The present invention is related to the field of semiconductor packaging. More specifically, the present invention is directed to a thin semiconductor package. In particular, the package is substantially the thickness of the lead frame.
Many applications for using semiconductor devices are becoming increasingly smaller and lighter for enhanced portability. Common examples of such applications include small electronic devices such as cell phones, PDAs, and portable MP3 players. Conventional semiconductor device packages include a lead frame on which a semiconductor die is mounted. Wire bonds are coupled between the semiconductor die and leads of the lead frame. A resin material is molded to surround the die, wire bonds and lead frame while exposing electrical contacts to the lead frame to form a plastic package. In conventional packages, the molded resin is typically much thicker than the lead frame. Owing in part to the volume and thickness of the resin in these conventional packages, the resulting electronic device is larger and heavier than desired.
Additionally, the market for semiconductor devices is highly competitive. A portion of the cost of a semiconductor device is related to the amount of material present in the package. A package that uses less material can be more competitively priced than another package that uses more material.
There is a need for smaller, thinner and lighter packages for semiconductor devices. There is a further need for semiconductor device packages that use less material.
A package is provided for a semiconductor die. The package includes a formed lead frame. The lead frame has a plurality of formed leads. The leads have a first end positioned near but spaced apart from the first semiconductor die. The first ends of the leads are substantially in a first planar level. The second end of each lead is higher than the first end and substantially in a second planar level wherein the second planar level is higher than the first planar level. Pads on the semiconductor die are electrically coupled to one or more of the first end of the leads. A resin is formed around the first semiconductor die and between the leads such that the package has a thickness substantially equal to the thickness of the lead frame. The package and the lead frame have a thickness in the range of 127 to 500 micro meters.
Several embodiments are provided for mounting the semiconductor die into the package. The semiconductor die can be inverted and flip chip bonded to one or more of the first ends. The back of the flip chip mounted semiconductor die can be exposed or covered with resin. The semiconductor die can be wire bonded to the first ends. In that case, the back side of the semiconductor die can be exposed from the package. Alternatively, the semiconductor die can be mounted to a die attach pad which is exposed.
At least two semiconductor die can be stacked within the package. In this case, the two or more die are each wire bonded to appropriate leads. Also, two or more packages can be stacked on top of one another. In that case, the exposed leads are aligned so that the stacked packages are electrically coupled together to form a system.
A portion of the leads can be plated to enhancing bonding of bond wires or for flip chip bonding. A portion of the leads can also be plated to enhance board soldering of the package.
The package is formed by a new method. In particular, the lead frame is formed by the steps of forming a photoresist mask on a lead frame block. Conventional masking steps can be used. Next, the lead frame block is etched at least half way through to form the lead frame. Then, the photoresist mask is removed. Finally, a tape is applied to the lead frame. The tape enhances subsequent processing.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
More specifically,
In particular,
In particular,
In the following description, numerous details and alternatives are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.
I. Method
A. Lead Frame with Die Pad
The lead frame 102 includes a die attach pad 112 and one and typically more leads 114. The die attach pad 112 is preferably substantially planar and has a bottom surface and a top surface. The top surface of the die attach pad 112 is adapted to receive a semiconductor die 122. Each lead 114 includes a first end that is formed in the first planar level and is substantially coplanar with the die attach pad 112. The leads 114 are formed to include a step, tiered, and/or a multi level formed shape. Each lead 114 includes a second end that is at a higher level than the die attach pad 112. Preferably, the step is formed using photoresist and a partial etch process, usually a half etch. As discussed further below, these shapes have particular advantages.
Regardless of the manner in which the lead frame 102 is formed, after the step 110, the process 100 transitions to the step 120, where die attach and/or wire bonding occur. As mentioned above, the lead frame 102 typically includes areas for a die pad 112 and/or a lead 114. As shown in
After die attach and/or wire bonding occur at the step 120, the process 100 transitions to the step 130, where a molding 132 is applied. Typically the molding 132 includes a plastic polymer or resin that encapsulates the die 122, the wire bonds 124, and up to the top surface of the lead frame 102, including the die pad 112 and/or the leads 114.
