The following will describe embodiments of the present invention in accordance with the accompanying drawings.
First, a BGA substrate 1 (hereinafter, will be simply referred to as a substrate 1) shown in
The internal electrodes 4 are arranged around a chip mounting area set at the center of the chip mounting surface and are spaced along the periphery of the area, and the internal electrodes 4 are arranged in multiple rows and are spaced in a direction from the center to the periphery of the chip mounting surface (see also
The internal electrodes 4 are formed thus in multiple rows because even when arranged with the minimum pitch, the internal electrodes 4 in a single row cannot respond to all the pins of the semiconductor chip. The internal electrodes 4 are generally formed with about 50-μm to 500-μm pitches, are mainly made of a material such as Cu, and have a thickness of 5 μm to 35 μm. An Au coating and the like having a thickness of about 0.01 μm to 5 μm is applied on the surfaces of the internal electrodes 4. External electrodes 3 as many as the internal electrodes 4 are formed of the same material as the internal electrodes 4 and are arranged so as to correspond to the internal electrodes 4.
Next, as shown in
The external electrodes 3 of the semiconductor chip 2 are arranged on the edge of a major surface of the semiconductor chip 2 and are spaced along the periphery of the major surface, and the external electrodes 3 are arranged in multiple rows and are spaced in a direction from the center to the periphery of the major surface. The external electrodes 3 in the respective rows are denoted as 3a, 3b and 3c from the outermost row.
The electrodes 3 are arranged thus in multiple rows because when the number of electrodes of the semiconductor chip 2 is increased (about 10 to 2000 pins according to the circuit size and so on), a required number of electrodes cannot be arranged in a signal row even with the minimum pitch. The electrodes 3 are generally made of a material such as AL, Au, and Cu. When the electrodes 3 are mainly made of AL, a small amount of Si, Cu and so on is added. The electrodes 3 are staggered or arranged in parallel. Under the electrodes 3a in the outermost row on the semiconductor chip 2, semiconductor elements such as a transistor and circuit elements 9 such as a wire are formed.
Next, as shown in
In this case, it is important that stiffness varies between the wires 5a (hereinafter, will be referred to as first wires 5a) connected to the electrodes 3a in the outermost row on the semiconductor chip 2 and the wires 5b and 5c (hereinafter, will be referred to as second wires 5b and 5c) connected to the electrodes 3b and 3c disposed inside the electrodes 3a. The second wires 5b and 5c have higher stiffness than the first wires 5a.
After completion of wire bonding, as shown in
As described above, the second wires 5b and 5c have higher stiffness than the first wires 5a in the BGA package. This is because when connecting the electrodes 3a, 3b and 3c and the internal electrodes 4a, 4b and 4c in multiple rows, the wires 5a, 5b and 5c are likely to overlap one another at least in a part thereof in plan view, that is, the wires 5a, 5b and 5c are likely to be vertically arranged at least in a part thereof. This arrangement is hard to avoid.
Another reason is that the second wires 5b and 5c connected to the electrodes 3b and 3c close to the center of the semiconductor chip 2 have to be drawn at the joints to the electrodes 3b and 3c vertically with respect to the semiconductor chip 2 and form loops, so that the wires are increased in height and length.
Since the second wires 5b and 5c have relatively high stiffness, the shapes of the loops formed upon bonding can be easily controlled. Further, the loops are hardly deformed (distorted) after bonding and it is possible to suppress deformations caused by stresses generated by a resin flow during resin sealing. Thus a desired height and shape can be kept. The first wires 5a disposed at the lowest level and connected to the electrodes 3a in the outermost row on the semiconductor chip 2 have the lowest stiffness, so that the wires 5a can be reduced in height. It is thus possible to increase a distance between the first wires 5a and the second wires 5b and 5c at a higher level.
With this configuration, failures such as contact between the first wires 5a and the second wires 5b and 5c hardly occur, so that the yields increase. The second wires 5b and 5c are so small in height that the second wires 5b and 5c do not come into contact with the first wires 5a. Thus the overall device can be reduced in thickness.
Further, during bonding with the first wires 5a having low stiffness, just a light load is applied to the electrodes 3a. Thus as described above, the circuit elements 9 disposed under the electrodes 3a do not cause damage, so that reliability can be ensured. Reversely, since the first wires 5a have low stiffness, the circuit elements 9 can be also formed on the periphery of the semiconductor chip 2. It is therefore possible to reduce the size of the semiconductor chip 2 and the cost.
For this configuration, the wires are made of different materials. For example, the first wires 5a at the lowest level are made of Au and the second wires 5b and 5c at a higher level than the first wires 5a are made of Cu. Further, the contents vary between the wires. For example, the first wires 5a are Au wires having high contents of gold (not lower than 99.99 mass %) and the second wires 5b and 5c are Au wires having low contents of gold (about 99.90 mass % to 99.00 mass %). By using Cu or Au of a low impurity, it is possible to reduce the usage amount of Au which is an expensive material, thereby reducing the cost.
