Semiconductor die contact structure and method

Information

  • Patent Grant
  • 11515272
  • Patent Number
    11,515,272
  • Date Filed
    Monday, November 23, 2020
    3 years ago
  • Date Issued
    Tuesday, November 29, 2022
    a year ago
Abstract
A system and method for forming a semiconductor die contact structure is disclosed. An embodiment comprises a top level metal contact, such as copper, with a thickness large enough to act as a buffer for underlying low-k, extremely low-k, or ultra low-k dielectric layers. A contact pad or post-passivation interconnect may be formed over the top level metal contact, and a copper pillar or solder bump may be formed to be in electrical connection with the top level metal contact.
Description
TECHNICAL FIELD

The disclosure relates generally to semiconductor devices and, more particularly, to a system and method for forming contacts to a semiconductor die.


BACKGROUND

Generally, semiconductor dies comprise active devices, metallization layers forming connections to the active devices, and I/O contacts to provide the metallization layers (and active devices) signals and power. The metallization layers generally comprise a series of dielectric layers and metals layers in order to provide all of the required connections between the active devices and the I/O contacts (and between individual active devices). These dielectric layers may be formed from low-k dielectric materials with dielectric constants (k value) between about 2.9 and 3.8, ultra low-k (ULK) dielectric materials, with k values less than about 2.5, or even extra low-k (ELK) dielectric materials with k values between about 2.5 and about 2.9, or some combination of low-k dielectric materials.


However, while these low-k, ULK, and ELK materials may be used to improve the electrical characteristics of the metallization layers and thereby increase the overall speed or efficiency of the semiconductor device, these materials also have a major structural drawback. All of these materials have greater trouble than other dielectric materials handling the stresses applied to them in the semiconductor device. As such, the low-k, ULK, and ELK materials tend to delaminate or crack when too much pressure is applied to the low-K, ELK, and ULK materials. This delamination or cracking can damage or destroy a semiconductor device.


SUMMARY

In accordance with an embodiment, a semiconductor device comprises a substrate with a plurality of dielectric layers and conductive layers. A metal contact is in electrical connection with an uppermost one of the plurality of conductive layers, the metal contact having a thickness greater than about 15,000 Å. A connector is in electrical connection with the metal contact.


In accordance with another embodiment, a semiconductor device comprises a substrate with a plurality of metal layers. A metal contact is in electrical contact with the uppermost one of the plurality of metal layers, wherein the metal contact has a thickness greater than about 15,000 Å. A conductive pillar is in electrical contact with the metal contact.


In accordance with yet another embodiment, a method of manufacturing a semiconductor device comprises providing a substrate and forming a plurality of conductive layers and dielectric layer over the substrate, the dielectric layers located between the conductive layers. A passivation layer is formed over an uppermost one of the plurality of conductive layers. A metal contact is formed in the passivation layer and in connection with the uppermost one of the plurality of conductive layers, the metal contact having a thickness greater than about 15,000 Å. A conductive pillar is formed over the passivation layer, the conductive pillar electrically connected to the metal contact.


In accordance with yet another embodiment, a method of manufacturing a semiconductor device includes: forming a conductive material within a first passivation layer over a semiconductor substrate, the first passivation layer having a height greater than 15,000 Å, the conductive material having a constant composition; depositing a second passivation layer on the first passivation layer, the second passivation layer covering the conductive material; patterning the second passivation layer to form a first opening extending to a top surface of the conductive material; forming a polyimide coating over the second passivation layer; patterning the polyimide coating to expose at least a portion of the conductive material; and forming an external contact in electrical contact with the conductive material, a portion of the external contact being interposed between sidewalls of the polyimide coating.


In accordance with yet another embodiment, a method of manufacturing a semiconductor device includes: performing a plasma enhanced chemical vapor deposition process to deposit a first passivation layer to a thickness of at least 15,000 Å on a conductive layer, the conductive layer being over an ultra low-k dielectric layer; forming an opening through the first passivation layer, the opening exposing a portion of the conductive layer; overfilling the opening with a metallic material; performing a chemical mechanical polish to remove a portion of the metallic material above a top surface of the first passivation layer; forming an aluminum/copper alloy on a remaining portion of the metallic material, a top portion of the aluminum/copper alloy being over a second passivation layer, the second passivation layer being on the first passivation layer, a portion of the second passivation layer being interposed between the metallic material and the aluminum/copper alloy; and forming a conductive connector over the second passivation layer, the conductive connector being in electrical contact with the aluminum/copper alloy.


