Method for forming a double embossing structure

Information

  • Patent Grant
  • 7960269
  • Patent Number
    7,960,269
  • Date Filed
    Monday, July 24, 2006
    18 years ago
  • Date Issued
    Tuesday, June 14, 2011
    13 years ago
Abstract
A method for fabricating a circuitry component comprises depositing a first metal layer over a substrate; forming a first pattern-defining layer over said first metal layer, a first opening in said first pattern-defining layer exposing said first metal layer; depositing a second metal layer over said first metal layer exposed by said first opening; removing said first pattern-defining layer; forming a second pattern-defining layer over said second metal layer, a second opening in said second pattern-defining layer exposing said second metal layer; depositing a third metal layer over said second metal layer exposed by said second opening; removing said second pattern-defining layer; removing said first metal layer not under said second metal layer; and forming a polymer layer over said second metal layer, wherein said third metal layer is used as a metal bump bonded to an external circuitry.
Description
BACKGROUND OF THE PRESENT INVENTION

1. Field of Invention


The invention relates to a process with a seed layer for two steps of electroplating and the corresponding structure, and more particularly to a metal layer deposited at the second step of electroplating capable of being used as a metal pad used to be wirebonded thereto or to have a gold bump or solder bump formed thereover, of being used as a metal bump, or of being used as metal vias connecting neighboring two patterned circuit layers.


2. Description of Related Arts


The continued emphasis in the semiconductor technology is to create improved performance semiconductor devices at competitive prices. This emphasis over the years has resulted in extreme miniaturization of semiconductor devices, made possible by continued advances of semiconductor processes and materials in combination with new and sophisticated device designs. Most of the semiconductor devices are aimed at processing digital data. There are also numerous semiconductor designs that are aimed at incorporating analog functions into devices that are capable of processing digital and analog data, or devices that can be used for processing only analog data. One of the major challenges in the creation of analog processing circuitry is that a number of the components used for analog circuitry are large in size and are therefore not readily integrated into sub-micron devices. Especially, these components may be passive devices, whose size is much huge in comparison with the size of normal semiconductor devices.


Some reference teaches a process with a seed layer for two steps of electroplating, as follows:


Nobuhisa et al. (U.S. Pat. No. 6,707,159) teach a process with a seed layer for two steps of electroplating two gold layers for chip-on-chip package or for chip-on-PCB package.


Chiu-Ming et al. (US2006/0019490) teach a process with a seed layer for two steps of electroplating two gold layers, of electroplating a copper layer and a gold layer, or of electroplating a copper/gold layer and a solder layer.


Mou-Shiung Lin et al. (US2005/0277283) teach a process with a seed layer for two steps of electroplating.


SUMMARY OF THE PRESENT INVENTION

The invention provides a method for fabricating a circuitry component comprising depositing a first metal layer over a substrate; forming a first pattern-defining layer over said first metal layer, a first opening in said first pattern-defining layer exposing said first metal layer; depositing a second metal layer over said first metal layer exposed by said first opening; removing said first pattern-defining layer; forming a second pattern-defining layer over said second metal layer, a second opening in said second pattern-defining layer exposing said second metal layer; depositing a third metal layer over said second metal layer exposed by said second opening; removing said second pattern-defining layer; after said removing said second pattern-defining layer, removing said first metal layer not under said second metal layer; and after said removing said first metal layer, forming a polymer layer over said second metal layer, wherein said third metal layer is used as a metal bump bonded to an external circuitry.


The invention provides another method for fabricating a circuitry component comprising depositing a first metal layer over a substrate; forming a first pattern-defining layer over said first metal layer, a first opening in said first pattern-defining layer exposing said first metal layer; depositing a second metal layer over said first metal layer exposed by said first opening; removing said first pattern-defining layer; forming a second pattern-defining layer over said second metal layer, a second opening in said second pattern-defining layer exposing said second metal layer; depositing a third metal layer over said second metal layer exposed by said second opening; and removing said second pattern-defining layer, wherein said third metal layer is used to be wirebonded thereto.


The invention provides another method for fabricating a circuitry component comprising depositing a first metal layer over a substrate; forming a first pattern-defining layer over said first metal layer, a first opening in said first pattern-defining layer exposing said first metal layer; depositing a second metal layer over said first metal layer exposed by said first opening; removing said first pattern-defining layer; forming a polymer layer over said second metal layer and part of said first metal layer; and removing said first metal layer not under said second metal layer and not under said polymer layer.


One or part or all of these and other features and advantages of the present invention will become readily apparent to those skilled in this art from the following description wherein there is shown and described a preferred embodiment of this invention, simply by way of illustration of one of the modes best suited to carry out the invention. As it will be realized, the invention is capable of different embodiments, and its several details are capable of modifications in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-17 are cross-sectional views showing a process with a seed layer for two steps of electroplating, wherein the metal layer deposited at the second step of electroplating is capable of being used as a metal pad used to be wirebonded thereto or to have a gold bump or solder bump formed thereover, or of being used as a metal bump.



FIGS. 18-30 are cross-sectional views showing a process with a seed layer for two steps of electroplating, wherein the metal layer deposited at the second step of electroplating is capable of being a metal via connecting neighboring two coils.



FIGS. 31-56 are cross-sectional views showing a process with a seed layer for two steps of electroplating, wherein the metal layer deposited at the second step of electroplating is capable of being a metal via connecting neighboring two circuit layers.



FIGS. 57-68 are cross-sectional views showing a process with a patterned polymer layer formed before a seed layer and adhesion/barrier layer is removed.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following are the embodiments to illustrate the processes and structures to combine the PI capping and the double embossed structure. At first, the illustrated processes and structures are applied when the PI cap is formed after the double embossed structure is finished for a semiconductor wafer.


Referring to FIG. 1, a semiconductor substrate 30 is provided, and the semiconductor substrate 30 may be Si substrate, GaAs substrate, GeSi substrate or SOI (silicon-on-insulator) substrate. The semiconductor substrate 30 is a circular semiconductor wafer. The semiconductor substrate 30 has an active surface having multiple electronic elements 32, which are formed via doping trivalent or pentavalent ions, such as boron ions or phosphorus ions. The electronic elements 32 may be MOS transistors, MOS devices, p-channel MOS devices, n-channel MOS devices, BiCMOS devices, Bipolar Junction Transistors, diffusion areas, resistors, capacitors, or CMOS devices.


Referring to FIG. 1, a multiple thin-film insulating layers 36 and multiple thin-film circuit layers 38 are formed over the active surface of the semiconductor substrate 30. Each of the thin-film insulating layers 36 has a thickness less than 3 μm. Each of the thin-film circuit layers 38 has a thickness less than 3 μm. The thin-film circuit layers 38 are made of a copper material or an aluminum material. The thin-film insulating layers 36 are usually formed with a CVD (Chemical Vapor Deposition) method. The material of the thin-film insulating layers 36 may be silicon oxide, TEOS (Tetraethoxysilane), SiwCxOyHz, compound of silicon and nitrogen/compound of silicon, nitrogen and oxygen, SOG (Spin-On Glass), FSG (Fluoro-Silicate Glass), SiLK, black diamond, polyarylene ether, PBO (Polybenzoxazole), or porous silicon oxide. The dielectric constant of the thin-film insulating layers 36 may be lower than 3.


When a damascene process is used to form one of multiple thin-film circuit layers 38, such as the topmost one under the passivation layer 42, over the semiconductor substrate 30, a diffusion-barrier layer is firstly sputtered on the upper surface of one of the thin-film insulating layers 36 and on the bottoms and the sidewalls of the openings in said one of the thin-film insulating layers 36; next, a seed layer, such as copper, is sputtered on the diffusion-barrier layer; next, another copper layer is electroplated on the seed layer; and then, the electroplated copper layer, seed layer and diffusion-barrier layer outside the openings in said one of the thin-film insulating layers 36 are removed with a chemical mechanical polishing (CMP) method until the upper surface of said one of the thin-film insulating layers 36 is exposed. In another method to form one of multiple thin-film circuit layers 38, such as the second topmost one under the passivation layer 42, over the semiconductor substrate 30, an aluminum layer or an aluminum-copper alloy layer is sputtered on one of the thin-film insulating layers 36; and then, the aluminum layer or the aluminum-copper alloy layer is patterned with photolithographic and etching processes. The thin-film circuit layers 38 can be interconnected or connected to the electronic elements 32 via conductive vias in openings in the thin-film insulating layers 36. The thickness of one of the thin-film circuit layers 38 is generally between 0.1 and 0.5 μm. The thin-film circuit layers 38 are fabricated with a 5× stepper or 5× scanner or other superior equipment in the step of a photolithographic process.


Next, a passivation layer 42 is formed over the thin-film insulating layers 36 and the thin-film circuit layers 38 with a CVD method. The passivation layer 42 can protect the electronic elements 32 in the semiconductor substrate 30 from foreign ion contamination. The passivation layer 42 can retard the penetration of mobile ions (such as sodium ions), moisture, transition metals (such as gold, silver, and copper) and impurities. Thereby, the passivation layer 42 can protect the thin-film circuit layers 38, the thin-film insulating layers 36 and the underlying electronic elements 32 including: transistors, polysilicon resistors, polysilicon-polysilicon capacitors. The passivation layer 42 is usually composed of silicon oxide, compounds of silicon and oxygen, silicate and phosphate glass, silicon nitride, or silicon oxy-nitride, etc. Below, ten methods for depositing the passivation layer 42 are to be introduced.


Method 1


A silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed with a CVD method; and next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon oxide with a CVD method.


Method 2


A silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed with a CVD method; next, a silicon oxy-nitride layer with a thickness of between 0.05 and 0.15 μm is formed on the silicon oxide with a plasma-enhanced CVD method; and next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon oxy-nitride layer with a CVD method.


Method 3


A silicon oxy-nitride layer with a thickness of between 0.05 and 0.15 μm is formed with a CVD method; next, a silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon oxy-nitride layer with a CVD method; and next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon oxide layer with a CVD method.


Method 4


A first silicon oxide layer with a thickness of between 0.2 and 0.5 μm is formed with a CVD method; next, a second silicon oxide layer with a thickness of between 0.5 and 1 μm is formed on the first silicon oxide layer with a spin-coating method; next, a third silicon oxide layer with a thickness of between 0.2 and 0.5 μm is formed on the second silicon oxide layer with a CVD method; and next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the third silicon oxide layer with a CVD method.


Method 5


A silicon oxide layer with a thickness of between 0.5 and 2 μm is formed with a HDP-CVD (High Density Plasma-Chemical Vapor Deposition) method; and next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon oxide layer with a CVD method.


