This invention relates generally to integrated circuits and, more particularly, to bump structures for use with semiconductor dies having through-silicon vias for stacked die configurations.
Since the invention of the integrated circuit, the semiconductor industry has experienced rapid growth due to continuous improvements in the integration density of various electronic components (e.g., transistors, diodes, resistors, capacitors, etc.). For the most part, this improvement in integration density has come from repeated reductions in minimum feature size, which allows more components to be integrated into a given area.
These integration improvements are essentially two-dimensional (2D) in nature, in that the volume occupied by the integrated components is essentially on the surface of the semiconductor wafer. Although dramatic improvement in lithography has resulted in considerable improvement in 2D integrated circuit (IC) formation, there are physical limits to the density that can be achieved in two dimensions. One of these limits is the minimum size needed to make these components. Also, when more devices are put into one chip, more complex designs are required.
In an attempt to further increase circuit density, three-dimensional (3D) ICs have been investigated. In a typical formation process of a 3D IC, two dies are bonded together and electrical connections are formed between each die and contact pads on a substrate. For example, one attempt involved bonding two dies on top of each other. The stacked dies were then bonded to a carrier substrate and wire bonds electrically coupled contact pads on each die to contact pads on the carrier substrate. This attempt, however, requires a carrier substrate larger than the dies for the wire bonding.
More recent attempts have focused on through-silicon vias (TSVs). Generally, a TSV is formed by etching a vertical via through a substrate and filling the via with a conductive material, such as copper. The backside of the substrate is thinned to expose the TSVs, and another die is bonded to the exposed TSVs, thereby forming a stacked die package. If the substrate is to be bonded to another die/wafer using a different technology or pin-out, then a redistribution layer is needed.
The thermal budget is usually an issue because the substrate is bonded to a temporary carrier before the substrate thinned and bonded. In order to achieve a low-temperature bonding process, solder balls are used for bonding another substrate to the TSVs. The requirement for a redistribution layer, however, requires additional layer processes to create the redistribution layer, and it is difficult to form the redistribution layer within the thermal budget.
Accordingly, there is a need for a better structure and method of bonding to TSV structures.
These and other problems are generally reduced, solved or circumvented, and technical advantages are generally achieved, by embodiments of the present invention, which provides bump structures for use with semiconductor dies having through-silicon vias for a stacked die configuration.
In accordance with an embodiment of the present invention, a semiconductor device is provided. The semiconductor device has a semiconductor substrate with through-silicon vias extending through and protruding from a backside of the semiconductor substrate. A first isolation film is on the backside of the semiconductor substrate between adjacent ones of the through-silicon vias such that the isolation film does not extend beyond the through-silicon vias. Conductive elements having tapered sidewalls are electrically coupled to the through-silicon vias, and a second isolation film is on the first isolation film. In other embodiments, the conductive elements include a redistribution line and have a tapered sidewall. The redistribution line may be between the first isolation film and the second isolation film.
In accordance with another embodiment of the present invention, a method of forming a semiconductor device is provided. A semiconductor substrate having a through-silicon via extending from a first side into the semiconductor substrate is provided. The through-silicon via is exposed on a backside of the semiconductor substrate, and a first isolation film is formed on the backside of the semiconductor substrate such that the through-silicon via is exposed. A conductive element having tapered sidewalls is formed on the through-silicon via. A second isolation film of a different material than the first isolation film is formed on the first isolation film. A contact barrier layer is formed over the conductive element. The conductive element may include a redistribution line.
In accordance with yet another embodiment of the present invention, another method of forming a semiconductor device is provided. The method includes providing a first semiconductor substrate having a plurality of through-silicon vias extending from a circuit-side to a backside of the first semiconductor substrate and a conductive pad having tapered sidewalls being located over each of the plurality of through-silicon vias on the backside. The backside of the first semiconductor substrate has a first isolation film and a second isolation film on the first isolation film. A second semiconductor substrate having a plurality of top contacts is provided. The first semiconductor substrate and the second semiconductor substrate are bonded together, such that each of the top contacts of the second semiconductor substrate are electrically coupled with respective ones of the conductive pads on the first semiconductor substrate.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
Embodiments of the present invention relate to the use of metal bump pads with a substrate having through-silicon vias. As will be discussed below, embodiments are disclosed that integrate the metal bump pads and a redistribution layer, thereby enabling the simultaneous formation of the redistribution layer with the formation of the metal bumps. Furthermore, the metal bumps are preferably provided with tapered sidewalls, thereby providing a larger bonding interface for wafer and/or die stacking processes.
