above or taller than an upper surface 174 of interconnect pads 108. In an example, adhesive layer 162 is an adhesive tape.


At 241 “straight” interconnect structures 115 and/or “bent” interconnect structures 115, as indicated in a dashed line, may be formed in an outer region 129 for a packaged device 100. Interconnect structures 115 may for example be plated posts or wire bond wires with same or different pitches, as previously described. For purposes of clarity and not limitation, it shall be assumed that “straight” interconnect structures 115 are formed at 241.


Still at 241, a microelectronic device 109 may be coupled in a face-up orientation to upper surface 173 of adhesive layer 162 in an inner region 104 of packaged device 100 inside outer region 129. In another example, microelectronic device 109 may be coupled in a face-down orientation.


In this example, microelectronic device 109 is pre-bumped with bumps 175. In another example, microelectronic device 109 may not be pre-bumped with bumps 175. However, in this example, a front-side surface of microelectronic device 109 has bumps 175 residing thereon.


Continuing at 241, a dielectric layer 117 may be formed surrounding at least portions of shafts 115S of interconnect structures 115 and along sides of microelectronic device 109. Optionally, prior to formation of dielectric layer 117, a reinforcing layer 127 may be formed as previously described including wicking along sides of microelectronic device 109.


At 241, a polishing or grinding operation 163 may be used to remove a portion of dielectric layer 117 down to upper surfaces 164 of bumps 175 and upper ends 115E of interconnect structures 115, namely upper surface 165 of dielectric layer 117. Optionally, an etch back operation may be used for such removal of a portion of dielectric layer 117. Optionally, a mold assist film may be used to form dielectric layer 117 below bumps 175 and upper ends 115E.


With reference to FIG. 6-2, at 242, at least one redistribution layer 107 may be formed over upper ends 115E of interconnect structures 115 and over bumps of microelectronic device 109. At a lower surface of such at least one redistribution layer 107, traces 166 and/or vias 119V may be formed for interconnection of one or more bumps 175 to one or more interconnect structures 115. Formation of at least one redistribution layer 107 may include formation of upper interconnect pads 103 in both inner region 104 and outer region 129 along an upper surface of such at least one redistribution layer 107.


With reference to FIG. 6-3A, at 243A carrier 101 and metal layer 179 may be removed, and packaged device 100 may be inverted. Lower ends or bases 115B of interconnect structures 115 opposite upper ends 115E may protrude above an upper surface of dielectric layer 117, after inversion from the view illustratively depicted in FIG. 6-2. A distance or height 137 of such protrusions 220 may be to increase a warpage limit for a combination of at least packaged device 100 and one other packaged device 130 directly coupled to such protrusions 220 of interconnect structures 115. Thus, bases 115B after inversion may have interconnect pads 108 located thereon and thereabove with ends 108E of interconnect pads 108 opposite and over bases 115B.


At 243A adhesive layer 162 may be removed. Further, at 243A an upper portion of dielectric layer 117 may be etched back to lower upper surface 126 of dielectric layer 117. In this example, upper surface 126 is lowered down to an upper surface of microelectronic device 109 (as illustratively depicted) to provide a protrusion height 137. In this example, protrusion height 137 of protrusions 220 may be from upper surface 126 to bases 115B.


With reference to FIG. 6-3B, 243B is an optional example where interconnect pads 108 are not formed, such as for no metal layer 177 and metal layer 179 as a sacrificial layer. The remainder of operations at 243B are the same as at 243A, except in this example, upper surface 126 is lowered down to just above an upper surface (i.e., a lower surface prior to inversion) of microelectronic device 109 to provide a protrusion height 137. Again, protrusion height 137 of protrusions 220 may be from upper surface 126 to bases 115B.


With reference to operations at 244A and 244B respectively illustratively depicted in FIGS. 6-4A and 6-4B, a packaged device 130 may be coupled to protrusions 220 of interconnect structures 115 with electrically conductive bonding masses 131 to provide respective PoPs 139. Same description is not repeated with respect to formation of PoPs 139 for purposes of clarity and not limitation.


With reference to FIG. 7-1, packaged device 100 at 241 of FIG. 6-1 may be formed without interconnect pads 108 and without a redistribution layer 107 at 301. Moreover, in this example microelectronic device 109 is not pre-bumped, but may be pre-bumped in another implementation. Along those lines, lower ends 115E, previously upper ends, may be generally at a same level with a front-side surface of microelectronic device 109. Ends 115E and microelectronic device 109 may optionally be bumped for subsequent interconnection, such as a surface mount interconnection.