Once the molding 132 is applied at the step 130, the process 100 transitions to the step 140, where the tape 108 is removed. When the tape 108 is removed, the bottom surfaces of the lead frame 102, including the die pad 112, and/or the leads 114, are typically exposed.
After the de-taping step 140, the process 100 transitions to the step 150, where individual package units contained within the molded strip are singulated to form individual semiconductor packages. Then, the process 100 concludes. The singulation step of particular embodiments are described further below in relation to
B. Lead Frame without Die Pad
Also shown in
Portions of the lead from 271 can optionally be plated to enhance bonding. The regions 280 shown in
Likewise, portions of the lead frame can optionally be plated to enhance soldering to a circuit board. The regions 282 can be plated with tin-lead to at least 7.62 micro meters for board soldering. Alternatively, the regions 282 can be plated with matte tin to at least 7.62 micro meters for board soldering. As a third alternative, the regions 282 can be plated with a three layer plating of Ni to at least 0.5 micro meters, Pd to at least 0.01 micro meters and Au to at least 30 Angstroms can be used in place of the Ag for board soldering. These platings and alternatives can be applied for forming the plated regions for any of the embodiments of this invention. The plating to enhance board soldering is preferably performed after the package is fully formed and the tape 208 is removed.
Hence, regardless of the manner in which the lead frame 202 is formed, after the step 210, the process 200 transitions to the step 220, where a semiconductor die 222 is attached to the tape 208 preferably with an adhesive 223. Then wire bonds 224 are coupled between the semiconductor die 222 and the leads 214. As mentioned above, the lead frame 202 typically includes areas for leads 214, but not die pads. Advantageously, because of the low position of the die 222 in relation to the leads 214, the thickness of the package is the thickness of the lead frame 202.
After die attach and/or wire bonding occur at the step 220, the process 200 transitions to the step 230, where a molding 232 is applied. Typically the molding 232 includes a plastic polymer or resin that encapsulates the die 222, the wire bonds 224, and the top surface of the lead frame 202, including the leads 214.
Once the molding 232 is applied at the step 230, the process 200 transitions to the step 240, where the tape 208 is removed. When the tape 208 is removed, the bottom surfaces of the die adhesive 223 and the lead frame 202, including the leads 214, are typically exposed.
After the de-taping step 240, the process 200 transitions to the step 250, where individual package units contained within the molded strip are singulated to form individual semiconductor packages. Then, the process 200 concludes. As mentioned above, singulation is discussed in further detail in relation to
C. Flip Chip (by Using Solder Balls Instead of Bond Wires)
Also shown in
Accordingly, regardless of the manner in which the lead frame 302 is formed, after the step 310, the process 300 transitions to the step 320, where die attach occurs. As mentioned above, the lead frame 302 typically includes areas for leads 314, but not die pads. Accordingly, as shown in
After die attach and/or wire bonding occur at the step 320, the process 300 transitions to the step 330, where a molding 332 is applied. Typically the molding 332 includes a plastic polymer or resin that encapsulates the die 322, the solder balls 324, and the top surfaces of the lead frame 302, including the leads 314.
Once the molding 332 is applied at the step 330, the process 300 transitions to the step 340, where the tape 308 is removed. When the tape 308 is removed, the bottom surfaces of the lead frame 302, including the leads 314, are typically exposed.
After the de-taping step 340, the process 300 transitions to the step 350, where individual package units contained within the molded strip are singulated to form individual (flip chip style) semiconductor packages. Then, the process 300 concludes. Singulation is further described in relation to
One of ordinary skill recognizes variations for the processes 100, 200, and 300 of
II. Exemplary Package Configurations
More specifically,
As shown in
III. Exemplary Stacked or Package-on-Package Configurations
Since the exemplary packages 400-1100 described above in relation to
In particular,
Similarly,
The individual packages of a multi, stacked, or package-on-package configuration includes the same and/or different styles and types. For instance,
In additional configurations,
Similar to
Further, the package-on-package configurations described above are not limited to two stacked packages. For instance,
Similarly,
IV. Advantages
As mentioned above, the processes 100, 200 and 300 produce different packages each with different attributes and advantages. In each case the package is the same height as the lead frame. The process 200 produces packages without a die attach pad at the lead frame formation step 310. Some embodiments further provide variations in the packages at the lead frame formation step (110, 210, 310), or at another step, such as for example the singulation step (150, 250, 350). In particular,
Further,
(1) For instance, as mentioned above, the processes (100, 200, 300) have fewer steps of fabrication than conventional methods known in the art. Because the processes (100, 200, 300) have fewer steps, they are less expensive than the processes known in the art. Moreover, because the processes (100, 200, 300) have fewer steps, they are also generally faster than other processes, or, in other words, have a higher throughput.