The intermediate stages of a method for forming a die having a bump structure and/or a redistribution layer suitable for use in a three-dimensional (3D) integrated circuit (IC) or stacked die configuration are illustrated in
Referring first to
The electrical circuitry 112 formed on the semiconductor substrate 110 may be any type of circuitry suitable for a particular application. In an embodiment, the circuitry includes electrical devices formed on the substrate with one or more dielectric layers overlying the electrical devices. Metal layers may be formed between dielectric layers to route electrical signals between the electrical devices. Electrical devices may also be formed in one or more dielectric layers.
For example, the electrical circuitry 112 may include various N-type metal-oxide semiconductor (NMOS) and/or P-type metal-oxide semiconductor (PMOS) devices, such as transistors, capacitors, resistors, diodes, photo-diodes, fuses, and the like, interconnected to perform one or more functions. The functions may include memory structures, processing structures, sensors, amplifiers, power distribution, input/output circuitry, or the like. One of ordinary skill in the art will appreciate that the above examples are provided for illustrative purposes only to further explain applications of the present invention and are not meant to limit the present invention in any manner. Other circuitry may be used as appropriate for a given application.
Also shown in
The ILD layer 116 may be formed, for example, of a low-K dielectric material, such as silicon oxide, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorinated silicate glass (FSG), SiOxCy, Spin-On-Glass, Spin-On-Polymers, silicon carbon material, compounds thereof, composites thereof, combinations thereof, or the like, by any suitable method known in the art, such as spinning, CVD, and PECVD. It should also be noted that the etch stop layer 114 and the ILD layer 116 may each comprise a plurality of dielectric layers, with or without an etch stop layer formed between adjacent dielectric layers.
Contacts 118 are formed through the ILD layer 116 to provide an electrical contact to the electrical circuitry 112. The contacts 118 may be formed, for example, by using photolithography techniques to deposit and pattern a photoresist material on the ILD layer 116 to expose portions of the ILD layer 116 that are to become the contacts 118. An etch process, such as an anisotropic dry etch process, may be used to create openings in the ILD layer 116. The openings are, preferably, lined with a diffusion barrier layer and/or an adhesion layer (not shown), and filled with a conductive material. Preferably, the diffusion barrier layer comprises one or more layers of TaN, Ta, TiN, Ti, CoW, or the like, and the conductive material comprises copper, tungsten, aluminum, silver, and combinations thereof, or the like, thereby forming the contacts 118 as illustrated in
One or more inter-metal dielectric (IMD) layers 120 and the associated metallization layers (not shown) are formed over the ILD layer 116. Generally, the one or more IMD layers 120 and the associated metallization layers are used to interconnect the electrical circuitry to each other and to provide an external electrical connection. The IMD layers 120 are preferably formed of a low-K dielectric material, such as fluorosilicate glass (FSG) formed by PECVD techniques or high-density plasma chemical vapor deposition (HDPCVD) or the like, and may include intermediate etch stop layers, similar to etch stop layer 114. Top metal contacts 122 are provided in the uppermost IMD layer to provide external electrical connections.
Also shown in
It should be noted that the through-silicon vias 124 are illustrated as extending in the semiconductor substrate 110 from a top surface of the semiconductor substrate 110 for illustrative purposes only and that other arrangements may be utilized. For example, in another embodiment the through-silicon vias 124 may extend from a top surface of the ILD layer 116 or one of the IMD layers 120. For example, in an embodiment, the through-silicon vias 124 are formed by creating openings extending into the semiconductor substrate 110 after forming the contacts 118 by, for example, one or more etching processes, milling, laser techniques, or the like. The openings are also preferably lined with a liner, such as liner 126, that acts as an isolation layer, and filled with a conductive material as discussed above.