In accordance with yet another embodiment, A method of manufacturing a semiconductor device, the method including: forming a plurality of metallization layers over a substrate, each metallization layer of the plurality of metallization layers including a dielectric layer and a conductive layer; patterning a first passivation layer to form a first opening, the first opening exposing a surface of a top conductive layer of the plurality of metallization layers; overfilling the first opening with a first metallic material; removing a top portion of the first metallic material extending above a top surface of the first passivation layer, a remaining portion of the first metallic material being a first contact, the first contact having a thickness greater than 15,000 Å and a homogeneous composition; forming a second passivation layer on the first passivation layer, a second opening through the second passivation layer exposing a portion of the first contact; depositing a second metallic material in the second opening; and forming a second contact over the second passivation layer, the second contact electrically connected to the second metallic material.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a semiconductor die comprising a substrate, metallization layers, a first metal contact, and a first passivation layer in accordance with an embodiment;



FIG. 2 illustrates the formation of a second passivation layer and a contact pad in accordance with an embodiment;



FIG. 3 illustrates the formation of a third passivation layer and a mask over the second passivation layer in accordance with an embodiment;



FIGS. 4-5 illustrate the formation of a conductive pillar in accordance with an embodiment;



FIG. 6 illustrates the formation of a post-passivation interconnect structure in accordance with an embodiment;



FIG. 7 illustrates the formation of a contact bump in accordance with an embodiment;



FIGS. 8-9 illustrate an embodiment in which the conductive pillar is formed in contact with the first metal contact; and



FIG. 10 illustrates the benefits associated with the range of thicknesses for the first metal contact.





Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the various embodiments and are not necessarily drawn to scale.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of embodiments are discussed in detail below. It should be appreciated, however, that the disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The disclosure will be described with respect to embodiments in a specific context, namely a conductive pillar structure. The disclosure may also be applied, however, to other contact structures.


With reference now to FIG. 1, there is shown a cross-sectional view of a wafer 100 comprising a substrate 101, metallization layers 103, a first metal contact 105, and a first passivation layer 107. The substrate 101 may comprise bulk silicon, doped or undoped, or an active layer of a silicon-on-insulator (SOI) substrate. Generally, an SOI substrate comprises a layer of a semiconductor material such as silicon, germanium, silicon germanium, SOI, silicon germanium on insulator (SGOI), or combinations thereof. Other substrates that may be used include multi-layered substrates, gradient substrates, or hybrid orientation substrates. Various active devices (not shown) such as transistors, capacitors, resistors, and the like may be formed using any suitable methods either within or else on the surface of the substrate 101.


The metallization layers 103 are formed over the substrate 101 and are designed to connect the various active devices to form functional circuitry. The metallization layers 103 may be formed of alternating dielectric layers (e.g., first dielectric layer 109 and second dielectric layer 111) and conductive layers (e.g., first conductive layer 113 and uppermost second conductive layer 115) and may be formed through any suitable process (such as deposition, damascene, dual damascene, etc.). While there may be four layers alternating dielectric layer and conductive layers shown in FIG. 1, the precise number of dielectric layers and conductive layers located within the metallization layers 103 is dependent upon the overall design of the wafer 100, and may be larger or smaller than four layers (as indicated by the dashed line between the second dielectric layer 111 and the first conductive layer 113).


The dielectric layers (e.g., first dielectric layer 109 and second dielectric layer 111) of the metallization layers 103 may be formed, for example, of low-k dielectric materials with dielectric constants (k value) between about 2.9 and 3.8, ultra low-k (ULK) dielectric materials with k values less than about 2.5, extra low-k (ELK) dielectric materials with k values between about 2.5 and about 2.9, some combination of low-k dielectric materials, or the like. With the decrease in k values, the dielectric layers in the metallization layers 103 become more fragile and become subject to delamination and cracking.