At 301 adhesive layer 162 may be removed. The remainder of operations at 301 are the same as at 243B, except in this example, upper surface 126 is lowered down to an upper surface (i.e., a lower surface prior to inversion) of microelectronic device 109 to provide a protrusion height 137. Again, protrusion height 137 of protrusions 220 may be from upper surface 126 to bases 115B.


With reference to operation at 302 illustratively depicted in FIG. 7-2, a packaged device 130 may be coupled to protrusions 220 of interconnect structures 115 with electrically conductive bonding masses 131 to provide a PoP 139. Same description is not repeated with respect to formation of PoP 139 for purposes of clarity and not limitation.


With reference to FIG. 8, a flow diagram illustratively depicts an exemplary “redistribution layer last” and “redistribution layer-less” process flow (“process flow”) 340 for a packaged device 100. Process flow 340 follows from one or more of the above-described operations, and thus is a general recapitulation thereof for purposes of clarity and not limitation.


At 341 interconnect structures 115 are formed directly or indirectly on and extend away from corresponding upper surfaces of interconnect pads 108 in outer region 129. Formation at 341 may include at least some of operations 351 through 354.


At 351, a carrier substrate 101 having an upper surface and a lower surface opposite the upper surface is obtained. At 352, a metal layer 179 is optionally applied to an upper surface of carrier substrate 101.


At 353, an adhesive layer 102 is adhered to either the upper surface of carrier substrate 101 or metal layer 179. At 354, interconnect pads 108 are optionally patterned out of metal layer 177 and/or 179. Patterning at 354 may include forming an area array layout for a subset of first interconnect pads 103 in the inner region.


At 342, a microelectronic device 109 is coupled to an upper surface of adhesive layer 162 in inner region 104.


Optionally at 343, a stiffening layer 127 may be formed with a stiffener material. Optionally, at 344, residual portions of the stiffener material at upper or first ends of interconnect structures 115 are etched back.


At 345, a dielectric layer 117 is formed surrounding at least portions of shafts of interconnect structures 115. At 346, optionally residual portions of dielectric layer 117 at the upper ends of interconnect structures 115 are etched back.


At 347, at least one redistribution layer 107 in inner region 104 and outer region 129 outside the inner region is optionally formed on an upper surface of dielectric layer 117. At least one redistribution layer 107 may be formed to include interconnection with upper ends of interconnect structures 115. Such forming of at least one redistribution layer 107 may include forming interconnect pads 103, traces 166, and/or vias 119V in inner region 104 and/or outer region 129 of at least one redistribution layer 107.


At 348, carrier substrate 101, optional metal layer 179 and adhesive layer 162 can be removed from packaged device 100.


At 349, such in-process substrate assembly for packaged device 100 may be etched back to remove a lower portion of dielectric layer 117 to expose protrusions 220 of interconnect structures 115. Operations at 349 may include inversion of such packaged device 100 for removal of what was a lower portion of dielectric layer 117.


At this juncture, interconnect structures 115 have what were lower ends, now upper ends, protruding above what is now an upper surface of dielectric layer 117 a distance to increase a warpage limit. Increased warpage limit is for a combination of at least packaged device 100 and one other packaged device 130 directly coupled to protrusions 220 of interconnect structures 115.


At 350, a packaged device 100 may be singulated from a wafer or panel of such packaged devices 100. For forming a PoP 139, optionally another packaged device 130 is coupled to what were lower ends 115E, now upper ends 115E, of interconnect structures 115 with electrically conductive bonding masses 131 to provide a PoP 139, such as previously described and not repeated for purposes of clarity.


While the foregoing describes exemplary embodiment(s) in accordance with one or more aspects of the disclosure, other and further embodiment(s) in accordance with the one or more aspects of the disclosure may be devised without departing from the scope thereof, which is determined by the claim(s) that follow and equivalents thereof. Each claim of this document constitutes a separate embodiment, and embodiments that combine different claims and/or different embodiments are within the scope of the disclosure and will be apparent to those of ordinary skill in the art after reviewing this disclosure. Claim(s) listing steps do not imply any order of the steps. Trademarks are the property of their respective owners.