Conductive bumps 128, such as metal bumps formed of Cu, W, CuSn, AuSn, InAu, PbSn, or the like, are formed on the top metal contacts 122, and a carrier substrate 130 is attached to a top surface of the IMD layers 120 using an adhesive 132. Generally, the carrier substrate 130 provides temporary mechanical and structural support during subsequent processing steps. In this manner, damage to the semiconductor substrate 110 is reduced or prevented.
The carrier substrate 130 may comprise, for example, glass, silicon oxide, aluminum oxide, and the like. The adhesive 132 may be any suitable adhesive, such as an ultraviolet (UV) glue, which loses its adhesive property when exposed to UV lights. The preferred thickness of the carrier substrate 130 is preferably between about a few mils to about tens of mils.
Depending on the process utilized to form the first isolation film 310, it may be desirable to perform a planarization process. In particular, some methods of deposition, such as spin-coating, create a planar surface, but other methods, such as a CVD process, form a conformal layer, and as a result, it may be desirable to perform a planarization process, such as a grinding or CMP process, to create a planar surface as illustrated in
Referring now to
It should be noted that the embodiment illustrated in
Thereafter, conductive elements 710 are formed in the openings 612 (see
It should be noted that the conductive elements 710 may be contact pads and/or redistribution lines. As illustrated in
After patterning the second isolation film 1010, the second patterned mask 1110 may be removed as illustrated in
In an embodiment, the contact barrier layer 1310 is formed of a metal or metal alloy, such as Ni, AuSu, Au, or the like, using electroless plating techniques. Other methods and techniques, however, may be used. The material for the contact barrier layer 1310 should be selected to enhance the adhesion properties between the conductive elements 710 and the contact element on the external device. It should be noted that the conductive elements 710 and the contact barrier layer 1310 together form contact pads on which other devices, such as dies, wafers, substrates, or the like, may be connected.
It should be appreciated that the embodiments discussed above allow the simultaneous formation of the contact pads and the redistribution line. The use of a redistribution layer allows the same design to be utilized with different pin-outs and technologies. The conductive bumps with tapered sidewalls also provide a larger bonding interface for wafer and/or die stacking processes.
As illustrated in
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5391917 | Gilmour et al. | Feb 1995 | A |
5426072 | Finnila | Jun 1995 | A |
5510298 | Redwine | Apr 1996 | A |
5646067 | Gaul | Jul 1997 | A |
5767001 | Bertagnolli et al. | Jun 1998 | A |
5998292 | Black et al. | Dec 1999 | A |
6034436 | Iwasaki | Mar 2000 | A |
6184060 | Siniaguine | Feb 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
6417087 | Chittipeddi et al. | Jul 2002 | B1 |
6448168 | Rao et al. | Sep 2002 | B1 |
6451684 | Kim et al. | Sep 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6472293 | Suga | Oct 2002 | B1 |
6498381 | Halahan et al. | Dec 2002 | B2 |
6538333 | Kong | Mar 2003 | B2 |
6599778 | Pogge et al. | Jul 2003 | B2 |
6639303 | Siniaguine | Oct 2003 | B2 |