Method 6


A USG (Undoped Silicate Glass) layer with a thickness of between 0.2 and 3 μm is firstly formed; next, an insulating layer with a thickness of between 0.5 and 3 μm, such as TEOS, BPSG (Borophosphosilicate Glass) or PSG (Borophosphosilicate Glass), is formed on the USG layer; and next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the insulating layer with a CVD method.


Method 7


A first silicon oxy-nitride layer with a thickness of between 0.05 and 0.15 μm is optionally formed with a CVD method; next, a silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed on the first silicon oxy-nitride layer with a CVD method; next, a second silicon oxy-nitride layer with a thickness of between 0.05 and 0.15 μm is optionally formed on the silicon oxide layer with a CVD method; next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the second silicon oxy-nitride layer or on the silicon oxide layer with a CVD method; next, a third silicon oxy-nitride layer with a thickness of between 0.05 and 0.15 μm is optionally formed on the silicon nitride layer with a CVD method; and next, a silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed on the third silicon oxy-nitride layer or on the silicon nitride layer with a CVD method.


Method 8


A first silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed with a PECVD (Plasma Enhanced Chemical Vapor Deposition) method; next, a second silicon oxide layer with a thickness of between 0.5 and 1 μm is formed on the first silicon oxide layer with a spin-coating method; next, a third silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed on the second silicon oxide layer with a CVD method; next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the third silicon oxide layer with a CVD method; and next, a fourth silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon nitride layer with a CVD method.


Method 9


A first silicon oxide layer with a thickness of between 0.5 and 2 μm is formed with a HDP-CVD method; next, a silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the first silicon oxide layer with a CVD method; and next, a second silicon oxide layer with a thickness of between 0.5 and 2 μm is formed on the silicon nitride layer with a HDP-CVD method.


Method 10


A first silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed with a CVD method; next, a silicon oxide layer with a thickness of between 0.2 and 1.2 μm is formed on the first silicon nitride layer with a CVD method; and next, a second silicon nitride layer with a thickness of between 0.2 and 1.2 μm is formed on the silicon oxide layer with a CVD method.


The total thickness of the passivation layer 42 is generally more than 0.35 μm, and the thickness of the silicon nitride layer is generally more than 0.3 μm under an optimal condition. Typically, the passivation layer 42 comprises a topmost silicon-nitride layer of the completed semiconductor wafer or chip. The passivation layer 42 comprises a topmost silicon-oxide layer of the completed semiconductor wafer or chip. The passivation layer 42 comprises a topmost silicon-oxynitride layer of the completed semiconductor wafer or chip. The passivation layer 42 comprises a topmost CVD-formed layer of the completed semiconductor wafer or chip.


Referring to FIG. 2, it is an optional process to form two patterned polymer layers 320 and 330 on the passivation layer 42. The patterned first polymer layer 320 can be formed by spin coating a first polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the passivation layer 42.


Next, if the spin-coated first polymer layer is photosensitive, a photolithography process including exposing and developing steps can be used to pattern the spin-coated first polymer layer. Next, the first polymer layer is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated first polymer layer is polyimide. The patterned first polymer layer 320 after being cured may have a thickness t1 of between 2 and 50 microns, and preferably between 6 and 20 microns.


If the spin-coated first polymer layer is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated first polymer layer.


Alternatively, the patterned first polymer layer 320 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the passivation layer 42, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the patterned first polymer layer 320 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the passivation layer 42.


If the patterned first polymer layer 320 is not thick enough, a patterned second polymer layer 330 can be formed on the patterned first polymer layer 320, as shown in FIG. 2. The patterned second polymer layer 330 can be formed by spin coating a second polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the patterned first polymer layer 320 and on the passivation layer 42.


Next, if the spin-coated second polymer layer is photosensitive, a photolithography process including exposing and developing steps can be used to pattern the spin-coated second polymer layer. Next, the first polymer layer is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated second polymer layer is polyimide. The patterned second polymer layer 330 after being cured may have a thickness t2 of between 6 and 20 microns, and preferably between 6 and 20 microns.


If the spin-coated second polymer layer is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated second polymer layer.


Alternatively, the patterned second polymer layer 330 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the patterned first polymer layer 320, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the patterned second polymer layer 330 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 10 and 500 microns on the patterned first polymer layer 320.


Referring to FIG. 2, after forming the patterned first and second polymer layers 320 and 330, an adhesion/barrier layer 340 may be formed by sputtering or evaporating a metal layer of titanium, tungsten, cobalt, nickel, titanium nitride, a titanium-tungsten alloy, chromium, a chromium-copper alloy, tantalum, or tantalum nitride, with a thickness of between 1000 and 6000 angstroms, on the patterned second polymer layer 330 and on the passivation layer 42. Next, a seed layer 342 may be formed by sputtering, evaporating or electroless plating a metal layer of gold, copper, nickel, silver, palladium, platinum, rhodium, ruthenium, or rhenium, with a thickness of between 500 and 3000 angstroms on the adhesion/barrier layer 340.


Next, referring to FIG. 3, a photoresist layer 350, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t3 of between 4 and 30 microns, is formed on the seed layer 342 using a spin coating process.


Next, referring to FIG. 4, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 350 and to form an opening 352, with a coil pattern from a top view, in the photoresist layer 350 exposing the seed layer 342.


Next, referring to FIG. 5, a metal layer 360, with a coil pattern from a top view, is electroplated on seed layer 342 exposed by the opening 352 in the photoresist layer 350. The metal layer 360 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns, and preferably between 3 and 10 microns, on the seed layer 342 preferably of gold exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of copper with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of copper exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of silver with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of silver exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of nickel with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of nickel exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of palladium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of palladium exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of platinum with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of platinum exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of rhodium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of rhodium exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of ruthenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of ruthenium exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a single layer of rhenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of rhenium exposed by the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of copper exposed by the opening 352 in the photoresist layer 350, and then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer in the opening 352 in the photoresist layer 350. Alternatively, the metal layer 360 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 342 preferably of copper exposed by the opening 352 in the photoresist layer 350, then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer in the opening 352 in the photoresist layer 350, and then electroplating a gold layer with a thickness of between 1 and 5 microns on the nickel layer in the opening 352 in the photoresist layer 350.


Next, referring to FIG. 6, the photoresist layer 350 is stripped. The pitch p1 between the centers of the neighboring turns of the patterned coil may range from 2 to 30 microns, and preferably from 2 and 10 microns.


Next, referring to FIG. 7, a photoresist layer 370, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t4 of between 4 and 30 microns, is formed on the electroplated metal layer 360 and on the seed layer 342 using a spin coating process.


Next, referring to FIG. 8, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 370 and to form an opening 372 in the photoresist layer 370 exposing the electroplated metal layer 360.


Next, referring to FIG. 9, a metal layer 380 is electroplated on the metal layer 360 exposed by the opening 372 in the photoresist layer 370. The metal layer 380 can be deposited by electroplating a single layer of gold with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably gold, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 30 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of silver with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably silver, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of palladium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably palladium, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of platinum with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably platinum, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of rhodium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably rhodium, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of ruthenium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably ruthenium, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of rhenium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably rhenium, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a single layer of copper with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably copper, exposed by the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 372 in the photoresist layer 370, and then electroplating a solder layer, such a tin-lead alloy or a tin-silver alloy, with a thickness of between 10 and 150 microns on the nickel layer in the opening 372 in the photoresist layer 370. Alternatively, the metal layer 380 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 372 in the photoresist layer 370, and then electroplating a gold layer with a thickness of between 1 and 20 microns on the nickel layer in the opening 372 in the photoresist layer 370.


Next, referring to FIG. 10, the photoresist layer 370 is stripped. Next, referring to FIG. 11, the seed layer 342 not under the metal layer 360 is removed using a dry etching process or a wet etching process. If the seed layer 342 is gold and removed by a wet etching process, the etchant for etching the seed layer 342 is potassium iodide. Thereafter, the adhesion/barrier layer 340 not under the metal layer 360 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 340 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 340 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrofluoric acid.


Referring to FIGS. 12-13, it is an optional process to form a patterned polymer layer 390 on the metal layers 380 and 360, on the patterned polymer layer 330, and on the passivation layer 42. The patterned polymer layer 390 can be formed by spin coating a polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the metal layers 380 and 360, on the patterned polymer layer 330, and on the passivation layer 42.


Next, if the spin-coated polymer layer is photosensitive, a photolithography process including exposing and developing steps can be used to form an opening 392 in the spin-coated polymer layer exposing the metal layer 380. Next, the spin-coated polymer layer is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer is polyimide. The patterned polymer layer 390 after being cured may have a thickness t5 of between 2 and 50 microns, and preferably between 6 and 20 microns.


If the spin-coated polymer layer is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated polymer layer.


Alternatively, the patterned polymer layer 390 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the metal layer 360, on the patterned polymer layer 330, and on the passivation layer 42, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the patterned polymer layer 390 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the metal layer 360, on the patterned polymer layer 330, and on the passivation layer 42.


In this embodiment, the patterned polymer layer 390 covers the peripheral region of the metal layer 380 used as a metal pad.


Next, referring to FIG. 14, the metal layer 380 is used as a metal pad for being wirebonded thereto or having a gold bump or solder bump formed thereover. A gold wire 394 can be connected to the metal layer 380 exposed by the opening 392 in the polymer layer 390 using a wirebonding process. Alternatively, a gold bump or tin-containing bump, not shown, can be formed over the above-mentioned metal layer 380 exposed by the opening 392 in the polymer layer 390.


Alternatively, referring to FIG. 15, the metal layer 380 used as a metal pad for being wirebonded thereto or having a gold bump or solder bump formed thereover has a top surface and a side surface not covered by the patterned polymer layer 390. A gold wire 394 can be connected to the metal layer 380 exposed by the opening 392 in the polymer layer 390 using a wirebonding process. Alternatively, a gold bump or tin-containing bump, not shown, can be formed over the above-mentioned metal layer 380 exposed by the opening 392 in the polymer layer 390. The elements shown in FIG. 15 having same reference numbers as those shown in FIGS. 1-14 indicate similar ones described above in FIGS. 1-14.


