This application is based on and incorporates herein by reference Japanese Patent Application No. 2009-189783 filed on Aug. 19, 2009.
The present invention relates to an electronic device including first and second substrates that are stacked together, a power element mounted on a surface of the first substrate, and an electronic component mounted on a surface of the second substrate facing the surface of the first substrate. The present invention also relates to a method of manufacturing the electronic device.
JP-A-2001-85613 discloses an electronic device formed with first and second substrates. The first and second substrates are stacked together so that surfaces of the first and second substrates can face each other. A power element is mounted on the surface of the first substrate and electrically connected to the first substrate through a wire or the like.
In the electronic device disclosed in JP-A-2001-85613, the first and second substrates are electrically connected together through a lead, and the power element and the second substrate are connected together through the lead. Since the lead is located at an end of the second substrate, it is difficult to reduce a planar size of the electronic device.
JP-4062191 discloses another electronic device formed with first and second substrates. The first and second substrates are stacked together so that surfaces of the first and second substrates can face each other. A semiconductor element is mounted on the surface of the first substrate. The second substrate is a wiring layer. The semiconductor element is electrically connected to the second substrate through solder or the like.
FIG. 1 of JP-4062191 shows that the semiconductor element is connected to the first substrate through a bonding wire. The bonding wire has a loop shape and projects over the semiconductor element. The first and second substrates are displaced from each other in a planer direction to prevent the second substrate from interfering with the bonding wire. Therefore, it is difficult to reduce a planar size of the electronic device.
FIG. 5 of JP-4062191 shows that the semiconductor element is connected to the first substrate through the bonding wire without displacing the first and second substrates from each other in the planar direction. However, the semiconductor element is connected to the second substrate through the first substrate without being directly connected to the second substrate.
For forgoing reasons, it is difficult to reduce a planer size of the electronic device disclosed in JP-4062191.
Further, in the structure shown in FIG. 1 of JP-4062191, since the semiconductor element is soldered to the second substrate, there is almost no space between the first and second substrates. Therefore, it is difficult to mount an electronic component on the facing surface of the second substrate. In the structure shown in FIG. 5 of JP-4062191, there may be space for mounting an electronic component on the facing surface of the second substrate. However, since the semiconductor element is not directly connected to the second substrate, it is difficult to reduce the size of the electronic device.
In view of the above, it is an object of the present invention to provide an electronic device having a reduced size and including first and second substrates that are stacked together, a power element mounted on a surface of the first substrate, and an electronic component mounted on a surface of the second substrate facing the surface of the first substrate. It is another object of the present invention to provide a method of manufacturing the electronic device.
According to an aspect of the present invention, an electronic device includes a first substrate, a second substrate, a power element, an electronic component, a first conductive member, and a second conductive member. The first substrate has a surface. A surface of the first substrate faces a surface of the second substrate. The power element is mounted on the surface of the first substrate and has a surface facing the surface of the second substrate. The electronic component is mounted on the surface of the second substrate. The first conductive member electrically connects the power element to the first substrate. The first conductive member has a first end connected to the surface of the power element, a second end connected to the surface of the first substrate, and a middle portion between the first and second. The middle portion of the first conductive member projects toward the second substrate so that a top of the middle portion is located closer to the surface of the second substrate than the surface of the power element. The second conductive member electrically connects the power element to the second substrate. The second conductive member has a first end connected to the surface of the power element and a second end extending above the top of the middle portion of the first conductive member and connected to the surface of the second substrate. The surfaces of the first and second substrates are spaced from each other by a predetermined distance that prevents the power element from being in contact with the surface of the second substrate, prevents the electronic component from being in contact with the surface of the first substrate, and prevents the first conductive member from being in contact with the surface of the second substrate.
