1. Field of the Invention
This invention relates generally to the dense packaging of electronic circuitry through the stacking of printed circuit boards (PCB) populated with components, and through the stacking of integrated circuit (IC) chips (aka microcircuits or die). More specifically, the present invention relates to a method making a stack of integrated circuits (ICs) from prepackaged ICs.
2. Description of The Related Art
Of particular interest in the electronic design and manufacturing art, is the high-density packaging of electronic circuitry to yield designs of increased capability. Existing methods for “stacking” electronic circuitry are continuously evolving and improving for better efficiency and reliability.
An early effort to provide a 3-D electronics stack combining different functions, different area electronic chips is illustrated by Kravitz et al., U.S. Pat. No. 3,370,203. That patent shows stacked “frames” having dimensions “such that integrated circuits which have slightly different dimensions can by mounted thereon”, explaining that “integrated circuits from different sources of supply are often advantageously incorporated in a single module.” Over the last decade and longer, Irvine Sensors Corporation, the assignee of the present invention, has been developing high-density electronic stacking methods. An early process was termed “Silicon Die Stacking,” That method stacked ICs as “bare die” in the form of whole wafers. The wafer stacks were subsequently metalized for electrical interconnection, and the wafer stacks were diced to form connectable die-stacks.
The bare Silicon Die Stacking techniques were problematic for several reasons. Primarily troublesome, is that whole wafers are difficult to obtain because the manufacturers do not want to reveal their yield or expose their built-in test structures that could facilitate reverse engineering of their circuitry. Additionally, a wafer may contain a quantity of defective die, and comprehensive testing procedures are expensive making it even more difficult to purchase pre-tested wafers or bare die. This problem in the field is referred to as obtaining Known Good Die (KGD). Irvine Sensors Corp. developed an improved technology termed “Neo-Die Stacking,” however this method involved stacking bare die, which did not alleviate the problem of obtaining KGD.
Integrated circuit manufactures make readily available prepackaged encapsulated silicon chips that are pre-tested and therefore known good die. Prepackaged chips, also referred to as Plastic Encapsulated Microcircuits (PEMs), can inexpensively be further tested under temperature ranges and sorted. However, stacking prepackaged silicon chips is impractical because they cannot be configured densely enough to meet the requirements of today's applications. Accordingly, Irvine Sensor's Corp. developed further technology which combined old and new methods to reprocess, stack and interconnect pre-packaged silicon chips. Irvine Sensor's has disclosed some of this technology in the published U.S. patent application Ser. No. 09/770,864 entitled “A Stackable Microcircuit Layer Formed From a Plastic Encapsulated Microcircuit and Method of Making the Same.” The content of this published patent application is hereby incorporated by reference in its entirety.
The foregoing patent application details modification and reprocessing of PEMs to form smaller, very thin stackable layers. In one particular embodiment, the PEM is more specifically a memory chip readily available in a plastic encapsulated thin small outline package (TSOP). In brief, the process uses wafer grinding equipment to remove most of the encapsulant material from the top surface of the TSOP, down to the cross section of a gold ball used for electrical connection of the bare silicon. This step leaves a thin layer of encapsulant on the silicon surface, which serves as the insulating surface for metal trace deposition. Grinding is further performed to remove encapsulant from the bottom of the TSOP and to thin the die itself. During this backside grinding step, the leads are also removed. A final dicing step minimizes the layer footprint, while leaving enough of the original TSOP encapsulant around the die edges to provide and insulating surface for bus metalization. The process yields a “stackable layer” that may be stacked with “neo-layers” that are created from bare die.
Although the abovementioned process is largely effective, further methods are needed, as described in the present invention, to balance size and density with manufacturing cost and component availability which can be optimally employed to create a compact, low cost mini-computer.