Alternatively, referring to FIG. 16, the above-mentioned metal layer 380 may be used as a metal bump capable of being connected to an external circuitry 396, such as a ceramic substrate, a printed circuit board, semiconductor chip for chip-on-chip package, glass substrate for a chip-on-glass (COG) package, flex circuit substrate for a chip-on-film (COF) package, a tape carrier for tape-automated-bonded (TAB) package. In the application for COG, COF or TAB packages, the topmost layer of the metal layer 380 is preferably gold, which can be bonded to a metal layer 398, preferably of gold, formed on the above-mentioned external circuitry 396 or to a metal layer 398, preferably of tin-containing material, formed on the above-mentioned external circuitry. Alternatively, an anisotropic conductive film (ACF) can be use to electrically connect the metal layer 380 to the above-mentioned external circuitry 396, such as glass substrate. In the application for being connected to a ceramic substrate, printed circuit board, or semiconductor chip 396, the topmost layer of the metal layer 380 is preferably tin-containing material, which can be bonded to a metal layer 398, preferably of gold, formed on the ceramic substrate, printed circuit board, or semiconductor chip 396, or to a metal layer 398, preferably of tin-containing material, formed on the ceramic substrate, printed circuit board, or semiconductor chip 396. After the metal layer 380 is connected to the above-mentioned external circuitry 396, a polymer material 399, such as polyimide or benzo-cyclo-butene (BCB), can be filled into the gap between the patterned polymer layer 390 and the above-mentioned external circuitry 396. The metal layer 380 used as a metal bump is protruded from the patterned polymer layer 390 such that the metal layer 380 can be easily bonded to the above-mentioned external circuitry 396. The elements shown in FIG. 16 having same reference numbers as those shown in FIGS. 1-14 indicate similar ones described above in FIGS. 1-14.


Alternatively, referring to FIG. 17, a metal bump formed from the above-mentioned metal layer 380 capable of being connected to the above-mentioned external circuitry 396 and a bond pad formed from the above-mentioned metal layer 360 capable of being wirebonded thereto or having a gold bump or solder bump formed thereover can be provided. An opening 393 in the polymer layer 390 exposes the bond pad formed from the above-mentioned metal layer 360. A gold wire 394 can be connected to the metal layer 360 exposed by the opening 393 in the polymer layer 390 using a wirebonding process. Alternatively, a gold bump or tin-containing bump, not shown, can be formed over the metal layer 360 exposed by the opening 393 in the polymer layer 390. The elements shown in FIG. 17 having same reference numbers as those shown in FIGS. 1-14 and 16 indicate similar ones described above in FIGS. 1-14 and 16.


Alternatively, two layers of coils can be formed over the passivation layer 42, as shown in FIGS. 18-30. The process illustrated by FIGS. 18-30 follows the above-mentioned process of FIG. 6. The elements shown in FIGS. 18-30 having same reference numbers as those shown in FIGS. 1-14 indicate similar ones described above in FIGS. 1-14. After the above-mentioned metal layer 360 is formed, a photoresist layer 470, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t4 of between 1 and 30 microns, is formed on the electroplated metal layer 360 and on the seed layer 342 using a spin coating process. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 470 and to form an opening 472 in the photoresist layer 470 exposing the electroplated metal layer 360.


Next, a metal layer 480 is electroplated on the metal layer 360 exposed by the opening 472 in the photoresist layer 470. The metal layer 480 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably gold, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of silver with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably silver, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of palladium with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably palladium, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of platinum with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably platinum, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of rhodium with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably rhodium, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of ruthenium with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably ruthenium, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of rhenium with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably rhenium, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a single layer of copper with a thickness of between 1 and 20 microns on the metal layer 360, whose topmost layer is preferably copper, exposed by the opening 472 in the photoresist layer 470. Alternatively, the metal layer 480 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 472 in the photoresist layer 470, and then electroplating a solder layer, such a tin-lead alloy or a tin-silver alloy, with a thickness of between 1 and 10 microns on the nickel layer. Alternatively, the metal layer 480 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 472 in the photoresist layer 470, and then electroplating a gold layer with a thickness of between 1 and 10 microns on the nickel layer.


In the embodiment, the metal layer 480 is formed with a metal via connecting neighboring coils separated by a to-be-formed polymer layer.


Next, referring to FIG. 19, the photoresist layer 470 is stripped. Next, referring to FIG. 20, the seed layer 342 not under the metal layer 360 is removed using a dry etching process or a wet etching process. If the seed layer is gold and removed by a wet etching process, the etchant for etching the seed layer 342 is potassium iodide. Thereinafter, the adhesion/barrier layer 340 not under the metal layer 360 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 340 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 340 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrofluoric acid.


Referring to FIG. 21, a polymer layer 490 is formed on the metal layers 480 and 360, on the patterned polymer layer 330, and on the passivation layer 42. The polymer layer 490 can be formed by spin coating a polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the metal layers 380 and 360, on the patterned polymer layer 330, and on the passivation layer 42, and then curing the spin-coated polymer layer at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer is polyimide. Alternatively, the polymer layer 490 can be formed by repeating said spin coating process and said curing process many times to form the polymer layer 490 with an extremely great thickness.


Alternatively, the polymer layer 490 can be formed by screen printing a polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the metal layers 480 and 360, on the patterned polymer layer 330, and on the passivation layer 42, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the polymer layer 490 can be formed by laminating a dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the metal layers 480 and 360, on the patterned polymer layer 330, and on the passivation layer 42.


Next, referring to FIG. 22, the top side of the polymer layer 490 is ground using a mechanical grinding process or using a chemical mechanical polishing (CMP) process until the top surface of the metal layer 480 is exposed to the outside.


Next, referring to FIG. 23, an adhesion/barrier layer 540 may be formed by sputtering or evaporating a metal layer of titanium, tungsten, cobalt, nickel, titanium nitride, a titanium-tungsten alloy, chromium, a chromium-copper alloy, tantalum, or tantalum nitride, with a thickness of between 1000 and 6000 angstroms, on the polymer layer 490 and on the metal layer 480. Next, a seed layer 542 may be formed by sputtering, evaporating or electroless plating a metal layer of gold, copper, nickel, silver, palladium, platinum, rhodium, ruthenium, or rhenium, with a thickness of between 500 and 3000 angstroms on the adhesion/barrier layer 540.


Next, referring to FIG. 24, a photoresist layer 550, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t3 of between 4 and 30 microns, is formed on the seed layer 542 using a spin coating process.


Next, referring to FIG. 25, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 550 and to form an opening 552, with a coil pattern from a top view, in the photoresist layer 550 exposing the seed layer 542.


Next, referring to FIG. 26, a metal layer 560, with a coil pattern from a top view, is electroplated on seed layer 542 exposed by the opening 552 in the photoresist layer 550. The metal layer 560 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns, and preferably between 3 and 10 microns, on the seed layer 542 preferably of gold exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of copper with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of copper exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of silver with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of silver exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of nickel with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of nickel exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of palladium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of palladium exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of platinum with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of platinum exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of rhodium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of rhodium exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of ruthenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of ruthenium exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a single layer of rhenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of rhenium exposed by the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of copper exposed by the opening 552 in the photoresist layer 550, and then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer in the opening 552 in the photoresist layer 550. Alternatively, the metal layer 560 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 542 preferably of copper exposed by the opening 552 in the photoresist layer 550, then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer in the opening 552 in the photoresist layer 550, and then electroplating a gold layer with a thickness of between 1 and 5 microns on the nickel layer in the opening 552 in the photoresist layer 550.


Next, referring to FIG. 27, the photoresist layer 550 is stripped. The pitch p2 between the centers of the neighboring turns of the patterned coil may range from 2 to 30 microns, and preferably from 2 and 10 microns.


Next, referring to FIG. 28, the seed layer 542 not under the metal layer 560 is removed using a dry etching process or a wet etching process. If the seed layer 542 is gold and removed by a wet etching process, the etchant for etching the seed layer 542 is potassium iodide. Thereafter, the adhesion/barrier layer 540 not under the metal layer 560 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 540 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 540 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 540 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 540 is hydrofluoric acid.


Referring to FIGS. 29-30, it is an optional process to form a patterned polymer layer 590 on the metal layer 560 and on the polymer layer 490. The patterned polymer layer 590 can be formed by spin coating a polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the metal layer 560 and on the polymer layer 490.


Next, if the spin-coated polymer layer is photosensitive, a photolithography process including exposing and developing steps can be used to form an opening 592 in the spin-coated polymer layer exposing the metal layer 560. Next, the spin-coated polymer layer is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer is polyimide. The patterned polymer layer 590 after being cured may have a thickness t6 of between 2 and 50 microns, and preferably between 6 and 20 microns.


If the spin-coated polymer layer is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated polymer layer.


Alternatively, the patterned polymer layer 590 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the metal layer 560 and on the polymer layer 490, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the patterned polymer layer 590 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the metal layer 560 and on the polymer layer 490.


Next, referring to FIG. 30, the metal layer 560 has a portion exposed by the opening 592 in the polymer layer 590, which may be used as a metal pad for being wirebonded thereto or having a gold bump or solder bump formed thereover. A gold wire 394 can be connected to the metal layer 560 exposed by the opening 592 in the polymer layer 590 using a wirebonding process. Alternatively, a gold bump or tin-containing bump, not shown, can be formed over the above-mentioned metal layer 560 exposed by the opening 592 in the polymer layer 590.


Alternatively, the above-mentioned process is not limited to forming coils with two patented circuit layers, but can be applied to forming a metal trace with multiple patterned circuit layers, as shown in FIGS. 31-56. Referring to FIGS. 31-56, the structure under the passivation layer 42 can be referred as to that described in FIG. 1. The elements shown in FIGS. 31-56 having same reference numbers as those shown in FIGS. 1-14 indicate similar ones described above in FIGS. 1-14. In FIG. 31, multiple openings 44 may be formed in the passivation layer 42 and may expose multiple metal pads of the topmost one of the thin-film circuit layers 38.


Referring to FIG. 32, it is an optional process to form a patterned polymer layer 620 on the passivation layer 42 and on the metal pads exposed by the openings 44 in the passivation layer 42. The patterned polymer layer 620 can be formed by spin coating a polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the passivation layer 42 and on the metal pads of the topmost one of the thin-film circuit layers 38 exposed by the openings 44 in the passivation layer 42.


Next, if the spin-coated polymer layer is photosensitive, a photolithography process including exposing and developing steps can be used to pattern the spin-coated polymer layer and to form multiple openings 622 in the spin-coated polymer layer exposing the metal pads of the topmost one of the thin-film circuit layers 38 exposed by the openings 44 in the passivation layer 42. Next, the spin-coated polymer layer is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer is polyimide. The patterned polymer layer 620 after being cured may have a thickness t7 of between 2 and 50 microns, and preferably between 6 and 20 microns.


If the spin-coated polymer layer is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated first polymer layer.


Alternatively, the patterned polymer layer 620 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the passivation layer 42, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the patterned polymer layer 620 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the passivation layer 42.