According to another aspect of the present invention, a method of manufacturing an electronic device includes placing a back surface of a power element on a surface of a first substrate, placing an electronic component on a surface of a second substrate, and connecting a first conductive member to each of the power element and the first substrate in such a manner that a first end of the first conductive member is connected to a front surface of the power element, a second end of the first conductive member is connected to the surface of the first substrate, and a middle portion between the first and second ends of the first conductive member projects in a direction away from the surface of the first substrate. The method further includes preparing a jig having a pair of facing surfaces that are engageable with each other, preparing a second conductive member having a longitudinal direction, and holding a middle portion of the second conductive member in the longitudinal direction between the pair of facing surfaces of the jig so that the middle portion of the second conductive member is bent in a direction crossing the longitudinal direction. The method further includes connecting a first end of the second conductive member to the front surface of the power element while keeping the middle portion of the second conductive member held between the pair of facing surfaces of the jig in such a manner that the longitudinal direction of the second conductive member is perpendicular to the front surface of the power element and that a second end of the first conductive member is located above a tip of the middle portion of the first conductive member. The method further includes positioning the first and second substrates with respect to each other in such a manner the surfaces of the first and second substrates face each other with a predetermined distance that prevents the power element from being in contact with the surface of the second substrate, prevents the electronic component from being in contact with the surface of the first substrate, and prevents the first conductive member from being in contact with the surface of the second substrate. The positioning step includes connecting the second end of the second conductive member to the surface of the second substrate.
The above and other objectives, features and advantages of the present invention will become more apparent from the following detailed description made with check to the accompanying drawings. In the drawings:
Embodiments of the present invention are described below with reference to the drawings.
An electronic device S1 according to a first embodiment of the present invention is described below with reference to
Examples of the first and second substrates 10, 20 can include various types of wiring boards, circuit boards, and lead frames, on which the power element 30 and the electronic component 40 can be mounted.
According to the first embodiment, the first substrate 10 is a lead frame made from a metal plate of copper (Cu), aluminum (Al), iron (Fe), or the like, and the second substrate 20 is a circuit board made from a printed board, a ceramic board, a flexible board, or the like.
The first substrate 10 is formed by patterning a metal plate into a shape having an island portion and a lead potion, for example, by pressing process or etching process. Thus, the first substrate 10 has a wiring pattern and serves as a lead frame.
The power element 30 is mounted on the first surface 11 of the first substrate 10 and electrically, mechanically connected to the first substrate 10 through a conductive material 80. Examples of the conductive material 80 can include a solder material such as eutectic solder or lead-free solder and a conductive adhesive containing filler metal, metal powder, nano metal particle, or the like.
The power element 30 can have a rectangular plate shape and be fabricated by applying a common semiconductor process to a semiconductor chip such as a silicon semiconductor chip. Examples of the power element 30 can include a power metal-oxide semiconductor (MOS) transistor, an insulated gate bipolar transistor (IGBT), and a power bipolar transistor.
The power element 30 generates a relatively large amount of heat when driven. The heat generated by the power element 30 is released through the first substrate 10. Therefore, it is preferable that the first substrate 10 be made of a material having good heat conductivity. For example, it is preferable that the first substrate 10 be made of a material that mainly contains copper, aluminum, or the like.
In an example shown in
For example, each of the source electrode 32 and the gate electrode 33 can be made of aluminum and have a rectangular planar shape on the front surface 31. For example, the drain electrode 34 can be made of titanium (Ti) or nickel (Ni) and formed on almost the entire back surface of the power element 30.
According to the first embodiment, a planar size of the gate electrode 33 is smaller than a planar size of the source electrode 32. For example, the gate electrode 33 can be about 0.1 mm to about 0.5 mm on a side.
The gate electrode 33 is electrically connected to the second substrate 20 through the second conductive member 60 and receives a control signal from the second substrate 20. The second substrate 20 includes a control circuit that is configured to control the power element 30 by outputting the control signal to the gate electrode 33.
A large amount of electric current flows between the source electrode 32 and the drain electrode 34. The source electrode 32 and the drain electrode 34 are electrically connected to the first substrate 10 through the first conductive member 50 and the conductive material 80, respectively. Details of the first conductive member 50 and the second conductive member 60 are described later.