In the first aspect, the invention may be regarded as a method of making a stacked assembly of integrated circuits (ICs) comprising the steps of: providing a first encapsulated prepackaged semiconductor chip having internal wire bonds, an encapsulant, and lead material extending from the sides of the chip, removing the lead material and at least part of the encapsulant from the sides, exposing the wire bonds, providing a second encapsulated prepackaged semiconductor chip, one or more internal wire bonds and an encapsulant, exposing the wire bonds of the second encapsulated prepackaged semiconductor chip, stacking the second prepackaged semiconductor chip and subsequent chips onto the first prepackaged semiconductor chip, interconnecting the wire bonds of the stacked semiconductor chips to form electrical connections between all of the stacked chips; and metalizing the electrical connections between the stacked chips to form electrical buses to complete a stacked assembly of ICs.
Additional steps according to this method of the invention include: applying solder balls to the IC stack, mounting the IC stack to a printed circuit board (PCB) with the solder balls, and underfilling the IC stack and PCB to structurally stabilize the IC stack and the PCB. In a separate embodiment, the first and second prepackaged semiconductor chips each have two bare semiconductor chips within each package, the bare semiconductor chips separated by an interposer layer and each bare semiconductor chip has one or more wire bonds. The interposer layer is used to dissipate heat from the stacked IC assembly.
In a second aspect, the invention may be regarded as a method of making a stacked integrated circuit (IC) assembly comprising the steps of: providing a first encapsulated prepackaged semiconductor chip, soldering the first encapsulated prepackaged semiconductor chip to a intermediate PCB, providing a second encapsulated prepackaged semiconductor chip, soldering the second encapsulated prepackaged semiconductor chip to a large PCB, soldering the second encapsulated prepackaged semiconductor chip to the intermediate PCB, attaching a plurality of lead frames to the large PCB.
Additional steps to this aspect of the invention include: providing subsequent encapsulated prepackaged semiconductor chips, and soldering the chips to the stacked IC assembly to make the assembly the desired size.
In a third aspect of the invention, the invention may be regarded as a high-density stacked printed circuit board (PCB) assembly comprising: a plurality of PCBs having one or more through holes extending from the topside to the bottom side, a plurality of discrete components mounted to each PCB on one or more sides, one or more metal conductors extending through the through holes to electrically connect each PCB, one or more encapsulants to occupy the volume between each PCB and each discrete components, and one or more interposer layers arranged within the assembly to dissipate heat generated within the assembly.
In a forth aspect of the invention, another high-density stacked printed circuit board (PCB) assembly is disclosed and claimed. It comprises: a plurality of PCBs having one or more sides, a plurality of discrete components mounted to each PCB on one or more sides, one or more encapsulants to occupy the volume between each PCB and each discrete components, one or more bus bars extending down one or more sides of the plurality of PCBs to electrically connect each PCB, and one or more interposer layers arranged within the assembly to dissipate heat generated within the assembly.
In a fifth aspect, the invention may be regarded as a method of making a stacked assembly of integrated circuits (ICs) from a plurality of encapsulated prepackaged semiconductor chips wherein the resultant assembly has the same footprint as the original plurality of encapsulated prepackaged semiconductor chips comprising the steps of: providing a first encapsulated prepackaged semiconductor chip that conducts electrical signals having one or more lateral edges, soldering the first encapsulated prepackaged semiconductor chip to a PCB interposer layer to form a first subassembly having solder connections, routing the signals to the one or more lateral edges using the PCB interposer layer, providing a second prepackaged semiconductor chip that conducts electrical signals to one or more lateral edges, the chip having a top side and a bottom side, soldering the second prepackaged semiconductor chip to a second PCB interposer layer to form a second subassembly having solder connections, soldering a ball grid array pattern to the bottom side of the second prepackaged semiconductor chip, stacking the first and second subassemblies, and routing electrical signals from the first and second subassemblies to the ball grid array pattern to form the stacked assembly of integrated circuits wherein the assembly has the same footprint as the plurality of encapsulated prepackaged chips. An additional step includes underfilling the solder connections of the first and second subassemblies with epoxy material.