The patterned polymer layer 620 may cover a peripheral region of the exposed surface of the metal pads, such as the left one, of the topmost one of the thin-film circuit layers 38 exposed by the openings 44 in the passivation layer 42. The openings 622 in the patterned polymer layer 620 may expose the entire exposed surface of the metal pads, such as the middle and right ones, of the topmost one of the thin-film circuit layers 38 exposed by the openings 44 in the passivation layer 42.


Alternatively, the patterned polymer layer 620 can be formed by repeating said spin coating process and said curing process many times to form the polymer layer 620 with an extremely great thickness.


Referring to FIG. 33, after forming the patterned polymer layer 620, an adhesion/barrier layer 640 may be formed by sputtering or evaporating a metal layer of titanium, tungsten, cobalt, nickel, titanium nitride, a titanium-tungsten alloy, chromium, a chromium-copper alloy, tantalum, or tantalum nitride, with a thickness of between 1000 and 6000 angstroms, on the patterned polymer layer 620 and on the metal pads of the topmost one of the thin-film circuit layers 38 exposed by the openings 44 in the passivation layer 42. Next, a seed layer 642 may be formed by sputtering, evaporating or electroless plating a metal layer of gold, copper, nickel, silver, palladium, platinum, rhodium, ruthenium, or rhenium, with a thickness of between 500 and 3000 angstroms on the adhesion/barrier layer 640.


Next, referring to FIG. 34, a photoresist layer 650, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t8 of between 4 and 30 microns, is formed on the seed layer 642 using a spin coating process. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 650 and to form multiple openings 652, with trace patterns from a top view, in the photoresist layer 650 exposing the seed layer 642.


Next, referring to FIG. 35, a metal layer 660, with a coil pattern from a top view, is electroplated on seed layer 642 exposed by the openings 652 in the photoresist layer 650. The metal layer 660 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns, and preferably between 3 and 10 microns, on the seed layer 642 preferably of gold exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of copper with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of copper exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of silver with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of silver exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of nickel with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of nickel exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of palladium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of palladium exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of platinum with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of platinum exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of rhodium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of rhodium exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of ruthenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of ruthenium exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a single layer of rhenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 642 preferably of rhenium exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer preferably of copper exposed by the openings 652 in the photoresist layer 650, and then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer exposed by the openings 652 in the photoresist layer 650. Alternatively, the metal layer 660 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer preferably of copper exposed by the openings 652 in the photoresist layer 650, then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer exposed by the openings in the photoresist layer 650, and then electroplating a gold layer with a thickness of between 1 and 5 microns on the nickel layer exposed by the openings in the photoresist layer 650.


Next, referring to FIG. 36, the photoresist layer 650 is stripped.


Next, referring to FIG. 37, a photoresist layer 670, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t9 of between 4 and 30 microns, is formed on the electroplated metal layer 660 and on the seed layer 642 using a spin coating process. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 670 and to form multiple openings 672 in the photoresist layer 670 exposing the electroplated metal layer 660.


Next, referring to FIG. 38, a metal layer 680 is electroplated on the metal layer 660 exposed by the openings 672 in the photoresist layer 670. The metal layer 680 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably gold, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably nickel, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of silver with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably silver, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of palladium with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably palladium, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of platinum with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably platinum, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of rhodium with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably rhodium, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of ruthenium with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably ruthenium, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of rhenium with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably rhenium, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a single layer of copper with a thickness of between 1 and 20 microns on the metal layer 660, whose topmost layer is preferably copper, exposed by the openings 672 in the photoresist layer 670. Alternatively, the metal layer 680 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 660, whose topmost layer is preferably nickel, exposed by the openings 672 in the photoresist layer 670, and then electroplating a solder layer, such a tin-lead alloy or a tin-silver alloy, with a thickness of between 1 and 10 microns on the nickel layer. Alternatively, the metal layer 680 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 660, whose topmost layer is preferably nickel, exposed by the openings 672 in the photoresist layer 670, and then electroplating a gold layer with a thickness of between 1 and 10 microns on the nickel layer.


In the embodiment, the metal layer 680 is formed with multiple metal vias connecting neighboring circuit metal layers separated by a to-be-formed polymer layer.


Next, referring to FIG. 39, the photoresist layer 670 is stripped. Next, referring to FIG. 40, the seed layer 642 not under the metal layer 660 is removed using a dry etching process or a wet etching process. If the seed layer 642 is gold and removed by a wet etching process, the etchant for etching the seed layer 642 is potassium iodide. Thereafter, the adhesion/barrier layer 340 not under the metal layer 660 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 640 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 640 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 640 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 640 is hydrofluoric acid.


Referring to FIG. 41, a polymer layer 690 is formed on the metal layers 680 and 660 and on the patterned polymer layer 620. The polymer layer 690 can be formed by spin coating a polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the metal layers 680 and 660 and on the patterned polymer layer 620, and then curing the spin-coated polymer layer at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer is polyimide. Alternatively, the polymer layer 690 can be formed by repeating said spin coating process and said curing process many times to form the polymer layer 690 with an extremely great thickness.


Alternatively, the polymer layer 690 can be formed by screen printing a polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the metal layers 680 and 660 and on the patterned polymer layer 620, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the polymer layer 690 can be formed by laminating a dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the metal layers 680 and 660 and on the patterned polymer layer 620.


Next, referring to FIG. 42, the top side of the polymer layer 690 is ground using a mechanical grinding process or using a chemical mechanical polishing (CMP) process until the top surface of the metal layer 680 is exposed to the outside.


Next, referring to FIG. 43, an adhesion/barrier layer 740 may be formed by sputtering or evaporating a metal layer of titanium, tungsten, cobalt, nickel, titanium nitride, a titanium-tungsten alloy, chromium, a chromium-copper alloy, tantalum, or tantalum nitride, with a thickness of between 1000 and 6000 angstroms, on the polymer layer 690 and on the metal layer 680. Next, a seed layer 742 may be formed by sputtering, evaporating or electroless plating a metal layer of gold, copper, nickel, silver, palladium, platinum, rhodium, ruthenium, or rhenium, with a thickness of between 500 and 3000 angstroms on the adhesion/barrier layer 740.


Next, referring to FIG. 44, a photoresist layer 750, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t9 of between 4 and 30 microns, is formed on the seed layer 742 using a spin coating process. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 750 and to form an opening 752, with trace patterns from a top view, in the photoresist layer 750 exposing the seed layer 742.


Next, referring to FIG. 45, a metal layer 760, with trace patterns from a top view, is electroplated on seed layer 742 exposed by the openings 752 in the photoresist layer 750. The metal layer 760 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 20 microns, and preferably between 3 and 10 microns, on the seed layer 742 preferably of gold exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of copper with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of copper exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of silver with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of silver exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of nickel with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of nickel exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of palladium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of palladium exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of platinum with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of platinum exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of rhodium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of rhodium exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of ruthenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of ruthenium exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a single layer of rhenium with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of rhenium exposed by the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of copper exposed by the openings 752 in the photoresist layer 750, and then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer in the openings 752 in the photoresist layer 750. Alternatively, the metal layer 760 can be deposited by electroplating a copper layer with a thickness of between 1 and 20 microns, and preferably 3 and 10 microns, on the seed layer 742 preferably of copper exposed by the openings 752 in the photoresist layer 750, then electroplating a nickel layer with a thickness of between 1 and 5 microns on the copper layer in the openings 752 in the photoresist layer 750, and then electroplating a gold layer with a thickness of between 1 and 5 microns on the nickel layer in the openings 752 in the photoresist layer 750.


Next, referring to FIG. 46, the photoresist layer 750 is stripped.


Next, referring to FIG. 47, a photoresist layer 770, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t10 of between 4 and 30 microns, is formed on the electroplated metal layer 760 and on the seed layer 742 using a spin coating process. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 770 and to form an opening 772 in the photoresist layer 770 exposing the electroplated metal layer 760.


Next, referring to FIG. 48, a metal layer 780 formed for a metal pad used to be wirebonded thereto is electroplated on the metal layer 760 exposed by the opening 772 in the photoresist layer 770. The metal layer 780 can be deposited by electroplating a single layer of gold with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably gold, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 30 microns on the metal layer 760, whose topmost layer is preferably nickel, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of silver with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably silver, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of palladium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably palladium, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of platinum with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably platinum, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of rhodium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably rhodium, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of ruthenium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably ruthenium, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of rhenium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably rhenium, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a single layer of copper with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably copper, exposed by the opening 772 in the photoresist layer 770. Alternatively, the metal layer 780 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 760, whose topmost layer is preferably nickel, exposed by the opening 772 in the photoresist layer 770, and then electroplating a gold layer with a thickness of between 1 and 20 microns on the nickel layer.


Next, referring to FIG. 49, the photoresist layer 770 is stripped.


Next, referring to FIG. 50, a photoresist layer 790, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t11 of between 4 and 30 microns, is formed on the electroplated metal layers 760 and 780 and on the seed layer 742 using a spin coating process. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 790 and to form an opening 792 in the photoresist layer 790 exposing the electroplated metal layer 760.


Next, referring to FIG. 51, a metal layer 794 formed for a metal bump is electroplated on the metal layer 760 exposed by the opening 792 in the photoresist layer 790. The metal layer 794 can be deposited by electroplating a single layer of gold with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably gold, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 30 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of silver with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably silver, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of palladium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably palladium, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of platinum with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably platinum, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of rhodium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably rhodium, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of ruthenium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably ruthenium, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of rhenium with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably rhenium, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a single layer of copper with a thickness of between 2 and 30 microns on the metal layer 760, whose topmost layer is preferably copper, exposed by the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 760, whose topmost layer is preferably nickel, exposed by the opening 792 in the photoresist layer 790, and then electroplating a solder layer, such a tin-lead alloy or a tin-silver alloy, with a thickness of between 10 and 150 microns on the nickel layer in the opening 792 in the photoresist layer 790. Alternatively, the metal layer 794 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 760, whose topmost layer is preferably nickel, exposed by the opening 792 in the photoresist layer 790, and then electroplating a gold layer with a thickness of between 1 and 20 microns on the nickel layer in the opening 792 in the photoresist layer 790.


Next, referring to FIG. 52, the photoresist layer 790 is stripped. Next, referring to FIG. 53, the seed layer 742 not under the metal layer 760 is removed using a dry etching process or a wet etching process. If the seed layer 742 is gold and removed by a wet etching process, the etchant for etching the seed layer 742 is potassium iodide. Thereafter, the adhesion/barrier layer 740 not under the metal layer 760 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 740 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 740 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 740 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 740 is hydrofluoric acid.