(2) The processes (100, 200, 300) are capable of yielding package sizes that are close to the dimensions of the packaged die inside the package. The advantages of reductions in package size are understood by those of ordinary skill. For example, a package having a footprint that is approximately its die size it will require a mounting area on a circuit board that is not much greater than approximately the size of the die. Thus, this advantage allows the placement of many more semiconductor devices on a board, or the use of a smaller circuit board, which further typically results in smaller form factor applications, and additional size and/or cost savings, such as from reduced shipping and manufacturing costs, for example.
(3) Further, a package having a thickness close to the die thickness encapsulated inside the package allows for lower profile implementations that use such small outline and/or low profile packages.
(4) Because the critical factor regarding height for the packages formed by the process 100, is typically the height of the die, or another factor, the height of the leads has no or negligible impact on the height of the package. Effectively, the leads have a zero, or almost zero, height in relation to the height of the package and/or the die.
(5) Additionally, because the process 100 has fewer steps, and its products are typically close in size to the small encapsulated die, the packages illustrated and described herein provide savings in the volume of construction materials consumed over time, or, in other words, provide a higher yield. Moreover, the various many possible package configurations enabled by the processes 100, 200, and 300 described above, yield further advantages.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
This application is a divisional of co-pending U.S. patent application Ser. No. 11/788,496, filed on Apr. 19, 2007, and entitled “Very Extremely Thin Semiconductor Package,” which in turn claims benefit of priority under 35 U.S.C. section 119(e) of U.S. Provisional Patent Application 60/795,929, filed Apr. 28, 2006, and entitled “Lead Frame Land Grid Array.” This application incorporates U.S. patent application Ser. No. 11/788,496, filed on Apr. 19, 2007, and entitled “Very Extremely Thin Semiconductor Package,” and U.S. Provisional Patent Application 60/795,929, filed Apr. 28, 2006, and entitled “Lead Frame Land Grid Array” in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3611061 | Segerson | Oct 1971 | A |
4411719 | Lindberg | Oct 1983 | A |
4501960 | Jouvet et al. | Feb 1985 | A |
4801561 | Sankhagowit | Jan 1989 | A |
4855672 | Shreeve | Aug 1989 | A |
5105259 | McShane et al. | Apr 1992 | A |
5195023 | Manzione et al. | Mar 1993 | A |
5247248 | Fukunaga | Sep 1993 | A |
5248075 | Young et al. | Sep 1993 | A |
5281851 | Mills et al. | Jan 1994 | A |
5396185 | Honma et al. | Mar 1995 | A |
5397921 | Karnezos | Mar 1995 | A |
5479105 | Kim et al. | Dec 1995 | A |
5535101 | Miles et al. | Jul 1996 | A |
5596231 | Combs | Jan 1997 | A |
5843808 | Karnezos | Dec 1998 | A |
5990692 | Jeong et al. | Nov 1999 | A |
6072239 | Yoneda et al. | Jun 2000 | A |