Claims
  • 1. A method for forming a packaged microelectronic device, comprising: forming interconnect structures in and coupled to an outer region of a redistribution layer of the packaged microelectronic device;providing a microelectronic device in and coupled to an inner region of a redistribution layer of the packaged microelectronic device inside the outer region;forming a dielectric layer surrounding at least portions of shafts of the interconnect structures and along sides of the microelectronic device; andthe interconnect structures having first ends thereof protruding above an upper surface of the dielectric layer a distance and having second ends thereof coupled to the redistribution layer, the first ends and the second ends corresponding thereto facing away from one another.
  • 2. The method according to claim 1, further comprising: forming the redistribution layer over the second ends of the interconnect structures and over the microelectronic device, the second ends of the interconnect structures being opposite the first ends of the interconnect structures, the redistribution layer including interconnect pads in both the inner region and the outer region along a surface of the redistribution layer.
  • 3. The method according to claim 1, wherein the interconnect structures include plating-formed posts.
  • 4. The method according to claim 1, wherein the interconnect structures include wire bond wires.
  • 5. The method according to claim 1, further comprising forming interconnect pads located on the first ends of the interconnect structures.
  • 6. The method according to claim 1, wherein the packaged microelectronic device is a first packaged microelectronic device, the method further comprising coupling a second packaged microelectronic device to protrusions associated with the first ends of the interconnect structures with electrically conductive bonding masses to provide a package-on-package device.
  • 7. The method according to claim 1, wherein the first ends of at least some of the interconnect structures protruding above the upper surface of the dielectric layer are laterally displaced with respect to corresponding ones of the second ends of the interconnect structures.
  • 8. A packaged microelectronic device, comprising: interconnect structures in and coupled to an outer region of a redistribution layer of the packaged microelectronic device;a microelectronic device provided in and coupled to an inner region of a redistribution layer of the packaged microelectronic device inside the outer region; anda dielectric layer surrounding at least portions of shafts of the interconnect structures and along sides of the microelectronic device;the interconnect structures having first ends thereof protruding above an upper surface of the dielectric layer a distance and having second ends thereof coupled to the redistribution layer, the first ends and the second ends corresponding thereto facing away from one another.
  • 9. The packaged microelectronic device according to claim 8, further comprising: the redistribution layer coupled to the second ends of the interconnect structures and over the microelectronic device; andthe redistribution layer comprising interconnect pads in both the inner region and the outer region along a surface of the redistribution layer.
  • 10. The packaged microelectronic device according to claim 8, wherein the interconnect structures include plating-formed posts.
  • 11. The packaged microelectronic device according to claim 8, wherein the interconnect structures include wire bond wires.
  • 12. The packaged microelectronic device according to claim 8, further comprising interconnect pads located on the first ends of the interconnect structures.
  • 13. The packaged microelectronic device according to claim 8, wherein the packaged microelectronic device is a first packaged microelectronic device, and the first packaged microelectronic device further comprising a second packaged microelectronic device directly coupled to protrusions associated with the first ends of the interconnect structures with electrically conductive bonding masses to provide a package-on-package device.
  • 14. The packaged microelectronic device according to claim 8, wherein the first ends of at least some of the interconnect structures protruding above the upper surface of the dielectric layer are laterally displaced with respect to corresponding ones of the second ends of the interconnect structures.
  • 15. The packaged microelectronic device according to claim 8, further comprising a reinforcing layer with a stiffener material beneath the dielectric layer.
  • 16. The packaged microelectronic device according to claim 8, wherein the first ends protrude at least 100 microns beyond the dielectric layer.
  • 17. The packaged microelectronic device according to claim 13, wherein the first ends protrude to a length sufficient to accommodate warpage of the first packaged microelectronic device or the second packaged microelectronic device.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This nonprovisional application hereby claims benefit of priority to U.S. Provisional Patent Application Ser. No. 62/257,223, filed on 18 Nov. 2015, and to U.S. Provisional Patent Application Ser. No. 62/256,699, filed on 17 Nov. 2015, the entire contents and disclosure of each of which is hereby expressly incorporated by reference herein as if fully set forth herein for all purposes to the extent same is consistent herewith. The present application is related to the commonly-owned, United States nonprovisional patent application entitled “AN “RDL-FIRST” PACKAGED MICROELECTRONIC DEVICE FOR A PACKAGE-ON-PACKAGE DEVICE”, U.S. patent application Ser. No. 15/353,552, filed 16 Nov. 2016, the entire contents and disclosure of which is expressly incorporated by reference herein as if fully set forth herein for all purposes to the extent same is consistent herewith.