In a sixth aspect, the invention may be regarded as a compact low cost mini-computer comprising a memory stack having one or more lateral edges that includes (a) one or more bus bars extending down the lateral edges of the memory stack, (b) a plurality of prepackaged semiconductor chips each having leads and wire bonds for electrical conductivity wherein the leads are removed, and wherein the wire bonds are connected directly to the one or more bus bars, (c) a top PCB layer connected to the plurality of prepackaged semiconductor chips and connected to the one or more bus bars, (d) a bottom PCB layer connected to the plurality of prepackaged semiconductor chips and connected to the one or more bus bars, and (e) a transceiver layer having one or more transceiver chips mounted to the top PCB layer. In addition to the memory stack, the mini-computer comprises a processor stack having one or more lateral edges and including: (a) a programmable logic device (PLD) layer mounted to a printed circuit board (PCB) layer, (b) a processor layer mounted to the PLD layer, (c) a synchronous dynamic random access memory (SDRAM) layer mounted to the processor layer, (d) a boot flash layer mounted to the SDRAM layer, (e) a discrete component layer having a plurality of crystals, capacitors, and resistors, the discrete component layer mounted to the boot flash layer, and (e a large PCB board electrically connecting the flash stack and the processor stack to form the minicomputer.
Finally, in a seventh aspect, the invention may be regarded as a method of manufacturing a memory stack (static random access memory, SRAM type, for example) array comprising the steps of: fabricating and testing a predetermined quantity of printed circuit boards (PCBs) having two sides for a predetermined quantity of memory layers for a predetermined quantity of memory stack subassemblies for the memory stack array of a predetermined size, soldering one or more interdigitated capacitors to each side of each PCB, soldering a memory to each side of each PCB using a ball grid array (BGA) pattern, attaching copper shims to each memory, attaching copper sheets to each copper shim to dissipate heat forming a memory layer, stacking multiple memory layers side-by-side to form one memory stack subassembly, the subassembly having voided spaces, encapsulating the voided spaces with epoxy resin, metalizing the memory stack subassembly for electrical interconnection between multiple memory layers, and stacking multiple memory stack subassemblies to form the memory stack array
The objects, advantages and features of the present invention will become more apparent to those skilled in the art from the following detailed description, when read in conjunction with the accompanying drawings, wherein:
a is a sectional view of an encapsulated prepackaged semiconductor chip 11 with leads 17 exiting on two sides;
b is a sectional view of an intermediate step of a method embodied by the present invention wherein encapsulated prepackaged semiconductor chips 11 are stacked on top of one another;
c is a sectional view of a stacked assembly of integrated circuits (ICs) wherein the sides of the assembly are metalized to form an electrical bus.
a is a sectional view of an encapsulated prepackaged semiconductor chip 11 that contains two bare semiconductor chips 22 separated by an interposer layer 24;
b is a sectional view of an intermediate step of a method embodied by the present invention wherein encapsulated prepackaged semiconductor chips 11, each containing two bare semiconductor chips, are stacked on top of one another;
c is a sectional view of the stacked encapsulated prepackaged semiconductor chips of
a is a top view of the low-cost, compact mini-computer 900 of the present invention;
b is a profile of the minicomputer 900 with viewable interior of a processor stack 950 and a memory stack 910;
a is a top view of a PLD layer 951 of the present invention;
b is a profile of the PLD layer 951;
a is a top view of a processor layer 953 of the present invention;
b is a profile of the processor layer 953;
a is a top view of a SDRAM layer 954 of the present invention;
b is a profile of the SDRAM layer 954;
a is a top view of a boot flash layer 955 of the present invention;
b is a profile of the boot flash layer 955:
a and 15b are top and profile views of a discrete component layer 956 of the present invention, respectively;
a and 17b are top and profile views of a discrete component layer 915 of the present invention;
a through c are a side view (end plate cut away), an end view, and a bottom view, respectively, of a SRAM stack subassemblies of the present invention;
a is top view of a SRAM stack subassemblies;
b is an exploded top view of SRAM stack subassemblies;
Referring initially to
a through 2c shows the same process as in
Large PCBs can contain repeated patterns of a portion of a circuit for manufacturing multiple assemblies 30, and some PCBs 32 contain components 34 on both sides. In a method of the invention, the PCBs 32 are populated with components 34, on one or two sides, using surface mount soldering and a high-temperature solder. Several PCBs of different designs, each containing part of the entire circuit, are stacked together, and all of the space between PCBs is filled with an encapsulant material 36. The assembly 30 is further processed to add plated through holes 38 between PCBs 32 and to form a final metal pattern on the exterior boards. As a general design parameter, the through hole 38 diameter should be approximately equal to about 10% of the board thickness. The assembly 30 may then be cut into individual stacked circuits. Additionally, further components and connectors can be soldered to the exterior boards using standard solder. The final step in the method is testing.