As described previously, the second substrate 20 is stacked on the first substrate 10 in such a manner that the first surface 21 of the second substrate 20 faces the first surface 11 of the first substrate 10. The electronic component 40 is mounted on the first surface 21 of the second substrate 20. According to the first embodiment, another electronic component 40 is mounted on the second surface 22 of the second substrate 20.
The electronic component 40 mounted on the second substrate 20 is a different type from the power element 30 mounted on the first surface 11 of the first substrate 10. Examples of the electronic component 40 can include a large-scale integration (LSI) chip and a passive element such as a capacitor, a diode, or a resistor. The electronic component 40 is electrically connected to the second substrate 20 through a solder, an electrically conductive adhesive, a bonding wire, or the like.
According to the first embodiment, the first surfaces 11, 21 of the first and second substrates 10, 20 are spaced from each other by a predetermined distance to form accommodation space in which the power element 30 and the electronic component 40 are located.
The distance between the first surfaces 11, 21 of the first and second substrates 10, 20 prevents the power element 30 on the first surface 11 from being in contact with the first surface 21 and also prevents the electronic component 40 on the first surface 21 from being in contact with the first surface 11. For example, according to the embodiment, the distance can be set so that the front surface 31 of the power element 30 can be spaced from the first surface 21 of the second substrate 20 by one millimeter (1 mm) or more.
As shown in
According to the first embodiment, an end portion of the first substrate 10 is bent to form the spacer 13. The spacer 13 extends in the stacked direction and has a length almost equal to the distance between the first surfaces 11, 21 of the first and second substrates 10, 20. In this way, the spacer 13 keeps the distance between the first surfaces 11, 21 of the first and second substrates 10, 20.
As shown in
As described above, according to the first embodiment, the first substrate 10 is a lead frame. Therefore, the spacer 13 can be easily formed by bending the first substrate 10. Instead of the first substrate 10, the second substrate 20 can have the spacer 13. That is, the spacer 13 can be a single piece of the first substrate 10 or the second substrate 20. Alternatively, the first and second substrates 10, 20 can be spaced by a spacer that is a separate piece of the first and second substrates 10, 20.
According to the first embodiment, the first substrate 10 has an external input/output terminal 14 through which the electronic device S1 can be electrically connected to an external device (not shown). The external input/output terminal 14 is exposed outside the molding resin 70.
For example, the spacer 13 is bent and elongated in a direction perpendicular to the stacked direction so as to project from the molding resin 70. The projecting portion of the spacer 13 serves as the external input/output terminal 14.
As shown in
As described previously, the first conductive member 50 for electrically connecting the power element 30 to the first substrate 10 is electrically connected to the front surface 31 of the power element 30. Likewise, the second conductive member 60 for electrically connecting the power element 30 to the second substrate 20 is electrically connected to the front surface 31 of the power element 30.
It is noted that both the first and second conductive members 50, 60 are located between the first surfaces 11, 21 of the first and second substrates 10, 20 and cannot be seen when viewed from the stacked direction (i.e., vertical direction in
A first end of the first conductive member 50 is connected to the source electrode 32 on the front surface 31 of the power element 30, and a second end of the first conductive member 50 is connected to the first surface 11 of the first substrate 10. A middle portion between the first and second ends of the first conductive member 50 projects toward the second substrate 20 rather than the front surface 31 of the power element 30.
According to the first embodiment, the first conductive member 50 has a loop shape (i.e., curved shape with a rounded corner) projecting in an upward direction in
As described previously, the first surfaces 11, 21 of the first and second substrates 10, 20 are spaced from each other by the distance that prevents the power element 30 on the first surface 11 from being in contact with the first surface 21 and also prevents the electronic component 40 on the first surface 21 from being in contact with the first surface 11. Further, the distance prevents the first conductive member 50 from being in contact with the first surface 21 of the second substrate 20. Thus, although the first conductive member 50 projects toward the first surface 21 of the second substrate 20, the first conductive member 50 is spaced from the first surface 21 of the second substrate 20.
A first end of the second conductive member 60 is connected to the gate electrode 33 on the front surface 31 of the power element 30, and a second end of the second conductive member 60 is connected to the first surface 21 of the second substrate 20. Specifically, the second conductive member 60 extends above a top 51 of the first conductive member 50 in the stacked direction so that the second end of the second conductive member 60 can be connected to the first surface 21 of the second substrate 20.