US Referenced Citations (785)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman et al. Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 DiFrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6469373 Funakura et al. Oct 2002 B2
6472743 Huang et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6489676 Taniguchi et al. Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6550666 Chew et al. Feb 2003 B2
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6563217 Corisis et al. May 2003 B2
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth et al. Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6693363 Tay et al. Feb 2004 B2
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6740981 Hosomi May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6754407 Chakravorty et al. Jun 2004 B2
6756252 Nakanishi Jun 2004 B2
6756663 Shiraishi et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774317 Fjelstad Aug 2004 B2
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6780746 Kinsman et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6800941 Lee et al. Oct 2004 B2
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6825552 Light et al. Nov 2004 B2
6828665 Pu et al. Dec 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabrizi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6909181 Aiba et al. Jun 2005 B2
6917098 Yamunan Jul 2005 B1
6930256 Huemoeller et al. Aug 2005 B1
6933598 Kamezos Aug 2005 B2
6933608 Fujisawa Aug 2005 B2
6939723 Corisis et al. Sep 2005 B2
6946380 Takahashi Sep 2005 B2
6951773 Ho et al. Oct 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7017794 Nosaka Mar 2006 B2
7021521 Sakurai et al. Apr 2006 B2
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7052935 Pai et al. May 2006 B2
7053477 Kamezos et al. May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071028 Koike et al. Jul 2006 B2
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7078788 Vu et al. Jul 2006 B2
7078822 Dias et al. Jul 2006 B2
7095105 Cherukuri et al. Aug 2006 B2
7112520 Lee et al. Sep 2006 B2
7115986 Moon et al. Oct 2006 B2
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7138722 Miyamoto et al. Nov 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176043 Haba et al. Feb 2007 B2
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7187072 Fukitomi et al. Mar 2007 B2
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7216794 Lange et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7256069 Akram et al. Aug 2007 B2
7259445 Lau et al. Aug 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276799 Lee et al. Oct 2007 B2
7287322 Mahieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7298033 Yoo Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7307348 Wood et al. Dec 2007 B2
7321164 Hsu Jan 2008 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7342803 Inagaki et al. Mar 2008 B2
7344917 Gautham Mar 2008 B2
7345361 Malik et al. Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7368924 Beaman et al. May 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7378726 Punzalan et al. May 2008 B2
7390700 Gerber et al. Jun 2008 B2
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7425758 Corisis et al. Sep 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7456495 Pohl et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7495644 Hirakata Feb 2009 B2
7504284 Ye et al. Mar 2009 B2
7504716 Abbott Mar 2009 B2
7517733 Camacho et al. Apr 2009 B2
7527505 Murata May 2009 B2
7528474 Lee May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7564116 Ahn et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7605479 Mohammed Oct 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7629695 Yoshimura et al. Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659612 Hembree et al. Feb 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682960 Wen Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7683482 Nishida et al. Mar 2010 B2
7692931 Chong et al. Apr 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7723839 Yano et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7759782 Haba et al. Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7807512 Lee et al. Oct 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7834464 Meyer et al. Nov 2010 B2
7838334 Yu et al. Nov 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7855464 Shikano Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7859033 Brady Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7898083 Castro Mar 2011 B2
7901989 Haba et al. Mar 2011 B2
7902644 Huang et al. Mar 2011 B2
7902652 Seo et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7919871 Moon et al. Apr 2011 B2
7923295 Shim et al. Apr 2011 B2
7923304 Choi et al. Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7944034 Gerber et al. May 2011 B2
7956456 Gurrum et al. Jun 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Roberts et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
7994622 Mohammed et al. Aug 2011 B2
8004074 Mori et al. Aug 2011 B2
8004093 Oh et al. Aug 2011 B2
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8017437 Yoo et al. Sep 2011 B2
8017452 Ishihara et al. Sep 2011 B2
8018033 Moriya Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8021907 Pagaila et al. Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039960 Lin Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8048479 Hedler et al. Nov 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8053906 Chang et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8063475 Choi et al. Nov 2011 B2
8071424 Kang et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076765 Chen et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8106498 Shin et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8119516 Endo Feb 2012 B2