Referring to FIGS. 54-55, it is an optional process to form a patterned polymer layer 796 on the metal layers 794, 780 and 760 and on the patterned polymer layer 690. The patterned polymer layer 796 can be formed by spin coating a polymer layer of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the metal layers 794, 780 and 760 and on the patterned polymer layer 690.


Next, if the spin-coated polymer layer is photosensitive, a photolithography process including exposing and developing steps can be used to lead the metal layers 794 and 780 to be exposed to the outside. Next, the spin-coated polymer layer is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer is polyimide. The patterned polymer layer 796 after being cured may have a thickness t12 of between 2 and 50 microns, and preferably between 6 and 20 microns.


If the spin-coated polymer layer is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated polymer layer.


Alternatively, the patterned polymer layer 796 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the metal layer 760 and on the patterned polymer layer 690, and then curing the screen-printed polymer layer at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer is polyimide. Alternatively, the patterned polymer layer 796 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the metal layer 760 and on the patterned polymer layer 690.


Next, referring to FIG. 56, the metal layer 780 is used as a metal pad for being wirebonded thereto. A gold wire 394 can be connected to the metal layer 780. The metal layer 794 is formed for a metal bump used to be bonded to an external circuitry (not shown), such as a ceramic substrate, a printed circuit board, semiconductor chip for chip-on-chip package, glass substrate for a chip-on-glass (COG) package, flex circuit substrate for a chip-on-film (COF) package, a tape carrier for tape-automated-bonded (TAB) package. In the application for COG, COF or TAB packages, the topmost layer of the metal layer 794 is preferably gold, which can be bonded to a metal layer, preferably of gold, formed on the above-mentioned external circuitry or to a metal layer, preferably of tin-containing material, formed on the above-mentioned external circuitry. Alternatively, an anisotropic conductive film (ACF) can be use to electrically connect the metal layer 794 to the above-mentioned external circuitry, such as glass substrate. In the application for being connected to a ceramic substrate, printed circuit board, or semiconductor chip, the topmost layer of the metal layer 794 is preferably tin-containing material, which can be bonded to a metal layer, preferably of gold, formed on the ceramic substrate, printed circuit board, or semiconductor chip, or to a metal layer, preferably of tin-containing material, formed on the ceramic substrate, printed circuit board, or semiconductor chip.


Alternatively, a polymer layer covering a metal trace, such as a coil, can be formed before removing the seed layer and the adhesion/barrier layer not under the metal trace, as shown in FIGS. 57-60. The process illustrated by FIGS. 57-60 follows the above-mentioned process of FIG. 6. The elements shown in FIGS. 57-60 having same reference numbers as those shown in FIGS. 1-14 indicate similar ones described above in FIGS. 1-14. After the above-mentioned metal layer 360 is formed, a patterned polymer layer 830 is formed on the metal layer 360 and on the seed layer 342. The patterned polymer layer 830 can be formed by spin coating a polymer layer 832 of polyimide, benzo-cyclo-butene (BCB), parylene-based material, epoxy-based material, or elastomer, with a thickness of between 2 and 50 microns, and preferably between 8 and 30 microns, on the metal layer 360 and on the seed layer 342, as shown in FIG. 57.


Next, if the spin-coated polymer layer 832 is photosensitive, a photolithography process including exposing and developing steps can be used to lead the spin-coated polymer layer 830 on the metal layer 360 and on the seed layer close to the metal layer 360 to be left and to form an opening 834 in the spin-coated polymer layer 830 exposing the metal layer 360, as shown in FIG. 58. Next, the spin-coated polymer layer 830 is cured at the temperature of 300 and 450 degrees centigrade if the spin-coated polymer layer 830 is polyimide. The patterned polymer layer 830 after being cured may have a thickness t13 of between 2 and 50 microns, and preferably between 6 and 20 microns.


If the spin-coated polymer layer 832 is non-photosensitive, photolithography and etching processes are typically needed to pattern the spin-coated polymer layer 832.


Alternatively, the patterned polymer layer 830 can be formed by screen printing a patterned polymer layer of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy-based material, with a thickness of between 5 and 50 microns on the metal layer 360 and on the seed layer 342 close to the metal layer 360, and then curing the screen-printed polymer layer 830 at the temperature of 300 and 450 degrees centigrade if the screen-printed polymer layer 830 is polyimide. Alternatively, the patterned polymer layer 830 can be formed by laminating a patterned dry film of polyimide, benzocyclobutene (BCB), parylene-based material or epoxy, with a thickness of between 10 and 500 microns on the metal layer 360 and on the seed layer 342 close to the metal layer 360.


Next, referring to FIG. 59, the seed layer 342 not under the metal layer 360 and not under the patterned polymer layer 830 is removed using a dry etching process or a wet etching process. If the seed layer 342 is gold and removed by a wet etching process, the etchant for etching the seed layer 342 is potassium iodide. Thereafter, the adhesion/barrier layer 340 not under the metal layer 360 and not under the patterned polymer layer 830 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 340 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 340 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrofluoric acid.


Next, referring to FIG. 60, the metal layer 360 has a metal pad exposed by the opening 834 in the patterned polymer layer 830, for being wirebonded thereto or having a gold bump or solder bump formed thereover. A gold wire 394 can be connected to the metal layer 360 exposed by the opening 834 in the polymer layer 830 using a wirebonding process. Alternatively, a gold bump or tin-containing bump, not shown, can be formed over the above-mentioned metal layer 360 exposed by the opening 834 in the polymer layer 830.


Alternatively, a metal layer, for a metal bump used to be bonded to an external circuitry or a metal pad used to be wirebonded thereto, can be electroplated over the metal layer 360 after forming the patterned polymer layer 830 and before removing the seed layer 342 and adhesion/barrier layer 340 not under the metal layer 360 and not under the patterned polymer layer 830, as shown in FIGS. 61-65. The process illustrated by FIGS. 61-65 follows the above-mentioned process of FIG. 58. The elements shown in FIGS. 61-65 having same reference numbers as those shown in FIGS. 1-14 and 57-58 indicate similar ones described above in FIGS. 1-14 and 57-58. After the patterned polymer layer 830 is formed on the metal layer 360 and on the seed layer 342 close to the metal layer 360, a photoresist layer 870, such as photosensitive polyimide, photosensitive benzo-cyclo-butene (BCB), photosensitive parylene-based material, photosensitive epoxy-based material, with a thickness t14 of between 4 and 30 microns, is formed on the seed layer 342, on the patterned polymer layer 830 and on the metal layer 360 exposed by the opening 834 in the patterned polymer layer 830 using a spin coating process, referring to FIG. 61. Next, a photolithography process including exposing and developing steps is used to pattern the photoresist layer 870 and to form an opening 872 in the photoresist layer 870 exposing the electroplated metal layer 360 exposed by the opening 834 in the patterned polymer layer 830.


Next, referring to FIG. 62, a metal layer 880 is electroplated on the metal layer 360 exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. The metal layer 880 can be deposited by electroplating a single layer of gold with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably gold, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of gold with a thickness of between 1 and 30 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of silver with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably silver, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of palladium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably palladium, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of platinum with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably platinum, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of rhodium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably rhodium, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of ruthenium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably ruthenium, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of rhenium with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably rhenium, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a single layer of copper with a thickness of between 2 and 30 microns on the metal layer 360, whose topmost layer is preferably copper, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 872 in the photoresist layer 870 and by the opening 834 in the patterned polymer layer 830, and then electroplating a solder layer, such a tin-lead alloy or a tin-silver alloy, with a thickness of between 10 and 150 microns on the nickel layer in the opening 872 in the photoresist layer 870 and/or in the opening 834 in the patterned polymer layer 830. Alternatively, the metal layer 880 can be deposited by electroplating a nickel layer with a thickness of between 1 and 10 microns on the metal layer 360, whose topmost layer is preferably nickel, exposed by the opening 372 in the photoresist layer 370 and by the opening 834 in the patterned polymer layer 830, and then electroplating a gold layer with a thickness of between 1 and 20 microns on the nickel layer in the opening 372 in the photoresist layer 370 and/or in the opening 834 in the patterned polymer layer 830.


Next, referring to FIG. 63, the photoresist layer 870 is stripped. Next, referring to FIG. 64, the seed layer 342 not under the metal layer 360 and not under the patterned polymer layer 830 is removed using a dry etching process or a wet etching process. If the seed layer 342 is gold and removed by a wet etching process, the etchant for etching the seed layer 342 is potassium iodide. Thereafter, the adhesion/barrier layer 340 not under the metal layer 360 and not under the patterned polymer layer 830 is removed using a dry etching process or a wet etching process. If the adhesion/barrier layer 340 is a titanium tungsten alloy and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrogen peroxide or hydrofluoric acid. If the adhesion/barrier layer 340 is titanium and removed by a wet etching process, the etchant for etching the adhesion/barrier layer 340 is hydrofluoric acid.


Referring to FIG. 64, the above-mentioned metal layer 880 may be used as a metal bump capable of being connected to an external circuitry (not shown), such as a ceramic substrate, a printed circuit board, semiconductor chip for chip-on-chip package, glass substrate for a chip-on-glass (COG) package, flex circuit substrate for a chip-on-film (COF) package, a tape carrier for tape-automated-bonded (TAB) package. In the application for COG, COF or TAB packages, the topmost layer of the metal layer 880 is preferably gold, which can be bonded to a metal layer, preferably of gold, formed on the above-mentioned external circuitry or to a metal layer, preferably of tin-containing material, formed on the above-mentioned external circuitry. Alternatively, an anisotropic conductive film (ACF) can be use to electrically connect the metal layer 880 to the above-mentioned external circuitry, such as glass substrate. In the application for being connected to a ceramic substrate, printed circuit board, or semiconductor chip, the topmost layer of the metal layer 880 is preferably tin-containing material, which can be bonded to a metal layer, preferably of gold, formed on the ceramic substrate, printed circuit board, or semiconductor chip, or to a metal layer, preferably of tin-containing material, formed on the ceramic substrate, printed circuit board, or semiconductor chip.


Alternatively, the metal layer 880 is used as a metal pad for being wirebonded thereto. A gold wire 394 can be bonded to the metal layer 880 using a wirebonding process, as shown in FIG. 65. The elements shown in FIG. 65 having same reference numbers as those shown in FIGS. 1-14, 57-58 and 61-64 indicate similar ones described above in FIGS. 1-14, 57-58 and 61-64.