6111324 | Sheppard et al. | Aug 2000 | A |
6159770 | Tetaka et al. | Dec 2000 | A |
6197615 | Song et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6229200 | Mclellan et al. | May 2001 | B1 |
6242281 | Mclellan et al. | Jun 2001 | B1 |
6250841 | Ledingham | Jun 2001 | B1 |
6284569 | Sheppard et al. | Sep 2001 | B1 |
6285075 | Combs et al. | Sep 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6304000 | Isshiki et al. | Oct 2001 | B1 |
6326678 | Karnezos et al. | Dec 2001 | B1 |
6329711 | Kawahara et al. | Dec 2001 | B1 |
6353263 | Dotta et al. | Mar 2002 | B1 |
6372625 | Shigeno et al. | Apr 2002 | B1 |
6376921 | Yoneda et al. | Apr 2002 | B1 |
6392427 | Yang | May 2002 | B1 |
6414385 | Huang et al. | Jul 2002 | B1 |
6429048 | McLellan et al. | Aug 2002 | B1 |
6451709 | Hembree | Sep 2002 | B1 |
6455348 | Yamaguchi | Sep 2002 | B1 |
6489218 | Kim et al. | Dec 2002 | B1 |
6498099 | McLellan et al. | Dec 2002 | B1 |
6507116 | Caletka et al. | Jan 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545347 | McClellan | Apr 2003 | B2 |
6552417 | Combs | Apr 2003 | B2 |
6552423 | Song et al. | Apr 2003 | B2 |
6566740 | Yasunaga et al. | May 2003 | B2 |
6573121 | Yoneda et al. | Jun 2003 | B2 |
6585905 | Fan et al. | Jul 2003 | B1 |
6586834 | Sze et al. | Jul 2003 | B1 |
6635957 | Kwan et al. | Oct 2003 | B2 |
6667191 | McLellan et al. | Dec 2003 | B1 |
6683368 | Mostafazadeh | Jan 2004 | B1 |
6686667 | Chen et al. | Feb 2004 | B2 |
6703696 | Ikenaga et al. | Mar 2004 | B2 |
6723585 | Tu et al. | Apr 2004 | B1 |
6724071 | Combs | Apr 2004 | B2 |
6734044 | Fan et al. | May 2004 | B1 |
6734552 | Combs et al. | May 2004 | B2 |
6737755 | McLellan et al. | May 2004 | B1 |
6764880 | Wu et al. | Jul 2004 | B2 |
6781242 | Fan et al. | Aug 2004 | B1 |
6800948 | Fan et al. | Oct 2004 | B1 |
6812552 | Islam et al. | Nov 2004 | B2 |
6818472 | Fan et al. | Nov 2004 | B1 |
6818978 | Fan | Nov 2004 | B1 |
6818980 | Pedron, Jr. | Nov 2004 | B1 |
6841859 | Thamby et al. | Jan 2005 | B1 |
6876066 | Fee et al. | Apr 2005 | B2 |
6894376 | Mostafazadeh et al. | May 2005 | B1 |
6897428 | Minamio et al. | May 2005 | B2 |
6927483 | Lee et al. | Aug 2005 | B1 |
6933176 | Kirloskar et al. | Aug 2005 | B1 |
6933594 | McLellan et al. | Aug 2005 | B2 |
6940154 | Pedron et al. | Sep 2005 | B2 |
6946324 | McLellan et al. | Sep 2005 | B1 |
6964918 | Fan et al. | Nov 2005 | B1 |
6967126 | Lee et al. | Nov 2005 | B2 |
6979594 | Fan et al. | Dec 2005 | B1 |
6982491 | Fan et al. | Jan 2006 | B1 |
6984785 | Diao et al. | Jan 2006 | B1 |
6989294 | McLellan et al. | Jan 2006 | B1 |
6995460 | McLellan et al. | Feb 2006 | B1 |
7008825 | Bancod et al. | Mar 2006 | B1 |
7009286 | Kirloskar et al. | Mar 2006 | B1 |
7049177 | Fan et al. | May 2006 | B1 |
7060535 | Sirinorakul et al. | Jun 2006 | B1 |
7071545 | Patel et al. | Jul 2006 | B1 |
7091581 | McLellan et al. | Aug 2006 | B1 |
7101210 | Lin et al. | Sep 2006 | B2 |
7102210 | Ichikawa | Sep 2006 | B2 |
7205178 | Shiu et al. | Apr 2007 | B2 |
7224048 | McLellan et al. | May 2007 | B1 |
7247526 | Fan et al. | Jul 2007 | B1 |
7259678 | Brown et al. | Aug 2007 | B2 |