8120054 Seo et al. Feb 2012 B2
8120186 Yoon Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8143141 Sun et al. Mar 2012 B2
8143710 Cho Mar 2012 B2
8158888 Shen et al. Apr 2012 B2
8169065 Kohl et al. May 2012 B2
8174119 Pendse May 2012 B2
8183682 Groenhuis et al. May 2012 B2
8183684 Nakazato May 2012 B2
8193034 Pagaila et al. Jun 2012 B2
8194411 Leung et al. Jun 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8225982 Pirkle et al. Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8237257 Yang Aug 2012 B2
8258010 Pagaila et al. Sep 2012 B2
8258015 Chow et al. Sep 2012 B2
8263435 Choi et al. Sep 2012 B2
8264091 Cho et al. Sep 2012 B2
8269335 Osumi Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8293580 Kim et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8318539 Cho et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8330272 Haba Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8390108 Cho et al. Mar 2013 B2
8390117 Shimizu et al. Mar 2013 B2
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau et al. Mar 2013 B1
8409922 Camacho et al. Apr 2013 B2
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8435899 Miyata et al. May 2013 B2
8450839 Corisis et al. May 2013 B2
8476115 Choi et al. Jul 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8487421 Sato et al. Jul 2013 B2
8492201 Pagaila et al. Jul 2013 B2
8502387 Choi et al. Aug 2013 B2
8507297 Iida et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558379 Kwon Oct 2013 B2
8558392 Chua et al. Oct 2013 B2
8564141 Lee et al. Oct 2013 B2
8567051 Val Oct 2013 B2
8569892 Mori et al. Oct 2013 B2
8580607 Haba Nov 2013 B2
8598717 Masuda Dec 2013 B2
8618646 Sasaki et al. Dec 2013 B2
8618659 Sato et al. Dec 2013 B2
8624374 Ding et al. Jan 2014 B2
8637991 Haba Jan 2014 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8653676 Kim et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8664780 Han et al. Mar 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680662 Haba et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8685792 Chow et al. Apr 2014 B2
8697492 Haba et al. Apr 2014 B2
8723307 Jiang et al. May 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson Jun 2014 B2
8766436 Delucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8785245 Kim Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8796846 Lin et al. Aug 2014 B2
8802494 Lee et al. Aug 2014 B2
8810031 Chang et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836140 Ma et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8846521 Sugizaki Sep 2014 B2
8847376 Oganesian et al. Sep 2014 B2
8853558 Gupta et al. Oct 2014 B2
8878353 Haba et al. Nov 2014 B2
8884416 Lee et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8912651 Yu et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8937309 England et al. Jan 2015 B2
8940630 Damberg et al. Jan 2015 B2
8940636 Pagaila et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8970049 Karnezos Mar 2015 B2
8975726 Chen Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9006031 Camacho et al. Apr 2015 B2
9012263 Mathew et al. Apr 2015 B1
9041227 Chau et al. May 2015 B2
9054095 Pagaila Jun 2015 B2
9082763 Yu et al. Jul 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9105552 Yu et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9142586 Wang et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9171790 Yu et al. Oct 2015 B2
9177832 Camacho Nov 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato Dec 2015 B2
9258922 Chen et al. Feb 2016 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9299670 Yap et al. Mar 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9349706 Co et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9378982 Lin et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9412661 Lu et al. Aug 2016 B2
9418940 Hoshino et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9496152 Cho et al. Nov 2016 B2
9502390 Caskey et al. Nov 2016 B2
9508622 Higgins Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
20010042925 Yamamoto et al. Nov 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020171152 Miyazaki Nov 2002 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030094666 Clayton et al. May 2003 A1
20030162378 Mikami Aug 2003 A1
20040041757 Yang et al. Mar 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20060087013 Hsieh Apr 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060255449 Lee et al. Nov 2006 A1
20070010086 Hsieh Jan 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070190747 Hup Aug 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080042265 Merilo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee et al. May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110157834 Wang Jun 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120126431 Kim et al. May 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130040423 Tung Feb 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130153646 Ho Jun 2013 A1
20130200524 Han et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130323409 Read et al. Dec 2013 A1
20130328178 Bakalski et al. Dec 2013 A1
20140035892 Shenoy et al. Feb 2014 A1
20140103527 Marimuthu et al. Apr 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140308907 Chen Oct 2014 A1
20140312503 Seo Oct 2014 A1
20150044823 Mohammed Feb 2015 A1
20150076714 Haba et al. Mar 2015 A1
20150091118 Sato Apr 2015 A1
20150130054 Lee et al. May 2015 A1
20150206865 Yu et al. Jul 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20160043813 Chen et al. Feb 2016 A1
20160200566 Ofner et al. Jul 2016 A1