The first passivation layer 107 may be formed over the uppermost conductive layer 115 and may comprise a dielectric material such as an oxide or silicon nitride, although other suitable dielectrics, such as a high-k dielectric, or any combination of these materials, may alternatively be used. The first passivation layer 107 may be formed using a plasma enhanced chemical vapor deposition (PECVD) process, although any other suitable process may alternatively be used. The first passivation layer 107 may have a thickness of between about 0.6 μm and about 1.4 μm, such as about 1 μm.


The first metal contact 105 is located in the first passivation layer 107. The first metal contact 105 serves as the contact between the uppermost conductive layer 115 and an exterior contact pad (described below with reference to FIG. 2). The first metal contact 105 may comprise a hard material such as copper, although other hard materials, such as tungsten, aluminum or copper alloy may alternatively be used. The first metal contact 105 may be formed using a damascene or dual damascene process which may include a copper overfill into an opening in the first passivation layer 107 followed by the removal of the excess copper through a process such as chemical mechanical polishing (CMP). However, any suitable material (such as, e.g., aluminum) and any suitable process (such as deposition and etching) may alternatively be used to form the first metal contact 105.


The first metal contact 105 may be formed to have a thickness that allows the first metal contact 105 to act as a buffer for the dielectric layers (e.g., first dielectric layer 109 and second dielectric layer 111) located in the metallization layers 103. As such, the first metal contact 105 may be formed to have a thickness of greater than about 15,000 Å, such as about 20,000 Å. By having the first metal contact 105 be made of a hard metal such as copper in this range of thicknesses, the first metal contact 105 can provide a better buffer for low-k dielectric layers, ELK dielectric layers, and/or ULK dielectric layers located in the metallization layers 103. This extra buffering allows more robust processing, transporting, and usage without the dielectric layers in the metallization layers 103 being damaged through, among other things, delamination or cracking.



FIG. 2 illustrates the formation of a second passivation layer 201 and a contact pad 203. The second passivation layer 201 may be formed over the first passivation layer 107 and the first metal contact 105 so as to protect the first metal contact 105. The second passivation layer 201 may be formed in a similar fashion and from similar materials as the first passivation layer 107 discussed above with reference to FIG. 1, or, alternatively, the first passivation layer 107 and second passivation layer 201 may be formed from materials different from each other. Once formed, the second passivation layer 201 may be patterned through a suitable masking and removal process (such as a photolithographic mask and etching process) to allow for the formation of the contact pad 203 in electrical connection with the first metal contact 105.


The contact pad 203 provides a connection from the circuitry of the wafer 100 (including the active devices and the metallization layers 103), through the first metal contact 105, and to other devices (not shown) off the wafer 100. The contact pad 203 may be an aluminum/copper alloy and may be formed by forming an initial layer of the aluminum/copper alloy over the second passivation layer 201 and in electrical contact with the first metal contact 105. Once the initial layer of aluminum/copper alloy has been formed, a suitable technique such as photolithography and etching may then be used to pattern the aluminum/copper alloy to form the contact pad 203 as illustrated in FIG. 2. The contact pad 203 may be formed to have a thickness of between about 10,000 Å and about 50,000 Å, such as about 25,000 Å.


However, as one of skill in the art will realize, the above described process for forming the contact pad 203 is merely one material and method of formation. Other suitable materials may be utilized, including (but not limited to) aluminum, gold, silver, nickel, copper, tungsten, titanium, tantalum, compounds thereof, alloys thereof, multiple layers thereof, composites thereof, and combinations thereof, for example. Further, different materials may require different methods of formation, such as sputtering or even a dual damascene process. All of these materials and methods of formation may alternatively be used, and each is fully intended to be included within the scope of the present invention.



FIG. 3 illustrates the formation of a third passivation layer 301, an underbump metallization (UBM) 302, and a mask 303 over the second passivation layer 201. The third passivation layer 301 may be formed over the second passivation layer 201 and the contact pad 203 in order to protect the second passivation layer 201 and contact pad 203 from physical and environmental damage during subsequent processing and other environments the wafer 100 may encounter. The third passivation layer 301 may be formed of similar materials and through similar processes as the first passivation layer 107 and second passivation layer 201 (described above with reference to FIGS. 1 and 2, respectively), although the third passivation layer 301 may alternatively be formed of different materials than the first passivation layer 107 and the second passivation layer 201.