7274088 | Wu et al. | Sep 2007 | B2 |
7314820 | Lin et al. | Jan 2008 | B2 |
7315077 | Choi et al. | Jan 2008 | B2 |
7315080 | Fan et al. | Jan 2008 | B1 |
7342305 | Diao et al. | Mar 2008 | B1 |
7344920 | Kirloskar et al. | Mar 2008 | B1 |
7348663 | Kirloskar et al. | Mar 2008 | B1 |
7358119 | McLellan et al. | Apr 2008 | B2 |
7371610 | Fan et al. | May 2008 | B1 |
7372151 | Fan et al. | May 2008 | B1 |
7381588 | Patel et al. | Jun 2008 | B1 |
7399658 | Shim et al. | Jul 2008 | B2 |
7405468 | Masuda et al. | Jul 2008 | B2 |
7408251 | Hata et al. | Aug 2008 | B2 |
7411289 | McLellan et al. | Aug 2008 | B1 |
7449771 | Fan et al. | Nov 2008 | B1 |
7482690 | Fan et al. | Jan 2009 | B1 |
7495319 | Fukuda et al. | Feb 2009 | B2 |
7595225 | Fan et al. | Sep 2009 | B1 |
7608484 | Lange et al. | Oct 2009 | B2 |
7709857 | Kim et al. | May 2010 | B2 |
7714418 | Lim et al. | May 2010 | B2 |
20010007285 | Yamada et al. | Jul 2001 | A1 |
20020109214 | Minamio et al. | Aug 2002 | A1 |
20030006055 | Chien-Hung et al. | Jan 2003 | A1 |
20030045032 | Abe | Mar 2003 | A1 |
20030071333 | Matsuzawa | Apr 2003 | A1 |
20030143776 | Pedron, Jr. et al. | Jul 2003 | A1 |
20030178719 | Combs et al. | Sep 2003 | A1 |
20030201520 | Knapp et al. | Oct 2003 | A1 |
20030207498 | Islam et al. | Nov 2003 | A1 |
20030234454 | Pedron et al. | Dec 2003 | A1 |
20040014257 | Kim et al. | Jan 2004 | A1 |
20040026773 | Koon et al. | Feb 2004 | A1 |
20040046237 | Abe et al. | Mar 2004 | A1 |
20040046241 | Combs et al. | Mar 2004 | A1 |
20040070055 | Punzalan et al. | Apr 2004 | A1 |
20040080025 | Kasahara et al. | Apr 2004 | A1 |
20040110319 | Fukutomi et al. | Jun 2004 | A1 |
20050003586 | Shimanuki et al. | Jan 2005 | A1 |
20050077613 | McLellan et al. | Apr 2005 | A1 |
20050236701 | Minamio et al. | Oct 2005 | A1 |
20050263864 | Islam et al. | Dec 2005 | A1 |
20060071351 | Lange | Apr 2006 | A1 |
20060192295 | Lee et al. | Aug 2006 | A1 |
20060223229 | Kirloskar et al. | Oct 2006 | A1 |
20060223237 | Combs et al. | Oct 2006 | A1 |
20060273433 | Itou et al. | Dec 2006 | A1 |
20070001278 | Jeon et al. | Jan 2007 | A1 |
20070013038 | Yang | Jan 2007 | A1 |
20070029540 | Kajiwara et al. | Feb 2007 | A1 |
20070200210 | Zhao et al. | Aug 2007 | A1 |
20070235217 | Workman | Oct 2007 | A1 |
20080048308 | Lam | Feb 2008 | A1 |
20080150094 | Anderson | Jun 2008 | A1 |
20090152694 | Bemmert et al. | Jun 2009 | A1 |
20090230525 | Cahng Chien et al. | Sep 2009 | A1 |
20090236713 | Xu et al. | Sep 2009 | A1 |
20100133565 | Cho et al. | Jun 2010 | A1 |
20100149773 | Said | Jun 2010 | A1 |
20100178734 | Lin | Jul 2010 | A1 |
20100224971 | Li | Sep 2010 | A1 |
20110115061 | Krishnan et al. | May 2011 | A1 |
20110201159 | Mori et al. | Aug 2011 | A1 |
Entry |
---|
Michael Quirk and Julian Serda, Semiconductor Manufacturing Technology, Pearson Education International, Pearson Prentice Hall, 2001, pp. 587-588. |
Number | Date | Country | |
---|---|---|---|
20140015117 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
60795929 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11788496 | Apr 2007 | US |
Child | 13970392 | US |