20160225692 Kim et al. Aug 2016 A1
20170117231 Awujoola et al. Apr 2017 A1
20170117260 Prabhu Apr 2017 A1
20170229432 Lin et al. Oct 2017 A1
Foreign Referenced Citations (132)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
1118364 May 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10135220 May 1998 JP
H10135221 May 1998 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11260856 Sep 1999 JP
11317476 Nov 1999 JP
2000323516 Nov 2000 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004-200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009508324 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
10-2007-0058680 Jun 2007 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
02-13256 Feb 2002 WO
03-045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (68)
Entry
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
EE Times Asia “Freescale Cuts Die Area, Thickness with New Packaging Tech” [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.eetasia.com/ART_8800428222_280300_NT_DEC52276.htm>, Aug. 3, 2006, 2 pages.
Extended European Search Report for Appln. No. EP13162975, dated Sep. 5, 2013.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report for Appln. No. PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Sep. 14, 2011.
Partial Search Report—Invitation to Pay Fees for Appln. No. PCT/US2011/024143, dated Jan. 17, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/060551, dated Apr. 18, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044342, dated May 7, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044346, dated May 11, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2012/060402, dated Apr. 2, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/026126, dated Jul. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/052883, dated Oct. 21, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/041981, dated Nov. 13, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/053437, dated Nov. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/075672, dated Apr. 22, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/014181, dated Jun. 13, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050125, dated Feb. 4, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050148, dated Feb. 9, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Mar. 20, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2015/011715, dated Apr. 20, 2015.
International Preliminary Report on Patentability for Appln. No. PCT/US2014/055695, dated Dec. 15, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017.
Japanese Office Action for Appln. No. 2013-509325, dated Oct. 18, 2013.
Japanese Office Action for Appln. No. 2013-520776, dated Apr. 21, 2015.
Japanese Office Action for Appln. No. 2013-520777, dated May 22, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France, May 21, 2010, 28 pages.
Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages.
Korean Office Action for Appn. 10-2011-0041843, dated Jun. 20, 2011.
Korean Office Action for Appn. 2014-7025992, dated Feb. 5, 2015.
Korean Search Report KR10-2010-0113271, dated Jan. 12, 2011.
Korean Search Report KR10-2011-0041843, dated Feb. 24, 2011.
Meiser, S., “Klein Und Komplex,” Elektronik Irl Press Ltd, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992) pp. 72-77, XP000277326, [ISR Appln. No. PCT/US2012/060402, dated Feb. 21, 2013 provides concise stmt. of relevance).
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates and 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003, 34 pages.
North Corporation, Processed intra-Layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil], NMBITM, Version 2001.6.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report from Invitation to Pay Additional Fees for Appln. No. PCT/US2012/028738, dated Jun. 6, 2012.
Partial International Search Report for Appln. No. PCT/US2012/060402, dated Feb. 21, 2013.
Partial International Search Report for Appln. No. PCT/US2013/026126, dated Jun. 17, 2013.
Partial International Search Report for Appln. No. PCT/US2013/075672, dated Mar. 12, 2014.
Partial International Search Report for Appln. No. PCT/US2014/014181, dated May 8, 2014.
Partial International Search Report for Appln. No. PCT/US2015/033004, dated Sep. 9, 2015.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
Taiwan Office Action for 102106326, dated Dec. 13, 2013.
Taiwan Office Action for 100125521, dated Dec. 20, 2013.
Taiwan Office Action for 100125522, dated Jan. 27, 2014.
Taiwan Office Action for 100141695, dated Mar. 19, 2014.
Taiwan Office Action for 100138311, dated Jun. 27, 2014.
Taiwan Office Action for 100140428, dated Jan. 26, 2015.
Taiwan Office Action for 102106326, dated Sep. 8, 2015.
Taiwan Office Action for 103103350, dated Mar. 21, 2016.
U.S. Appl. No. 13/477,532, dated May 22, 2012.
U.S. Office Action for U.S. Appl. No. 12/769,930, dated May 5, 2011.
3D Plus “Wafer Level Stack—WDoD”, [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Written Opinion for Appln. No. PCT/US2014/050125, dated Jul. 15, 2015.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” May 2010, STATS ChipPAC Ltd.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
International Search Report and Written Opinion for Appln. No. PCT/US2016/068297, dated Apr. 17, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056526, dated Jan. 20, 2017.
Partial International Search Report for Appln. No. PCT/US2015/032679, dated Sep. 4, 2015.
Taiwan Search Report for 105128420, dated Sep. 26, 2017.
Related Publications (1)
Number Date Country
20170141083 A1 May 2017 US
Provisional Applications (2)
Number Date Country
62257223 Nov 2015 US
62256699 Nov 2015 US