Once the third passivation layer 301 has been formed over the second passivation layer 201 and the contact pad 203, an opening may be formed through the third passivation layer 301 in order to expose a portion of the contact pad 203 for further connections. The opening may be formed through a suitable masking and removal process, such as a suitable photolithographic masking and etching process. The disclosed patterning process discussed, however, is merely intended as a representative process, and any other suitable patterning process may alternatively be utilized to expose a portion of the contact pad 203.


At this stage an optional polyimide (PI) coating 304 may be utilized to protect the third passivation layer 301. The PI coating 304 may be formed by coating the third passivation layer 301 with an insulating material, such as polyimide, polybenzoxazole (PBO), or epoxy, to a thickness of between about 2.5 μm and about 12 μm, such as about 4 μm. Alternatively, the PI coating 304 may be formed through either spraying a polyimide solution or by immersing the third passivation layer 301 into a polyimide solution. Any suitable method of formation may be utilized. The PI coating 304 may be patterned through a suitable masking and etching process to expose those portions of the contact pad 203 already exposed by the third passivation layer 301 in order to allow for connections to be made to the underlying contact pad 203.


Once the third passivation layer 301 has been patterned, the UBM 302 may be formed in contact with the contact pad 203. The UBM 302 may comprise a layer of a titanium and copper alloy. However, one of skill in the art will recognize that there are many suitable arrangements of materials and layers, such as an arrangement of titanium/copper/nickel, an arrangement of chrome/chrome-copper alloy/copper/gold, an arrangement of titanium/titanium tungsten/copper, or an arrangement of copper/nickel/gold, that are suitable for the formation of the UBM 302. Any suitable materials or layers of material that may be used for the UBM 302 are fully intended to be included within the scope of the current application.


The UBM 302 may be created by forming each layer conformally over the PI coating 304 and third passivation layer 301 and along the interior of the opening. The forming of each layer may be performed using a sputtering, CVD, or plating process, although other processes of formation, such as an evaporation or PECVD process, may alternatively be used depending upon the desired materials. The UBM 302 may be formed to have a thickness of between about 0.1 μm and about 2 μm, such as about 0.5 μm.


Once the third passivation layer 301, PI coating 304 and UBM 302 have been formed, the mask 303 may be formed over the UBM 302. In an embodiment, the mask 303 may be a dry film, which may include an organic material such as Ajinimoto buildup film (ABF). Alternatively, the mask 303 may be formed of a photoresist material. Once formed, the mask 303 may then be patterned to form a conductive pillar opening 305 to the UBM 302 over the contact pad 203.


In an embodiment, the conductive pillar opening 305 is formed to the desired size and shape of a subsequent conductive pillar 400 to be formed within the conductive pillar opening 305 (described below with respect to FIG. 4). The conductive pillar opening 305 may have a width of between about 10 μm and about 200 μm in width, such as about 80 m, and a depth to the bottom surface of the third passivation layer 301 of between about 3,000 Å and about 60,000 Å, such as about 40,000 Å.



FIG. 4 illustrates the selective filling of the conductive pillar opening 305 (see FIG. 3) with a conductive pillar 400. The conductive pillar 400 serves as an electrical connection between the contact pad 203 and devices of the wafer 100, thereby allowing signals and power to be routed to the metallization layers 103 and, eventually, to the active devices (not shown) located on the substrate 101.


The conductive pillar 400 may be formed in contact with the underlying UBM 302, and may be formed from a conductive material. In an embodiment, the conductive material may include metals such as copper or copper alloys, although other metals, such as aluminum, silver, gold, combinations thereof, and the like, may also be used. Conductive pillar 400 may be formed through a suitable process such as electrical plating, and may have a thickness less than about 60 μm, or even between about 30 μm and about 50 μm. Once the conductive pillar 400 has been formed, an optional conductive barrier layer (not shown), formed from, e.g., a nickel-containing layer, a copper-containing layer or a tin-containing layer, may be formed over the conductive pillar 400.


Next, as shown in FIG. 5, the mask 303 (see FIGS. 3 and 4) is removed using a suitable removal process, the UBM 302 is patterned, and a protective layer 501 is formed over the conductive pillar 400. The removal of the mask 303 leaves behind the conductive pillar 400, in the shape of the conductive pillar opening 305 (see FIG. 3). Once the mask 303 has been removed, portions of the UBM 302 may be removed through a suitable photolithographic masking and etching process to remove the undesired material and to leave the UBM 302 as a connection between the metal contact 203 and the conductive pillar 400.