Alternatively, referring to FIG. 66, if the metal layer 880 includes a solder material, such as tin-lead alloy or a tin-silver alloy, the metal layer 880 after being reflowed may be shaped like a ball. Furthermore, the metal layer 360 may have another metal pad, exposed by another opening 836 in the patterned polymer layer 830, used to be wirebonded thereto. A gold wire 394 can be bonded to the metal layer 360 exposed by another opening 836 in the patterned polymer layer 830 using a wirebonding process. The openings 836 and 834 may be simultaneously formed using a photolithography process. The elements shown in FIG. 66 having same reference numbers as those shown in FIGS. 1-14, 57-58 and 61-64 indicate similar ones described above in FIGS. 1-14, 57-58 and 61-64.


Alternatively, referring to FIG. 67, the above-mentioned metal layer 880 used to be wirebonded thereto or used as a metal bump bonded to an external circuitry may not cover the patterned polymer layer 830 close to the opening 834 therein. Accordingly, the photoresist layer 870 covers the peripheral region of the exposed surface of the metal layer 360 exposed by the opening 834 in the patterned polymer layer 830 and covers the patterned polymer layer 830 close to the opening 834 therein. The above-mentioned ideas in the paragraph can be incorporated into the process shown in FIGS. 61-64. The elements shown in FIG. 67 having same reference numbers as those shown in FIGS. 1-14, 57-58 and 61-64 indicate similar ones described above in FIGS. 1-14, 57-58 and 61-64.


Alternatively, the metal layer 360 close to the metal layer 880 used to be wirebonded thereto or used as a metal bump bonded to an external circuitry may not be covered by the patterned polymer layer 830, as shown in FIG. 68. The elements shown in FIG. 68 having same reference numbers as those shown in FIGS. 1-14, 57-58 and 61-64 indicate similar ones described above in FIGS. 1-14, 57-58 and 61-64.


The foregoing description of the preferred embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.

Claims
  • 1. A method for fabricating a circuit component, comprising: providing a silicon substrate, a transistor in and on said silicon substrate, a first dielectric layer over said silicon substrate, a first circuit layer over said first dielectric layer, a second dielectric layer over said first circuit layer and over said first dielectric layer, a second circuit layer over said second dielectric layer, and a passivation layer over said first and second circuit layers and over said first and second dielectric layers, wherein said passivation layer comprises a nitride layer;forming a first metal layer over said passivation layer;forming a first photoresist layer on said first metal layer, wherein a first opening in said first photoresist layer exposes a first region of said first metal layer;after said forming said first photoresist layer, forming a second metal layer over said first region;after said forming said second metal layer, removing said first photoresist layer;forming a second photoresist layer on said second metal layer, wherein a second opening in said second photoresist layer exposes a second region of said second metal layer;after said forming said second photoresist layer, forming a third metal layer over said second region;after said forming said third metal layer, removing said second photoresist layer;after said removing said second photoresist layer and said removing said first photoresist layer, removing said first metal layer not under said second metal layer;after said removing said first metal layer not under said second metal layer, forming a polymer layer on said second metal layer and on a top of said third metal layer;removing said polymer layer on said top;after said removing said polymer layer on said top, forming a fourth metal layer over said polymer layer and over said top;after said forming said fourth metal layer, forming a third photoresist layer on said fourth metal layer, wherein a third opening in said third photoresist layer exposes a third region of said fourth metal layer;after said forming said third photoresist layer, forming a fifth metal layer over said third region;after said forming said fifth metal layer, removing said third photoresist layer;after said forming said fifth metal layer, forming a fourth photoresist layer on said fifth metal layer, wherein a fourth opening in said fourth photoresist layer exposes a fourth region of said fifth metal layer;after said forming said fourth photoresist layer, forming a sixth metal layer over said fourth region;after said forming said sixth metal layer, removing said fourth photoresist layer; andafter said removing said fourth photoresist layer and said removing said third photoresist layer, removing said fourth metal layer not under said fifth metal layer.
  • 2. The method of claim 1, wherein said forming said second metal layer comprises electroplating a copper layer with a thickness between 1 and 20 micrometers on said first region and in said first opening.
  • 3. The method of claim 1, wherein said forming said fifth metal layer comprises electroplating a copper layer with a thickness between 1 and 20 micrometers on said third region and in said third opening.
  • 4. The method of claim 1, wherein said removing said polymer on said top comprises polishing said polymer layer.
  • 5. The method of claim 1, wherein said forming said third metal layer comprises electroplating a copper layer on said second region and in said second opening.
  • 6. The method of claim 1, wherein said forming said sixth metal layer comprises electroplating a copper layer on said fourth region and in said fourth opening.
  • 7. The method of claim 1, wherein said nitride layer has a thickness between 0.2 and 1.2 micrometers.
  • 8. A method for fabricating a circuit component, comprising: providing a silicon substrate, a transistor in and on said silicon substrate, a first dielectric layer over said silicon substrate, a first circuit layer over said first dielectric layer, a second dielectric layer over said first circuit layer and over said first dielectric layer, a second circuit layer in a first opening in said second dielectric layer, and a passivation layer over said first and second circuit layers and over said first and second dielectric layers, wherein said second circuit layer comprises a barrier layer at a bottom and a sidewall of said first opening and a first copper layer on said barrier layer, wherein said first copper layer comprises electroplated copper, wherein said passivation layer comprises a nitride layer;forming a first metal layer over said passivation layer;forming a first photoresist layer on said first metal layer, wherein a second opening in said first photoresist layer exposes a first region of said first metal layer;after said forming said first photoresist layer, forming a second metal layer over said first region;after said forming said second metal layer, removing said first photoresist layer;after said removing said first photoresist layer, removing said first metal layer not under said second meter layer;after said removing said first metal layer not under said second metal layer, forming a first polymer layer on said second metal layer and over said passivation layer;forming a third metal layer over said first polymer layer and over said second metal layer, wherein said third metal layer is connected to said second metal layer through a third opening in said first polymer layer;forming a second photoresist layer on said third metal layer, wherein a fourth opening in said second photoresist layer exposes a second region of said third metal layer;after said forming said second photoresist layer, forming a fourth metal layer over said second region;after said forming said fourth metal layer, removing said second photoresist layer;after said forming said fourth metal layer, forming a third photoresist layer on said fourth metal layer, wherein a fifth opening in said third photoresist layer exposes a third region of said fourth metal layer;after said forming said third photoresist layer, forming a fifth metal layer over said third region;after said forming said fifth metal layer, removing said third photoresist layer; andafter said removing said second photoresist layer and said removing said third photoresist layer, removing said third metal layer not under said fourth metal layer.
  • 9. The method of claim 8, wherein said forming said second metal layer comprises electroplating a second copper layer with a thickness between 1 and 20 micrometers on said first region and in said second opening.
  • 10. The method of claim 8, wherein said forming said first polymer layer comprises a spin coating process.
  • 11. The method of claim 8 further comprising forming a second polymer layer on said passivation layer, followed by said forming said first metal layer further over said second polymer layer.
  • 12. The method of claim 8, wherein said forming said fourth metal layer comprises electroplating a second copper layer on said second region and in said fourth opening.
  • 13. The method of claim 8, wherein said nitride layer has a thickness between 0.2 and 1.2 micrometers.
  • 14. A method for fabricating a circuit component, comprising: forming a first metal layer over a substrate;forming a first photoresist layer on said first metal layer, wherein a first opening in said first photoresist layer exposes a first region of said first metal layer;after said forming said first photoresist layer, forming a second metal layer over said first region;after said forming said second metal layer, removing said first photoresist layer;after said removing said first photoresist layer, forming a polymer layer on said second metal layer and on said first metal layer, wherein a second opening in said polymer layer exposes a second region of said second metal layer; andremoving said first metal layer not under said polymer layer.
  • 15. The method of claim 14, after said forming said polymer layer, further comprising: forming a second photoresist layer on said first metal layer and on said polymer layer, wherein a third opening in said second photoresist layer exposes said second region;after said forming said second photoresist layer, forming a third metal layer over said second region; andafter said forming said third metal layer, removing said second photoresist layer, followed by said removing said first metal layer not under said polymer layer.
  • 16. The method of claim 15, wherein said forming said third metal layer comprises forming a gold layer over said second region and in said second opening.
  • 17. The method of claim 15, wherein said forming said third metal layer comprises electroplating a tin-containing layer over said second region and in said second opening.
  • 18. The method of claim 15, wherein said forming said third metal layer comprises electroplating a copper layer on said second region and in said second opening.
  • 19. The method of claim 14, wherein said forming said second metal layer comprises electroplating a copper layer with a thickness between 1 and 20 micrometers on said first region and in said first opening.
  • 20. The method of claim 14, wherein said forming said polymer layer comprises a spin coating process.
  • 21. A method for fabricating a circuit component, comprising: forming a first metal layer over a substrate;forming a first photoresist layer on said first metal layer, wherein a first opening in said first photoresist layer exposes a first region of said first metal layer;forming a second metal layer over said first region;after said forming said second metal layer, removing said first photoresist layer;after said removing said first photoresist layer, removing said first metal layer not under said second metal layer;after said removing said first metal layer not under said second metal layer, forming a polymer layer over said second metal layer and over said substrate;forming a third metal layer over said polymer layer and over said second metal layer, wherein said third metal layer is connected to said second metal layer through a second opening in said polymer layer;forming a second photoresist layer on said third metal layer, wherein a third opening in said second photoresist layer exposes a second region of said third metal layer;forming a fourth metal layer over said second region;after said forming said fourth metal layer, removing said second photoresist layer;forming a third photoresist layer on said fourth metal layer, wherein a fourth opening in said third photoresist layer exposes a third region of said fourth metal layer;forming a fifth metal layer over said third region;after said forming said fifth metal layer, removing said third photoresist layer; andafter said removing said third photoresist layer and said removing said second photoresist layer, removing said third metal layer not under said fourth metal layer.
  • 22. The method of claim 21, wherein said forming said second metal layer comprises electroplating a copper layer with a thickness between 1 and 20 micrometers on said first region and in said first opening.
  • 23. The method of claim 21, wherein said forming said fourth metal layer comprises electroplating a copper layer on said second region and in said third opening.
Parent Case Info

This application claims priority to U.S. provisional application No. 60/701,849, filed on Jul. 22, 2005, which is herein incorporated by reference in its entirety.