Instead of the different compositions between the first wires 5a and the second wires 5b and 5c, the stiffness may be varied by different diameters. Generally, the wires are about 12 μm to 30 μm in diameter and a proper diameter can be selected. The first wires 5a at the lowest level may include wires not overlapping the second wires 5b and 5c in plan view.
As described above, after the electrodes 3a in the outermost row on the semiconductor chip 2 are connected via the first wires 5a, the electrodes 3b and 3c inside the electrodes 3a are connected via the second wires 5b and 5c. For these connections, it is efficient that a wire bonder for the first wires 5a is different from a wire bonder for the second wires 5b and 5c.
In the above explanation, stiffness varies between two groups of the first wires 5a and the second wires 5b and 5c. Stiffness may increase with the levels of the wires, that is, the stiffness of the wire 5a<the stiffness of the wire 5b<the stiffness of the wire 5c may be set.
As shown in
Next, as shown in
In this case, it is important that stiffness varies between the wires 5a (hereinafter, will be referred to as first wires 5a) connected to the electrodes 3A of the first semiconductor chip 20 and the wires 5b and 5c (hereinafter, will be referred to as second wires 5b and 5c) connected to the electrodes 3B and 3C of the second and third semiconductor chips 21 and 22. The second wires 5b and 5c have higher stiffness than the first wires 5a.
After completion of wire bonding, as shown in
Also in this BGA package, when connecting the electrodes 3A, 3B and 3C of the semiconductor chips 20, 21 and 22 stacked at multiple levels and the internal electrodes 4a, 4b and 4c, the wires 5a, 5b and 5c are likely to vertically overlap one another at least in a part thereof in plan view. This arrangement is hard to avoid. Therefore, the second wires 5b and 5c connected to the electrodes 3B and 3C have higher hardness than the first wires 5a, the electrodes 3B and 3C being disposed on the semiconductor chips 21 and 22 at a higher level and close to the center of the device. With this configuration, the same effect as the BGA package of
Regarding the second wires 5b and 5c, the shapes of the loops formed upon bonding can be easily controlled. Further, the loops are hardly deformed (distorted) after bonding and it is possible to suppress deformations caused by stresses generated by a resin flow during resin sealing. Thus a desired height and shape can be kept. Since the first wires 5a at the lowest level can be reduced in height, it is possible to increase a distance between the first wires 5a and the second wires 5b and 5c at a higher level. With this configuration, failures such as contact between the first wires 5a and the second wires 5b and 5c hardly occur, so that the yields increase. The second wires 5b and 5c are so small in height that the second wires 5b and 5c do not come into contact with the first wires 5a. Thus the overall device can be reduced in thickness.
Further, during bonding with the first wires 5a having low stiffness, just a light load is applied to the electrodes 3A. Thus the circuit elements 9 disposed under the electrodes 3A do not cause damage, so that reliability can be ensured. Reversely, since the first wires 5a have low stiffness, the circuit elements 9 can be also formed on the periphery of the semiconductor chip 20. It is therefore possible to reduce the size of the semiconductor chip 20 and the cost.
The first wires 5a and the second wires 5b and 5c can be similar to the wires of the BGA package shown in
Although the semiconductor chip 20 at the lowest level is illustrated with the largest size, the positions and sizes of the stacked semiconductor chips are not limited. For example, when the semiconductor chip 20 at the lowest level is not wire bonded, the semiconductor chip 20 may be smaller in size than the other semiconductor chips 21 and 22.
In the above explanation, the number of stacked semiconductor chips is three. The above configuration can be realized by at least two semiconductor chips and the same effect can be obtained.
A plurality of electrodes 3 of the first semiconductor chip 23 are arranged on the edge of a major surface of the semiconductor chip and are spaced along the periphery of the major surface, and the electrodes 3 are arranged in multiple rows and are spaced in a direction from the center to the periphery of the major surface. The electrodes 3 are denoted as 3A1 and 3A2 from the peripheral side. A plurality of electrodes 3 on the second semiconductor chip 24 are also similarly arranged in multiple rows on the edge of a major surface of the semiconductor chip. The electrodes 3 are denoted as 3B1 and 3B2 from the peripheral side.
The electrodes 3A1 in the outer row on the first semiconductor chip 23 and internal electrodes 4a in the inner row on the substrate 1 are electrically connected via wires 5a by wire bonding. The electrodes 3A2 in the inner row on the first semiconductor chip 23 and the electrodes 3B1 in the outer row of the second semiconductor chip 24 are connected via wires 5b. The electrodes 3A2 and the electrodes 3B1 are connected to electrically connect the first semiconductor chip 23 and the second semiconductor chip 24 in a space-saving manner without connection via the substrate 1. The electrodes 3B2 in the inner row on the second semiconductor chip 24 and internal electrodes 4b in the outer row on the substrate 1 are connected via wires 5c of the same kind as the wires 5b.