After the mask 303 has been removed and the UBM 302 has been patterned, the protective layer 501 may be formed along the sidewalls of the conductive pillar 400. The protective layer 501 covers and protects the underlying conductive pillar 400 from environmental or physical damage during subsequent processing or usage. The protective layer 501 may be formed from tin, and may be applied to the sidewalls using an immersion plating process to a thickness of between about 500 Å and about 5,000 Å, such as about 2,000 Å. However, these materials and processes are meant to be exemplary only, as other suitable methods and materials may alternatively be used. For example, the protective layer 501 may be formed of a nickel palladium alloy through a process such as electroless palladium immersion gold (ENEPIG), or simply through an electroless nickel immersion gold (ENIG) process.



FIG. 6 illustrates another embodiment in which the contact pad 203 (see FIG. 5) is replaced with a post-passivation interconnect (PPI) structure 601 that extends along the second passivation layer 201. The PPI 601 allows the conductive pillar 400 to be electrically connected to the first metal contact 105 to be placed in any desired location on the wafer 100, instead of limiting the location of the conductive pillar 400 to the region directly over the first metal contact 105.


In this embodiment the PPI 601 is formed by initially forming a seed layer (not shown) of a titanium copper alloy through a suitable formation process such as CVD or sputtering. A photoresist (not shown) is formed to cover the seed layer, and the photoresist is then patterned to expose those portions of the seed layer that are located where the PPI 601 is desired to be located.


Once the photoresist is formed and patterned, a conductive material 603, such as copper, may be formed on the seed layer through a deposition process such as plating. The conductive material 603 may be formed to have a thickness of between about 1 μm and about 10 μm, such as about 5 μm. However, while the material and methods discussed are suitable to form the conductive material 603, these materials are merely exemplary. Any other suitable materials, such as AlCu or Au, and any other suitable processes of formation, such as CVD or PVD, may alternatively be used to form the conductive material 603.


Once the conductive material 603 has been formed, the photoresist may be removed through a suitable removal process. Additionally, after the removal of the photoresist, those portions of the seed layer that were covered by the photoresist are removed through, for example, a suitable etch process using the conductive material 603 as a mask.


After the removal of the seed layer, the third passivation layer 301, the PI coating 304, the UBM 302, the conductive pillar 400, and the protective layer 501 may be formed over any desired portion of the PPI 601 while remaining in contact with the first metal contact 105. In this embodiment, the third passivation layer 301, the PI coating 304, the UBM 302, the conductive pillar 400, and the protective layer 501 may be formed through any suitable process such as the ones described above with reference to FIGS. 3-6. However, the use of the PPI 601 allows the conductive pillar 400 to be placed at any location desired for reasons such as optimization, placement, or any other reason.



FIG. 7 illustrate another embodiment in which the conductive pillar 400 (see, e.g., FIG. 6) is replaced with a contact bump 701. In this embodiment, after the UBM 302 and the mask 303 have been formed, the contact bump 701 is formed in the opening of the mask 303. The contact bump 701 may comprise a material such as tin, or other suitable materials, such as silver, lead-free tin, or copper. In an embodiment in which the contact bump 701 is a tin solder bump, the contact bump 701 may be formed by initially forming a layer of tin through such commonly used methods such as electroplating, evaporation, printing, etc., to a thickness of about 100 μm. Once the contact bump 701 has been formed in the opening of the mask 303, the mask 303 is removed using a suitable removal process such as stripping, and the UBM 302 may be patterned as described above with respect to FIG. 5A. Once the mask 303 has been removed, a re-flow may be performed, so that the contact bump 701 forms a rounded top surface



FIGS. 8-9 illustrate yet another embodiment in which the contact pad 203 (see FIGS. 2-6) is excluded and the conductive pillar 400 is formed in contact with the first metal contact 105. By forming the conductive pillar 400 in contact with the first metal contact 105, the contact pad 203 may be eliminated, thereby simplifying the overall process of manufacturing the wafer 100.