It is noted that the shortest distance between the first conductive member 50 and the first surface 21 of the second substrate 20 in the stacked direction is between the top 51 and the first surface 21. That is, the first conductive member 50 is located closest to the first surface 21 at the top 51. A distance between the first and second ends of the second conductive member 60 is greater than a distance between the top 51 of the first conductive member 50 and the front surface 31 in the stacked direction.
As shown in
In other words, a height of the second end of the second conductive member 60 from the front surface 31 is greater than a height of the top 51 of the first conductive member 50 from the front surface 31. In summary, the length of the second conductive member 60 is greater than the height of the top 51 of the first conductive member 50 from the front surface 31.
According to the first embodiment, the second conductive member 60 is a metal lead having a columnar shape. Examples of the columnar shape can include a cylindrical rod shape, a rectangular rod shape, a thin strip shape, a thin ribbon shape, and a thin foil shape.
For example, the second conductive member 60 can be made of a metal material that mainly contains copper (Cu), aluminum (Al), gold (Au), or the like. Alternatively, the second conductive member 60 can be plated with such a metal material.
In particular, when the second conductive member 60 is connected to the second substrate 20 and the power element 30 through a solder, the second conductive member 60 can be plated with tin (Sn), nickel (Ni), gold (Au), or the like. In such an approach, reliability of electrical connection of the second conductive member 60 to the second substrate 20 and the power element 30 can be improved.
Like the first conductive member 50, the second conductive member 60 is provided to each power element 30. That is, when the electronic device S1 includes multiple power elements 30, the electronic device S1 includes multiple second conductive members 60.
As described previously, the first end of the second conductive member 60 is connected to the gate electrode 33 on the front surface 31, and the second end of the second conductive member 60 is connected to the second substrate 20. Specifically, the second end of the second conductive member 60 is connected to an electrode (not shown) on the first surface 21 of the second substrate 20.
In an example shown in
As described above, the second conductive member 60 is connected through the conductive material 80 to each of the power element 30 and the second substrate 20. Alternatively, the second conductive member 60 can be connected directly to at least one of the power element 30 and the second substrate 20 by a metal bonding technique such as ultrasonic bonding or thermocompression bonding. For example, while the second end of the second conductive member 60 can be connected though the conductive material 80 to the first surface 21 of the second substrate 20, the first end of the second conductive member 60 can be connected directly to the front surface 31 of the power element 30 by such a metal bonding technique.
In this way, the source electrode 32 of the power element 30 is electrically connected to the first substrate 10 through the first conductive member 50, and the gate electrode 33 of the power element 30 is electrically connected to the second substrate 20 through the second conductive member 60.
As described previously, the planar size of the gate electrode 33 is smaller than the planar size of the source electrode 32.
For example, the gate electrode 33 can have a rectangular planar shape that is about 0.1 mm to about 0.5 mm on a side, and the front surface 31 of the power element 30 can be spaced from the first surface 21 of the second substrate 20 by one millimeter (1 mm) or more. According to this example, a ratio (i.e., aspect ratio) between length and width of the second conductive member 60 can be two or more. Despite small planar size of the gate electrode 33, the gate electrode 33 can be suitably connected to the second substrate 20 by using the second conductive member 60 having such aspect ratio.
In summary, according to the first embodiment, the power element 30 is located between the first and second surfaces 11, 21 of the first and second substrates 10, 20 and connected to the first substrate 10 through the first conductive member 50 that projects toward the second substrate 20.
Further, the power element 30 is connected to the second substrate 20 through the second conductive member 60. The height of the second conductive member 60 from the front surface 31 of the power element 30 is greater than the height of the top 51 of the first conductive member 50 from the front surface 31. The electronic component 40 is mounted on the second substrate 20 not to be in contact with the first substrate 10.
The first and second surfaces 11, 21 of the first and second substrates 10, 20 are spaced from each other by the distance that prevents the first conductive member 50 from being in contact with the first surface 21 of the second substrate 20.