US Referenced Citations (440)
Number Name Date Kind
3668484 Greig Jun 1972 A
4021838 Warwick May 1977 A
4051508 Sato et al. Sep 1977 A
4598307 Wakabayashi Jul 1986 A
4606998 Clodgo Aug 1986 A
4685998 Quinn et al. Aug 1987 A
4825276 Kobayashi Apr 1989 A
4885841 McNabb Dec 1989 A
5008102 York Apr 1991 A
5049979 Hashemi Sep 1991 A
5055907 Jacobs Oct 1991 A
5083187 Lamson Jan 1992 A
5095357 Andoh et al. Mar 1992 A
5095402 Hernandez et al. Mar 1992 A
5106461 Volfson et al. Apr 1992 A
5108950 Wakabayashi et al. Apr 1992 A
5212403 Nakanishi et al. May 1993 A
5226232 Boyd Jul 1993 A
5227012 Brandli et al. Jul 1993 A
5310699 Chikawa et al. May 1994 A
5328553 Poon Jul 1994 A
5370766 Desaigoudar et al. Dec 1994 A
5372967 Sundaram et al. Dec 1994 A
5384274 Kanehachi Jan 1995 A
5387551 Mizoguchi Feb 1995 A
5391901 Tanabe Feb 1995 A
5406512 Kagenishi Apr 1995 A
5416356 Staudinger et al. May 1995 A
5422315 Kobayashi Jun 1995 A
5446311 Ewen et al. Aug 1995 A
5455064 Chou et al. Oct 1995 A
5455885 Cameron Oct 1995 A
5465879 La et al. Nov 1995 A
5468984 Efland Nov 1995 A
5478773 Dow et al. Dec 1995 A
5485038 Licari et al. Jan 1996 A
5501006 Gehman, Jr. et al. Mar 1996 A
5508561 Tago et al. Apr 1996 A
5519582 Matsuzaki May 1996 A
5527998 Anderson et al. Jun 1996 A
5532512 Fillion et al. Jul 1996 A
5534442 Parker et al. Jul 1996 A
5534465 Frye et al. Jul 1996 A
5539241 Abidi et al. Jul 1996 A
5576680 Ling Nov 1996 A
5608262 Degani et al. Mar 1997 A
5629240 Malladi et al. May 1997 A
5631499 Hosomi et al. May 1997 A
5635767 Wenzel et al. Jun 1997 A
5656849 Burghartz et al. Aug 1997 A
5659201 Wollesen Aug 1997 A
5686764 Fulcher Nov 1997 A
5691248 Cronin et al. Nov 1997 A
5726502 Beddingfield Mar 1998 A
5742100 Schroeder et al. Apr 1998 A
5763108 Chang et al. Jun 1998 A
5767564 Kunimatsu et al. Jun 1998 A
5789303 Leung et al. Aug 1998 A
5792594 Brown et al. Aug 1998 A
5795818 Marrs Aug 1998 A
5818110 Cronin Oct 1998 A
5827776 Bandyopadhyay et al. Oct 1998 A
5827778 Yamada Oct 1998 A
5834844 Akagawa et al. Nov 1998 A
5838067 Baek Nov 1998 A
5842626 Bhansali et al. Dec 1998 A
5854513 Kim Dec 1998 A
5874770 Saia et al. Feb 1999 A
5883422 Anand et al. Mar 1999 A
5883435 Geffken et al. Mar 1999 A
5884990 Burghartz et al. Mar 1999 A
5902686 Mis May 1999 A
5904546 Wood May 1999 A
5910020 Yamada Jun 1999 A
5915169 Heo Jun 1999 A
5929508 Delgado et al. Jul 1999 A
5930637 Chuang Jul 1999 A
5949654 Fukuoka Sep 1999 A
5953626 Hause Sep 1999 A
5969422 Ting et al. Oct 1999 A
5969424 Matsuki et al. Oct 1999 A
5972734 Carichner et al. Oct 1999 A
6002161 Yamazaki Dec 1999 A
6004831 Yamazaki et al. Dec 1999 A
6008102 Alford et al. Dec 1999 A
6013571 Morrell Jan 2000 A
6022792 Ishii et al. Feb 2000 A
6023407 Farooq et al. Feb 2000 A
6025261 Farrar et al. Feb 2000 A
6030877 Lee et al. Feb 2000 A
6031445 Marty et al. Feb 2000 A
6040226 Wojnarowski et al. Mar 2000 A
6043109 Yang Mar 2000 A
6043430 Chun Mar 2000 A
6046101 Dass Apr 2000 A
6051489 Young et al. Apr 2000 A
6077726 Mistry et al. Jun 2000 A
6097080 Nakanishi et al. Aug 2000 A
6100548 Nguyen Aug 2000 A
6107180 Munroe Aug 2000 A
6114938 Iida et al. Sep 2000 A
6130457 Yu Oct 2000 A
6133079 Zhu et al. Oct 2000 A
6140197 Chu et al. Oct 2000 A
6144100 Shen et al. Nov 2000 A
6146958 Zhao et al. Nov 2000 A
6147857 Worley et al. Nov 2000 A
6168854 Gibbs Jan 2001 B1
6169030 Naik et al. Jan 2001 B1
6169319 Malinovich et al. Jan 2001 B1
6169320 Stacey Jan 2001 B1
6174803 Harvey Jan 2001 B1
6177731 Ishida et al. Jan 2001 B1
6180445 Tsai Jan 2001 B1
6181569 Chakravorty Jan 2001 B1
6184121 Buchwalter et al. Feb 2001 B1
6184143 Ohashi et al. Feb 2001 B1
6184159 Lou et al. Feb 2001 B1
6184589 Budnaitis et al. Feb 2001 B1
6187680 Costrini et al. Feb 2001 B1
6191468 Forbes et al. Feb 2001 B1
6221727 Chan et al. Apr 2001 B1
6228447 Suzuki et al. May 2001 B1
6229711 Yoneda May 2001 B1
6236101 Erdeljac et al. May 2001 B1
6236103 Bernstein May 2001 B1
6242791 Jou Jun 2001 B1
6245594 Wu et al. Jun 2001 B1
6249764 Kamae et al. Jun 2001 B1
6251501 Higdon Jun 2001 B1
6255714 Kossives et al. Jul 2001 B1
6258652 Stacey Jul 2001 B1
6259593 Moriwaki et al. Jul 2001 B1
6261944 Mehta Jul 2001 B1
6261994 Bourdelais et al. Jul 2001 B1
6270659 Bagci Aug 2001 B1
6272736 Lee Aug 2001 B1
6277669 Kung Aug 2001 B1
6278264 Burstein et al. Aug 2001 B1
6287893 Elenius Sep 2001 B1
6287931 Chen Sep 2001 B1
6288447 Amishiro et al. Sep 2001 B1
6300250 Tsai Oct 2001 B1
6303423 Lin Oct 2001 B1
6313491 Shuto Nov 2001 B1
6329715 Hayashi Dec 2001 B1
6356453 Juskey Mar 2002 B1
6359328 Dubin Mar 2002 B1
6362087 Wang Mar 2002 B1
6365480 Huppert et al. Apr 2002 B1
6365498 Chu et al. Apr 2002 B1
6375062 Higdon Apr 2002 B1
6376895 Farrar Apr 2002 B2
6380061 Kobayashi Apr 2002 B1
6383916 Lin May 2002 B1
6399975 Cheong Jun 2002 B1
6399997 Lin et al. Jun 2002 B1
6404615 Wijeyesekera et al. Jun 2002 B1
6410414 Lee Jun 2002 B1
6410435 Ryan Jun 2002 B1
6416356 Hutchins et al. Jul 2002 B1
6417089 Kim et al. Jul 2002 B1
6420773 Liou Jul 2002 B1
6424034 Ahn et al. Jul 2002 B1
6426281 Lin et al. Jul 2002 B1
6429120 Ahn et al. Aug 2002 B1
6429764 Karam et al. Aug 2002 B1
6440750 Feygenson et al. Aug 2002 B1
6441715 Johnson Aug 2002 B1
6445271 Johnson Sep 2002 B1
6455885 Lin Sep 2002 B1
6455915 Wong Sep 2002 B1
6456183 Basteres et al. Sep 2002 B1
6459135 Basteres et al. Oct 2002 B1
6465879 Taguchi Oct 2002 B1
6472745 Iizuka Oct 2002 B1
6475904 Okoroanyanwu et al. Nov 2002 B2
6478773 Gandhi et al. Nov 2002 B1
6479341 Lu Nov 2002 B1
6479900 Shinogi et al. Nov 2002 B1
6486530 Sasagawa et al. Nov 2002 B1
6489647 Lin Dec 2002 B1
6489656 Lin Dec 2002 B1
6495442 Lin et al. Dec 2002 B1
6500724 Zurcher et al. Dec 2002 B1
6501169 Aoki et al. Dec 2002 B1
6501185 Chow et al. Dec 2002 B1
6504227 Matsuo et al. Jan 2003 B1
6515369 Lin Feb 2003 B1
6518165 Han et al. Feb 2003 B1
6544880 Akram Apr 2003 B1
6545354 Aoki et al. Apr 2003 B1
6559409 Cadet May 2003 B1
6559528 Watase et al. May 2003 B2
6566731 Ahn et al. May 2003 B2
6570247 Eiles et al. May 2003 B1
6570251 Akram May 2003 B1
6586309 Yeo et al. Jul 2003 B1
6605528 Lin Aug 2003 B1
6613663 Furuya Sep 2003 B2
6614091 Downey et al. Sep 2003 B1
6620728 Lin Sep 2003 B2
6636139 Tsai et al. Oct 2003 B2
6638844 Verma et al. Oct 2003 B1
6639299 Aoki Oct 2003 B2
6642136 Lee Nov 2003 B1
6644536 Ratificar et al. Nov 2003 B2
6646347 Sarihan et al. Nov 2003 B2
6649509 Lin et al. Nov 2003 B1
6653563 Bohr Nov 2003 B2
6673690 Chuang et al. Jan 2004 B2
6683380 Efland et al. Jan 2004 B2
6700162 Lin et al. Mar 2004 B2
6706554 Ogura Mar 2004 B2
6707124 Wachtler et al. Mar 2004 B2
6707159 Kumamoto et al. Mar 2004 B1
6716693 Chan et al. Apr 2004 B1
6720659 Akahori Apr 2004 B1
6734563 Lin et al. May 2004 B2
6746898 Lin et al. Jun 2004 B2
6756295 Lin Jun 2004 B2
6756664 Yang Jun 2004 B2
6759275 Lee et al. Jul 2004 B1
6762115 Lin Jul 2004 B2
6762122 Mis et al. Jul 2004 B2
6764939 Yoshitaka Jul 2004 B1
6780748 Yamaguchi et al. Aug 2004 B2
6790751 Tsuruta Sep 2004 B2
6791178 Yamaguchi et al. Sep 2004 B2
6800534 Hsieh Oct 2004 B2
6841872 Ha et al. Jan 2005 B1