Looking initially at FIG. 8, to form the conductive pillar 400 in contact with the first metal contact 105, the first metal contact 105 and second passivation layer 201 are formed similar to the formations described above with reference to FIG. 1 and FIG. 2, with the second passivation layer 201 being patterned to form an opening that exposes a portion of the first metal contact 105. Then, instead of forming the contact pad 203, the PI coating 304 is formed over the second passivation layer 201 and in the trench to also cover the first metal contact 105.


Once formed, the PI coating 304 is removed from the bottom of the trench in order to expose an upper surface of the first metal contact 105. This removal may be performed using a suitable masking and removal process, such as a photolithographic mask and etching process. Additionally, while the removal process may optionally remove the PI coating 304 from the sidewalls of the trench, in an embodiment the PI coating 304 is not removed from the sidewalls of the trench so as to isolate the subsequently formed conductive pillar 400.



FIG. 9 illustrates the formation of the conductive pillar 400 and the protective layer 501 over the PI coating 304, with the conductive pillar 400 in contact with the first metal contact 105. The conductive pillar 400 may be formed through processes similar to the process described above with respect to FIGS. 3-5. In this embodiment, however, the conductive pillar 400 is formed in contact with the first metal contact 105 instead of the contact pad 203 as illustrated in previous FIGS. 2-6, allowing for a less resistive flow from the conductive pillar 400 to the metallization layers 103.



FIG. 10 illustrates the unexpected benefits that may be obtained using embodiments described herein over a range of thicknesses for the first metal contact 105. As illustrated, in an embodiment in which a 5/3 μm Cu/Ni plating UBM for a lead free solder bump with an aluminum contact pad of about 14,000 Å, as the thickness of the first metal contact 105 is increased along the x-axis into the critical range described above with respect to FIG. 1, the normalized stresses on an underlying ELK dielectric layer is reduced so far that the normalized stress is below a failing point of the underlying ELK dielectric layer. Additionally, FIG. 10 also illustrates that, in an embodiment in which an aluminum contact pad about 14,000 Å thick is utilized, increasing the thickness of the top metal can reduce the normalized ELK stresses below the fail point. As such, a semiconductor die can better withstand the hazards of processing, transportation, and use with less failure and more reliability.


Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many different materials and processes may be used to form the conductive pillar. All of these materials and processes are fully intended to be included within the disclosure.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A method of manufacturing a semiconductor device, the method comprising: forming a conductive material within a first passivation layer over a semiconductor substrate, the first passivation layer having a height greater than 15,000 Å, the conductive material having a constant composition;depositing a second passivation layer on the first passivation layer, the second passivation layer covering the conductive material;patterning the second passivation layer to form a first opening extending to a top surface of the conductive material;forming a conductive contact in the first opening;forming a polyimide coating over the conductive contact and the second passivation layer;patterning the polyimide coating to expose at least a portion of the conductive contact; andforming an external contact in electrical contact with the conductive material, a portion of the external contact being interposed between sidewalls of the polyimide coating.
  • 2. The method of claim 1, wherein the conductive contact comprises a saddle profile in a cross section view.
  • 3. The method of claim 1 further comprising forming an underbump metallization under the external contact, the underbump metallization comprising a U shape in a cross section view.
  • 4. The method of claim 1 further comprising forming the first passivation layer over the semiconductor substrate to a thickness in a range of 0.6 μm to 1.4 μm.
  • 5. The method of claim 4, wherein forming the first passivation layer comprises a plasma enhanced chemical vapor deposition process.
  • 6. The method of claim 1, wherein forming the polyimide coating comprises spraying a polyimide solution.
  • 7. The method of claim 1, wherein forming the polyimide coating comprises immersing the second passivation layer into a polyimide solution.
  • 8. The method of claim 1, wherein the polyimide coating is formed to a thickness in a range of 2.5 μm to 12 μm.
  • 9. A method of manufacturing a semiconductor device, the method comprising: performing a plasma enhanced chemical vapor deposition process to deposit a first passivation layer to a thickness of at least 15,000 Å on a conductive layer, the conductive layer being over an ultra low-k dielectric layer;forming an opening through the first passivation layer, the opening exposing a portion of the conductive layer;overfilling the opening with a metallic material;performing a chemical mechanical polish to remove a portion of the metallic material above a top surface of the first passivation layer;forming an aluminum/copper alloy on a remaining portion of the metallic material, a top portion of the aluminum/copper alloy being over a second passivation layer, the second passivation layer being on the first passivation layer, a portion of the second passivation layer being interposed between the metallic material and the aluminum/copper alloy; andforming a conductive connector over the second passivation layer, the conductive connector being in electrical contact with the aluminum/copper alloy.
  • 10. The method of claim 9, wherein the metallic material comprises copper.
  • 11. The method of claim 9, wherein the aluminum/copper alloy comprises a concave upper surface.
  • 12. The method of claim 9, wherein the aluminum/copper alloy has a thickness in a range of 10,000 Å and 50,000 Å.
  • 13. The method of claim 9, wherein the conductive connector has a thickness in a range of 30 μm to 50 μm.
  • 14. The method of claim 9 further comprising forming a barrier layer over the conductive connector.
  • 15. A method of manufacturing a semiconductor device, the method comprising: forming a plurality of metallization layers over a substrate, each metallization layer of the plurality of metallization layers comprising a dielectric layer and a conductive layer;patterning a first passivation layer to form a first opening, the first opening exposing a surface of a top conductive layer of the plurality of metallization layers;overfilling the first opening with a first metallic material;removing a top portion of the first metallic material extending above a top surface of the first passivation layer, a remaining portion of the first metallic material being a first contact, the first contact having a thickness greater than 15,000 Å and a homogeneous composition;forming a second passivation layer on the first passivation layer, a second opening through the second passivation layer exposing a portion of the first contact;depositing a second metallic material in the second opening; andforming a second contact over the second passivation layer, the second contact electrically connected to the second metallic material.
  • 16. The method of claim 15, wherein the second metallic material has a smaller width than the first contact.
  • 17. The method of claim 15 further comprising forming a layer comprising copper on the second contact, the layer comprising a saddle shape in a cross sectional view.
  • 18. The method of claim 15 further comprising placing a third passivation layer over the second passivation layer, the third passivation layer extending over a top surface of the second metallic material.
  • 19. The method of claim 18 further comprising forming a conductive layer over the third passivation layer, the conductive layer being in physical contact with the second metallic material.
  • 20. The method of claim 19, wherein the conductive layer comprises titanium.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 16/225,969, entitled, “Semiconductor Die Contact Structure Method,” filed on Dec. 19, 2018 (now U.S. Pat. No. 10,847,459, issuing Nov. 24, 2020), which is a continuation of U.S. patent application Ser. No. 15/395,991, entitled, “Semiconductor Die Contact Structure Method,” filed on Dec. 30, 2016, now U.S. Pat. No. 10,163,785, issued on Dec. 25, 2018, which is a continuation of U.S. patent application Ser. No. 14/604,503, entitled, “Semiconductor Die Contact Structure and Method,” filed on Jan. 23, 2015, now U.S. Pat. No. 9,536,811, issued on Jan. 3, 2017, which is a divisional of U.S. patent application Ser. No. 12/846,214, entitled “Semiconductor Die Contact Structure and Method,” filed on Jul. 29, 2010, now U.S. Pat. No. 9,024,431, issued on May 5, 2015, which claims the benefit of U.S. Provisional Application No. 61/256,187, entitled “Semiconductor Die Contact Structure and Method,” filed on Oct. 29, 2009, which applications are incorporated herein by reference.