The second conductive member 60 is located between the first and second surfaces 11, 21 of the first and second substrates 10, 20 and extends straightly from the power element 30 to the second substrate 20. Therefore, a planer side of the electronic device S1 can be reduced compared to a planar size of a conventional electronic device.
Thus, according to the first embodiment, although the power element 30 and the electronic component 40 are mounted between the first and second substrates 10, 20, the electronic device S1 can have a reduced size.
Next, a method of manufacturing the electronic device S1 is described below with reference to
In a process shown in
Further, in the process shown in
Specifically, the first conductive member 50 is connected to the front surface 31 and the first substrate 10 in such a manner that the middle portion of the first conductive member 50 projects toward the second substrate 20 rather than the front surface 31. For example, the connection of the first conductive member 50 to the front surface 31 and the first substrate 10 can be achieved by a typical bonding method such as wire bonding or ribbon bonding.
Further, in the process shown in
For example, the connection of the second conductive member 60 to the front surface 31 can be achieved by causing the second conductive member 60 to stand on the front surface 31 along its longitudinal direction through the conductive material 80 and then soldering the first end of the second conductive member 60 to the front surface 31 while keeping the second conductive member 60 standing on the front surface 31. Alternatively, the second conductive member 60 can be connected directly to the front surface 31 without using the conductive material 80 by performing ultrasonic bonding, thermocompression bonding, or the like, while keeping the second conductive member 60 standing on the front surface 31.
In a process shown in
Further, in the process shown in
Next, in a process shown in
At this time, the second end of the second conductive member 60 is placed in contact with the first surface 21 of the second substrate 20 through the conductive material 80. Likewise, the spacer 13 of the first substrate 10 is placed in contact with the first surface 21 of the second substrate 20 through the conductive material 80. When the conductive material 80 is a solder, reflow and cooling processes are performed while keeping the second conductive member 60 and the spacer 13 in contact with the first surface 21 through the conductive material 80. As a result, the second conductive member 60 and the second substrate 20 are joined together, and the first and second substrates 10, 20 are joined together. Alternatively, the second conductive member 60 can be joined directly to the second substrate 20 without using the conductive material 80 by performing ultrasonic bonding, thermocompression bonding, or the like.
Then, the first and second substrates 10, 20 that are joined together are placed in a mold, and a typical molding martial such as epoxy resin is injected into the mold. In this way, the first and second substrates 10, 20, the power element 30, the electronic component 40, and the first and second conductive members 50, 60 are encapsulated in the molding resin 70 by a transfer molding method.
Then, if necessary, an unnecessary portion of the first substrate 10 is cut off. Thus, the electronic device S1 shown in
A second embodiment of the present invention is described below with reference to
In the first embodiment, the second end of the second conductive member 60 is connected to the first surface 21 of the second substrate 20. Specifically, the second end of the second conductive member 60 is connected to the electrode (not shown) on the first surface 21 indirectly through the conductive material 80 or directly without the conductive material 80.
In contrast, in the second embodiment, as shown in
In
A third embodiment of the present invention is described below with reference to
In the first embodiment, as shown in
In contrast, in the third embodiment, as shown in
Alternatively, the second surface 12 of the first substrate 10 can be encapsulated with the molding resin 70 without using the heat radiator 90. Even in such a case, the heat generated by the power element 30 can be released outside the molding resin 70 through the molding resin 70.
The structures of the second and third embodiments can be combined.
A fourth embodiment of the present invention is described below with reference to
In the first embodiment, the spacer 13 of the first substrate 10 is electrically connected through the conductive material 80 to the end portion of the first surface 21 of the second substrate 20 so that the first and second substrates 10, 20 can be electrically connected together.
In contrast, in the fourth embodiment, as shown in
The structures of the second, third, and fourth embodiments can be combined.
A fifth embodiment of the present invention is described below with reference to
In the first embodiment, the second conductive member 60 has a straight shape extending along its longitudinal direction.