The wires 5b and 5c (hereinafter, will be referred to as second wires 5b and 5c) have higher stiffness than the wires 5a (hereinafter, will be referred to as first wires 5a). The first wires 5a connect the electrodes 3A1 of the first semiconductor chip 23 and the internal electrodes 4a, the second wires 5b connect the electrodes 3A2 and 3B1, and the second wires 5c connect the electrodes 3B2 and the internal electrodes 4b.
Also in this BGA package, the second wires 5b and 5c connected to the electrodes 3B2 and 3B1 have higher stiffness than the first wires 5a connected to the electrodes 3A1 of the semiconductor chip 23 at a lower level, the electrodes 3B2 and 3B1 being disposed on the semiconductor chip 24 at a higher level and close to the center of the device. In other words, the second wires 5b and 5c at a higher level have higher stiffness than the first wires 5a at the lowest level. Thus the same effect as the BGA packages of
The usable first wires 5a and second wires 5b and 5c are similar to the wires of the BGA package shown in
Although the semiconductor chip 23 at a lower level is illustrated with a larger size, the positions and sizes of the stacked semiconductor chips are not limited. For example, when the semiconductor chip 23 at a lower level is not wire bonded, the semiconductor chip 23 may be smaller in size than the semiconductor chip 24.
The number of stacked semiconductor is two in the above explanation. The above configuration can be realized by at least two semiconductor chips and the same effect can be obtained.
The first semiconductor chip 25 has electrodes 3D formed in a grid-like fashion on a major surface and solder balls 10 formed on the electrodes 3. The solder balls 10 are bonded to internal electrodes 4d formed in a chip mounting area of the substrate 1.
The second semiconductor chip 26 is fixed on the first semiconductor chip 25. A plurality of electrodes 3 of the second semiconductor chip 26 are arranged on the edge of a major surface of the semiconductor chip and are spaced along the periphery of the major surface, and the electrodes 3 are arranged in multiple rows and are spaced in a direction from the center to the periphery of the major surface. The electrodes 3 are denoted as 3a and 3b from the peripheral side.
The electrodes 3a in the outer row on the second semiconductor chip 26 and internal electrodes 4a in the inner row on the substrate 1 are electrically connected via wires 5a by wire bonding. The electrodes 3b in the inner row on the second semiconductor chip 26 and internal electrodes 4b in the outer row on the substrate 1 are connected via wires 5b. The wires 5b (hereinafter, will be referred to as second wires 5b) have higher stiffness than the wires 5a (hereinafter, will be referred to as first wires 5a).
Also in this BGA package, the first wires 5a disposed at the lowest level and connected to the electrodes 3a in the outermost row on the second semiconductor chip 26 have the lowest stiffness and the second wires 5b at a higher level have higher stiffness. Thus the same effect as the BGA package of
The usable first wires 5a and second wires 5b and the order of bonding are similar to the wires and the order of the BGA package shown in
Although the semiconductor chip 25 at a lower level is illustrated with a larger size, the positions and sizes of the stacked semiconductor chips are not limited. For example, the semiconductor chip 25 at a lower level may be smaller in size than the semiconductor chip 26.
In the above explanation, the number of stacked semiconductor chips is two. The above configuration can be realized by at least two semiconductor chips and the same effect can be obtained.
The BGA package is, in the above explanation, a single package using the substrate 1. It is needless to say that a plurality of connected BGA packages may be manufactured using substrates shaped like strips and the like having a plurality of mounting areas, and then the BGA packages may be separated from one another. The foregoing configurations are also applicable to QFP packages and other kinds of packages with the same effect.
Also in this QFP package, second wires 5b at a higher level have higher stiffness than first wires 5a at the lowest level. Thus the same effect as the BGA packages of
As described above, of a plurality of thin metal wires vertically arranged to connect a plurality of electrodes on a semiconductor chip and the inner terminals of a plurality of conductor portions arranged around the semiconductor chip in the semiconductor device of the present invention, the thin metal wires at the lowest level have the lowest stiffness and the thin metal wires at a higher level have higher stiffness. Thus it is possible to prevent contact between the thin metal wires and improve the yields. By using Cu and Au of a low impurity as the thin metal wires having higher stiffness, it is possible to reduce the usage amount of Au as compared with the prior art, reducing the cost. The present invention is particularly useful for manufacturing small semiconductor devices mounted with multiple pins in electronic equipment such as mobile communications equipment.
Number | Date | Country | Kind |
---|---|---|---|
2006-256550 | Sep 2006 | JP | national |
2007-207308 | Aug 2007 | JP | national |