6664129 | Siniaguine | Dec 2003 | B2 |
6693361 | Siniaguine et al. | Feb 2004 | B1 |
6740582 | Siniaguine | May 2004 | B2 |
6800930 | Jackson et al. | Oct 2004 | B2 |
6841883 | Farnworth et al. | Jan 2005 | B1 |
6873054 | Miyazawa et al. | Mar 2005 | B2 |
6882030 | Siniaguine | Apr 2005 | B2 |
6897125 | Morrow et al. | May 2005 | B2 |
6908856 | Beyne et al. | Jun 2005 | B2 |
6924551 | Rumer et al. | Aug 2005 | B2 |
6962867 | Jackson et al. | Nov 2005 | B2 |
6962872 | Chudzik et al. | Nov 2005 | B2 |
7030481 | Chudzik et al. | Apr 2006 | B2 |
7049170 | Savastiouk et al. | May 2006 | B2 |
7060601 | Savastiouk et al. | Jun 2006 | B2 |
7071546 | Fey et al. | Jul 2006 | B2 |
7111149 | Eilert | Sep 2006 | B2 |
7122912 | Matsui | Oct 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7193308 | Matsui | Mar 2007 | B2 |
7224063 | Agarwala et al. | May 2007 | B2 |
7262495 | Chen et al. | Aug 2007 | B2 |
7297574 | Thomas et al. | Nov 2007 | B2 |
7300857 | Akram et al. | Nov 2007 | B2 |
7335972 | Chanchani | Feb 2008 | B2 |
7355273 | Jackson et al. | Apr 2008 | B2 |
7514775 | Chao et al. | Apr 2009 | B2 |
7528068 | Soejima et al. | May 2009 | B2 |
7772081 | Lin et al. | Aug 2010 | B2 |
7772116 | Akram et al. | Aug 2010 | B2 |
7919835 | Akiyama | Apr 2011 | B2 |
7969016 | Chen et al. | Jun 2011 | B2 |
8034704 | Komai et al. | Oct 2011 | B2 |
8097964 | West et al. | Jan 2012 | B2 |
8174124 | Chiu et al. | May 2012 | B2 |
8264077 | Chiou et al. | Sep 2012 | B2 |
8294261 | Mawatari et al. | Oct 2012 | B2 |
20020084513 | Siniaguine | Jul 2002 | A1 |
20020113321 | Siniaguine | Aug 2002 | A1 |
20020182855 | Agarwala et al. | Dec 2002 | A1 |
20030148600 | Furukawa et al. | Aug 2003 | A1 |
20040048459 | Patti | Mar 2004 | A1 |
20040245623 | Hara et al. | Dec 2004 | A1 |
20050221601 | Kawano | Oct 2005 | A1 |
20050233581 | Soejima et al. | Oct 2005 | A1 |
20060273465 | Tamura | Dec 2006 | A1 |
20060289968 | Sulfridge | Dec 2006 | A1 |
20070032061 | Farnworth et al. | Feb 2007 | A1 |
20070049016 | Hiatt et al. | Mar 2007 | A1 |
20080054444 | Tuttle | Mar 2008 | A1 |
20080136023 | Komai et al. | Jun 2008 | A1 |
20080211106 | Chang et al. | Sep 2008 | A1 |
20090014843 | Kawashita et al. | Jan 2009 | A1 |
20090152602 | Akiyama | Jun 2009 | A1 |
20090269905 | Chen et al. | Oct 2009 | A1 |
20090283898 | Janzen et al. | Nov 2009 | A1 |
20090315184 | Tokitoh | Dec 2009 | A1 |
20100013060 | Lamy et al. | Jan 2010 | A1 |
20100038800 | Yoon et al. | Feb 2010 | A1 |
20100127394 | Ramiah et al. | May 2010 | A1 |
20100171197 | Chang et al. | Jul 2010 | A1 |
20100171226 | West et al. | Jul 2010 | A1 |
20100330798 | Huang et al. | Dec 2010 | A1 |
20110049706 | Huang et al. | Mar 2011 | A1 |
20110068466 | Chen et al. | Mar 2011 | A1 |
20110186990 | Mawatari et al. | Aug 2011 | A1 |
20110233785 | Koester et al. | Sep 2011 | A1 |
20110241217 | Chang et al. | Oct 2011 | A1 |
20110318917 | Yoon et al. | Dec 2011 | A1 |
20130001799 | Chang et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2009004730 | Jan 2009 | JP |
2009147218 | Jul 2009 | JP |
Entry |
---|
Ranganathan, N., et al., “Integration of High Aspect Ratio Tapered Silicon Via for Through-Silicon Interconnection,” Electronic Components and Technology Conference, IEEE, 2008, pp. 859-865. |
Number | Date | Country | |
---|---|---|---|
20100140805 A1 | Jun 2010 | US |