In contrast, in the fifth embodiment, the second conductive member 60 has a shape other than a straight shape. Specifically, the second conductive member 60 is curved or bent in a direction crossing its longitudinal direction. For example, as shown in
As described above, according to the fifth embodiment, the second conductive member 60 has a curved or bent shape. In such an approach, stress applied by the first and second substrates 10, 20 to the second conductive member 60 can be absorbed. Further, even when the first surfaces 11, 21 of the first and second substrates 10, 20 have unevenness, the second conductive member 60 can absorb the unevenness. Therefore, the first and second substrates 10, 20 can be accurately positioned with respect to each other so that the electronic device S1 can be accurately manufactured.
The second conductive member 60 can be easily formed in such curved or bent shapes by a common bending technique. The structures of the second, third, fourth, and fifth embodiments can be combined.
A sixth embodiment of the present invention is described below with reference to
For example, the second conductive member 60 is metal foil of copper or the like and wound onto the reel 100.
The second conductive member 60 is pulled from the reel 100, passed through the clamper 101, and then supplied to the jig 102. The clamper 101 is a fastening tool to secure the second conductive member 60 by holding the second conductive member 60.
The jig 102 has a pair of uneven surfaces that face each other and are engageable with each other. The second conductive member 60 is passed between the facing surfaces of the jig 102. The jig 102 is operated so that the facing surfaces can move in different directions (i.e., lateral direction in
The cutter 103 is used to cut off the second conductive member 60. The slider 104 is used to bend the second conductive member 60 outside the jig 102. Each of the clamper 101, the cutter 103, and the slider 104 can move in a direction indicated by a corresponding arrow in
The second conductive member 60 is formed in a predetermined shape and connected to the front surface 31 of the power element 30 by using the machine shown in
In a process shown in
Then, in a process shown in
Then, in a process shown in
Then, in a process shown in
Then, in a process shown in
In this way, the second conductive member 60 is formed in the predetermined shape and then joined to the front surface 31 in such a manner that the second conductive member 60 stands on the front surface 31.
According to the sixth embodiment, the second conductive member 60 is joined to the power element 30 by a thermocompression bonding method. Alternatively, the second conductive member 60 can be joined to the power element 30 through the conductive material 80.
According to the sixth embodiment, the first and second ends of the second conductive member 60 are bent by the slider 104 in the direction perpendicular to its longitudinal direction. In such an approach, the first end of the second conductive member 60 becomes parallel to the front surface 31 of the power element 30, and the second end of the second conductive member 60 becomes parallel to the first surface 21 of the second substrate 20. Therefore, the second conductive member 60 can be easily joined to the power element 30 and the second substrate 20. Alternatively, the process of bending the first and second ends of the second conductive member 60 by the slider 104 can be omitted.
A seventh embodiment of the present invention is described below with reference to
In a process shown in
Then, in a process shown in
Thus, the second conductive member 60 is joined to the power element 30 in such a manner that the first end of the second conductive member 60 can be parallel to the front surface 31 of the power element 30 through the conductive material 80.
In the process shown in
In an example shown in
The embodiments described above can be modified in various ways, for example, as follows.
In the embodiments, the electronic component 40 is mounted on each of the first surface 21 and the second surface 22 of the second substrate 20. Alternatively, the electronic component 40 can be mounted on only the first surface 21 of the second substrate 20.
In the embodiments, the first and second substrates 10, 20, the power element 30, the electronic component 40, and the first and second conductive members 50, 60 are encapsulated with the molding resin 70. Alternatively, the molding resin 70 can be omitted.
In the embodiments, the first substrate 10 is a lead frame, and the second substrate 20 is a circuit board. Alternatively, the first substrate 10 and the second substrate 20 can be other types of substrates, on which the power element 30 and the electronic component 40 can be mounted.
In the embodiments, the first conductive member 50 is connected to the source electrode 32 of the power element 30, and the second conductive member 60 is connected to the gate electrode 33 of the power element 30. Alternatively, the first and second conductive members 50, 60′ can be connected to other electrodes of the power element 30.
Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2009-189783 | Aug 2009 | JP | national |