6847066 Tahara et al. Jan 2005 B2
6852616 Sahara et al. Feb 2005 B2
6853076 Datta et al. Feb 2005 B2
6853078 Yamaya Feb 2005 B2
6869870 Lin Mar 2005 B2
6875681 Bohr Apr 2005 B1
6897507 Lin May 2005 B2
6903459 Nakatani Jun 2005 B2
6914331 Shimoishizaka et al. Jul 2005 B2
6921980 Nakanishi et al. Jul 2005 B2
6936531 Lin Aug 2005 B2
6940169 Jin et al. Sep 2005 B2
6943428 Furukawa Sep 2005 B2
6943440 Kim et al. Sep 2005 B2
6952049 Ogawa Oct 2005 B1
6959856 Oh Nov 2005 B2
6963136 Shinozaki Nov 2005 B2
6965165 Lin Nov 2005 B2
6977435 Kim Dec 2005 B2
7012339 Terui Mar 2006 B2
7045899 Yamane et al. May 2006 B2
7078331 Kwon Jul 2006 B2
7078822 Dias et al. Jul 2006 B2
7087927 Weaver et al. Aug 2006 B1
7220657 Ihara et al. May 2007 B2
7239014 Ogawa Jul 2007 B2
7239028 Anzai Jul 2007 B2
7294870 Lin Nov 2007 B2
7294871 Lin Nov 2007 B2
7309920 Lin Dec 2007 B2
7319377 Lee Jan 2008 B2
7329954 Lin Feb 2008 B2
7355282 Lin Apr 2008 B2
7358610 Lin Apr 2008 B2
7368376 Lin May 2008 B2
7372085 Lin May 2008 B2
7372155 Lin May 2008 B2
7382058 Lin Jun 2008 B2
7384864 Lin Jun 2008 B2
7385291 Lin Jun 2008 B2
7385292 Lin Jun 2008 B2
7388292 Lin Jun 2008 B2
7396756 Lin Jul 2008 B2
7397135 Lin Jul 2008 B2
7405149 Lin Jul 2008 B1
7416971 Lin Aug 2008 B2
7420276 Lin Sep 2008 B2
7422941 Lin Sep 2008 B2
7422976 Lin Sep 2008 B2
7423346 Lin Sep 2008 B2
7425764 Lin Sep 2008 B2
7442969 Lin Oct 2008 B2
7443033 Lin Oct 2008 B2
7456100 Lin Nov 2008 B2
7459761 Lin Dec 2008 B2
7465654 Chou et al. Dec 2008 B2
7465975 Lin Dec 2008 B2
7470988 Lin Dec 2008 B2
7482693 Lin Jan 2009 B2
7531417 Lin May 2009 B2
7547969 Chou et al. Jun 2009 B2
20010016410 Cheng et al. Aug 2001 A1
20010017417 Kuroda Aug 2001 A1
20010019168 Willer et al. Sep 2001 A1
20010026954 Takao Oct 2001 A1
20010028098 Liou Oct 2001 A1
20010035586 Nakamura et al. Nov 2001 A1
20010040290 Sakurai et al. Nov 2001 A1
20010051426 Pozder et al. Dec 2001 A1
20020000665 Barr et al. Jan 2002 A1
20020008301 Liou et al. Jan 2002 A1
20020016079 Dykstra Feb 2002 A1
20020017730 Tahara et al. Feb 2002 A1
20020043723 Shimizu et al. Apr 2002 A1
20020050626 Onuma et al. May 2002 A1
20020064922 Lin May 2002 A1
20020079576 Seshan Jun 2002 A1
20020089062 Saran et al. Jul 2002 A1
20020100975 Kanda Aug 2002 A1
20020158334 Vu et al. Oct 2002 A1
20020180064 Hwan Dec 2002 A1
20030006062 Stone et al. Jan 2003 A1
20030008133 Paik Jan 2003 A1
20030020163 Hung Jan 2003 A1
20030037959 Master et al. Feb 2003 A1
20030038331 Aoki et al. Feb 2003 A1
20030052409 Matsuo Mar 2003 A1
20030071326 Lin Apr 2003 A1
20030075752 Motoyama Apr 2003 A1
20030076209 Tsai et al. Apr 2003 A1
20030080416 Jorger May 2003 A1
20030102551 Kikuchi Jun 2003 A1
20030121958 Ratificar et al. Jul 2003 A1
20030124835 Lin et al. Jul 2003 A1
20030127730 Weng Jul 2003 A1
20030127734 Lee Jul 2003 A1
20030155570 Leidy Aug 2003 A1
20030162383 Yamaya Aug 2003 A1
20030168733 Hashimoto Sep 2003 A1
20030183332 Simila Oct 2003 A1
20030197283 Choi Oct 2003 A1
20030218246 Abe et al. Nov 2003 A1
20030219966 Jin Nov 2003 A1
20030222295 Lin Dec 2003 A1
20030224613 Ramanathan et al. Dec 2003 A1
20040007779 Arbuthnot et al. Jan 2004 A1
20040009629 Ahn et al. Jan 2004 A1
20040016948 Lin Jan 2004 A1
20040023450 Katagiri et al. Feb 2004 A1
20040029404 Lin Feb 2004 A1
20040040855 Batinovich Mar 2004 A1
20040048202 Lay Mar 2004 A1
20040070042 Lee Apr 2004 A1
20040094841 Matsuzaki et al. May 2004 A1
20040121606 Raskin et al. Jun 2004 A1
20040130020 Kuwabara Jul 2004 A1
20040145052 Ueno Jul 2004 A1
20040166659 Lin Aug 2004 A1
20040166661 Lei Aug 2004 A1
20040183209 Lin Sep 2004 A1
20040188839 Ohtsuka Sep 2004 A1
20040245580 Lin Dec 2004 A1
20040253801 Lin Dec 2004 A1
20050024176 Wang et al. Feb 2005 A1
20050032351 Lin Feb 2005 A1
20050170634 Lin Aug 2005 A1
20050230783 Lin Oct 2005 A1
20050250255 Chen Nov 2005 A1
20050277281 Dubin Dec 2005 A1
20050277283 Lin Dec 2005 A1
20060019490 Chou Jan 2006 A1
20060060961 Lin et al. Mar 2006 A1
20060076678 Kim Apr 2006 A1
20060091540 Chou May 2006 A1
20070108551 Lin May 2007 A1
20070181970 Lin Aug 2007 A1
20070182521 Lin Aug 2007 A1
20070202684 Lin Aug 2007 A1
20070202685 Lin Aug 2007 A1
20070262456 Lin Nov 2007 A1
20070262457 Lin Nov 2007 A1
20070262459 Lin Nov 2007 A1
20070262460 Lin Nov 2007 A1
20070267714 Lin Nov 2007 A1
20070273032 Lin Nov 2007 A1
20070273033 Lin Nov 2007 A1
20070273034 Lin Nov 2007 A1
20070273035 Lin Nov 2007 A1
20070273036 Lin Nov 2007 A1
20070273037 Lin Nov 2007 A1
20070273040 Lin Nov 2007 A1
20070273041 Lin Nov 2007 A1
20070278684 Lin Dec 2007 A1
20070278685 Lin Dec 2007 A1
20070278686 Lin Dec 2007 A1
20070278688 Lin Dec 2007 A1
20070278689 Lin Dec 2007 A1
20070278690 Lin Dec 2007 A1
20070278691 Lin Dec 2007 A1
20070281458 Lin Dec 2007 A1
20070281463 Lin Dec 2007 A1
20070281467 Lin Dec 2007 A1
20070281468 Lin Dec 2007 A1
20070284750 Lin Dec 2007 A1
20070284751 Lin Dec 2007 A1
20070284752 Lin Dec 2007 A1
20070284753 Lin Dec 2007 A1
20070288880 Lin Dec 2007 A1
20070290348 Lin Dec 2007 A1
20070290349 Lin Dec 2007 A1
20070290350 Lin Dec 2007 A1
20070290351 Lin Dec 2007 A1
20070290354 Lin Dec 2007 A1
20070290355 Lin Dec 2007 A1
20070290356 Lin Dec 2007 A1
20070290358 Lin Dec 2007 A1
20070290368 Lin Dec 2007 A1
20070293036 Lin Dec 2007 A1
20080001302 Lin et al. Jan 2008 A1
20080035972 Lin Feb 2008 A1
20080035974 Lin Feb 2008 A1
20080038869 Lin Feb 2008 A1
20080042238 Lin Feb 2008 A1
20080042239 Lin Feb 2008 A1
20080042273 Lin Feb 2008 A1
20080042289 Lin Feb 2008 A1
20080044977 Lin Feb 2008 A1
20080048329 Lin Feb 2008 A1
20080050909 Lin et al. Feb 2008 A1
20080050912 Lin Feb 2008 A1
20080054398 Lin Mar 2008 A1
20080083987 Lin Apr 2008 A1
20080083988 Lin Apr 2008 A1
20080093745 Lin Apr 2008 A1
20080111243 Lin May 2008 A1
20080121943 Lin May 2008 A1
20080124918 Lee May 2008 A1
20080128910 Lin Jun 2008 A1
20080136034 Lin Jun 2008 A1
20080142980 Lin Jun 2008 A1
20080142981 Lin Jun 2008 A1
20080146020 Lin Jun 2008 A1
20080233733 Lin Sep 2008 A1
20080246154 Lin Oct 2008 A1
20080284032 Lin Nov 2008 A1
20080284037 Andry et al. Nov 2008 A1
20090001511 Lin Jan 2009 A1
20090146307 Lin Jun 2009 A1
20090184394 Lin Jul 2009 A1
Foreign Referenced Citations (35)
Number Date Country
0884783 Dec 1998 EP
0986106 Mar 2000 EP
0999580 May 2000 EP
1039544 Sep 2000 EP
1536469 Jun 2005 EP
1737037 Dec 2006 EP
2793943 Jul 2001 FR
01-135043 May 1989 JP
01-183836 Jul 1989 JP
01-184848 Jul 1989 JP
01-184849 Jul 1989 JP
02-213147 Aug 1990 JP
03019358 Jan 1991 JP
10-275811 Oct 1998 JP
11-274200 Oct 1999 JP
11-354579 Dec 1999 JP
2000022085 Jan 2000 JP
2000-036515 Feb 2000 JP
2000-183090 Jun 2000 JP
2000-228420 Aug 2000 JP
2000-228423 Aug 2000 JP
2003-031727 Jan 2003 JP
2003-229451 Aug 2003 JP
2004-193301 Jul 2004 JP
419765 Jan 2001 TW
452930 Sep 2001 TW
483045 Apr 2002 TW
490803 Jun 2002 TW
498529 Aug 2002 TW
506025 Oct 2002 TW
511243 Nov 2002 TW
515016 Dec 2002 TW
517334 Jan 2003 TW
518700 Jan 2003 TW
519707 Feb 2003 TW
Related Publications (1)
Number Date Country
20070045855 A1 Mar 2007 US
Provisional Applications (1)
Number Date Country
60701849 Jul 2005 US