US Referenced Citations (82)
Number Name Date Kind
3733685 Kauppila May 1973 A
5262351 Bureau Nov 1993 A
5943597 Kleffner et al. Aug 1999 A
6218281 Watanabe et al. Apr 2001 B1
6229220 Saitoh et al. May 2001 B1
6469370 Kawahara et al. Oct 2002 B1
6578754 Tung Jun 2003 B1
6592019 Tung Jul 2003 B2
6693361 Siniaguine et al. Feb 2004 B1
6818545 Lee et al. Nov 2004 B2
6853076 Datta et al. Feb 2005 B2
6917119 Lee et al. Jul 2005 B2
6956292 Fan et al. Oct 2005 B2
6977213 Tsai et al. Dec 2005 B1
7064436 Ishiguri et al. Jun 2006 B2
7095116 Kelkar et al. Aug 2006 B1
7288429 Yaung et al. Oct 2007 B2
7312535 Takewaki et al. Dec 2007 B2
7348673 Kikuchi et al. Mar 2008 B2
7355279 Ke et al. Apr 2008 B2
7391112 Li et al. Jun 2008 B2
7397121 Chou et al. Jul 2008 B2
7569475 Yang et al. Aug 2009 B2
7598613 Tanida et al. Oct 2009 B2
7973418 Alvarado et al. Jul 2011 B2
8072070 Lee et al. Dec 2011 B2
8072073 Kikuchi et al. Dec 2011 B2
8198133 Daubenspeck et al. Jun 2012 B2
8288871 Shieh et al. Oct 2012 B1
8294279 Chen et al. Oct 2012 B2
8362588 Lee et al. Jan 2013 B2
8471388 Lin et al. Jun 2013 B2
9190348 Chen et al. Nov 2015 B2
9472521 Chuang et al. Oct 2016 B2
9484317 Chen et al. Nov 2016 B2
9536811 Liu Jan 2017 B2
10504856 Chen et al. Dec 2019 B2
20010040290 Sakurai et al. Nov 2001 A1
20020132408 Ma et al. Sep 2002 A1
20040253801 Lin Dec 2004 A1
20050142856 Keum Jun 2005 A1
20050277283 Lin et al. Dec 2005 A1
20060097404 Cho May 2006 A1
20060220259 Chen et al. Oct 2006 A1
20060263727 Lee et al. Nov 2006 A1
20070045855 Lo et al. Mar 2007 A1
20070205520 Chou et al. Sep 2007 A1
20070232056 Saitou et al. Oct 2007 A1
20080006904 Mun Jan 2008 A1
20080150134 Shinkai et al. Jun 2008 A1
20080191366 Hu et al. Aug 2008 A1
20080211105 Lin et al. Sep 2008 A1
20080230877 Chung Sep 2008 A1
20080251927 Zhao et al. Oct 2008 A1
20080308934 Alvarado et al. Dec 2008 A1
20090001567 Shih et al. Jan 2009 A1
20090140420 Farooq et al. Jun 2009 A1
20090149016 Park et al. Jun 2009 A1
20090194889 Jeng et al. Aug 2009 A1
20100044860 Haba et al. Feb 2010 A1
20100140760 Tam et al. Jun 2010 A1
20100187687 Liu et al. Jul 2010 A1
20100244263 Lin Sep 2010 A1
20100246152 Lin et al. Sep 2010 A1
20110026232 Lin et al. Feb 2011 A1
20110031581 West Feb 2011 A1
20110037169 Pagaila Feb 2011 A1
20110095415 Topacio et al. Apr 2011 A1
20110101520 Liu et al. May 2011 A1
20110121438 Hart May 2011 A1
20120049343 Schulze et al. Mar 2012 A1
20130062755 Kuo et al. Mar 2013 A1
20130147037 Shen Jun 2013 A1
20130299966 Kumar et al. Nov 2013 A1
20130320524 Chuang et al. Dec 2013 A1
20140291838 Chen et al. Oct 2014 A1
20150132941 Liu May 2015 A1
20160071812 Chen et al. Mar 2016 A1
20170047298 Chen et al. Feb 2017 A1
20170110424 Liu et al. Apr 2017 A1
20190122979 Liu et al. Apr 2019 A1
20200058601 Chen et al. Feb 2020 A1
Foreign Referenced Citations (17)
Number Date Country
101504935 Aug 2009 CN
H01187948 Jul 1989 JP
5335313 Dec 1993 JP
2000228420 Aug 2000 JP
2001257226 Sep 2001 JP
2002313994 Oct 2002 JP
2004296621 Oct 2004 JP
2006032600 Feb 2006 JP
2007258438 Oct 2007 JP
2007273624 Oct 2007 JP
2008016514 Jan 2008 JP
2008182059 Aug 2008 JP
2009071045 Apr 2009 JP
2009188288 Aug 2009 JP
20110051136 May 2011 KR
444298 Jul 2001 TW
200901413 Jan 2009 TW
Related Publications (1)
Number Date Country
20210074627 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61256187 Oct 2009 US
Divisions (1)
Number Date Country
Parent 12846214 Jul 2010 US
Child 14604503 US
Continuations (3)
Number Date Country
Parent 16225969 Dec 2018 US
Child 17101368 US
Parent 15395991 Dec 2016 US
Child 16225969 US
Parent 14604503 Jan 2015 US
Child 15395991 US