The processor stack 951 construction is shown in
For the Programmable Logic Device (PLD) layer 951, the basic process is to perform a BGA solder mounting of many PLDs onto a large PCB (for mass production) and then underfill and pot the connection for insulation and stability. The resulting large panel is then cut into sections, thinned, and then diced into individual layers. The finished PLD layer is shown in
The processor layer 953 shown in
The synchronous dynamic random access memory (SDRAM) 954 and Boot Flash 955 layers are shown in
The final layer in the processor stack is the discrete component layer 956 as shown in
For the processor stack 950, again illustrated in
Now referring to
The manufacturing process for the stacks are optimized for mass production. For all but the flash memory chips 911, the PCB fabrication, and encapsulation processes are performed in large area panels. The panels are quartered for thinning, then cut into individual layers or strips of layers for stacking. Layers are laminated into cubes of multiple stacks, which are separated into individual stacks after metalizing the busses. This approach to layer and stack fabrication largely avoids the processing of individual components/layers and lends itself to automation. The technique of stacking flash memory avoids layer fabrication altogether.
Most of the manufacturing can be easily transitioned to contract manufacturers because many of the processes are standard (e.g., PCB fabrication, surface-mount soldering, underfill, and thin film deposition). This results in flexibility, lower cost and a rapid ramping to high volume without a large capital investment. For the reasons stated above, the design approach provides for a cost effective and producible product.
As shown in
c illustrate the process used to fabricate a large capacity memory (SRAM type for example) stack array 200. The complete array 200 is illustrated in
In this design, the copper shims 216 and copper sheets 217 provide excellent heat transfer characteristics without shorting circuitry. The copper sheets 217 are physically located between layers and thermal management is accomplished by drawing the heat from the top of each chip. Heat from one side of the memory chip 214 will go directly into the copper sheets 217, while on the other side, heat from the leads or BGA 215 is dissipated into ground planes in the PCB 211. These dual paths quickly spread the heat away from chips being exercised. Since only portions of the full array are exercised at one time, spreading the heat into the whole array and away from hot spots is essential. This makes managing the dissipation from the module relatively simple while keeping the junctions relatively cool. Once laminated (
While the invention has been illustrated and described by means of specific embodiments, it is to be understood that numerous changes and modifications may be made therein without departing from the intent and scope of the invention as defined in the appended claims.
The present application is related to U.S. Provisional Patent Application Ser. No. 60/346,494, filed on Jan. 9, 2002, which is incorporated herein by reference and to which priority is claimed pursuant to 35 USC 119, and is a continuation-in-part of U.S. patent application Ser. No. 09/770,864, filed on Jan. 26, 2001, which application is pending and herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60346494 | Jan 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10339023 | Jan 2003 | US |
Child | 11644438 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09770864 | Jan 2001 | US |
Child | 11644438 | Dec 2006 | US |