Microelectronic element with bond elements to encapsulation surface

Information

  • Patent Grant
  • 10008477
  • Patent Number
    10,008,477
  • Date Filed
    Wednesday, October 5, 2016
    7 years ago
  • Date Issued
    Tuesday, June 26, 2018
    5 years ago
Abstract
A microelectronic structure includes a semiconductor having conductive elements at a first surface. Wire bonds have bases joined to the conductive elements and free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces. The wire bonds define edge surfaces between the bases and end surfaces thereof. A compliant material layer extends along the edge surfaces within first portions of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are extend from a third surface of the compliant later.
Description
BACKGROUND OF THE INVENTION

The subject matter of the present application relates to a microelectronic element including a semiconductor chip with structures to achieve improved reliability when assembled with external microelectronic components, including compliant connection structures, and methods of fabricating the microelectronic element.


Semiconductor chips are flat bodies with contacts disposed on a front surface that are connected to internal electrical circuitry of the chip. The chips are typically packaged to form a microelectronic package having terminals that are electrically connected to the chip contacts. The terminals of the package may then be connected to an external microelectronic component, such as a circuit panel.


Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


Mismatches or differences between coefficients of thermal expansion (“CTE”) of the components in such a package can adversely impact their reliability and performance. In an example, a semiconductor chip may have a lower CTE than that of a substrate or printed circuit board to which it is mounted. As the chip undergoes heating and cooling due to the use cycle thereof, the components will expand and contract according to their differing CTEs. In this example, the substrate will expand more and at a greater rate than the semiconductor die. This can cause stress in the solder masses (or other structures) used to both mount and electrically connect the semiconductor die and the substrate. Such stress can cause the solder mass to disconnect from either or both of the semiconductor die or the substrate, thereby interrupting the signal transmission that it otherwise facilitates. Various structures have been used to compensate for such variations in CTE, yet many fail to offer a significant amount of compensation on a scale appropriate for the fine pitch arrays being increasingly utilized in microelectronic packages.


BRIEF SUMMARY OF THE INVENTION

An aspect of the present disclosure relates to a microelectronic structure including a first semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface. The structure also includes wire bonds having bases joined to respective ones of the conductive elements. The wire bonds further have free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces thereon. The wire bonds define edge surfaces extending between the bases and end surfaces thereof. A compliant material layer overlies and extends from the first surface of the semiconductor die outside of the bases of the wire bonds. The compliant material layer further extends along first portions of the edge surfaces of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. The compliant material layer further has a third surface facing away from the first surface of the semiconductor die. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are uncovered by the third surface and extend away therefrom.


The first portions of the wire bonds can be encapsulated entirely by the compliant material. Further, the second portions of the wire bonds can be moveable with respect to the bases thereof. In an example, the compliant material layer can have a Young's modulus of 2.5 GPa or less.


The second portions of the wire bonds can extend along axes of the wire bonds that are disposed at angles of at least 30 degrees with respect to the third surface. The end surfaces of the wire bonds can be positioned above the third surface by a distance of at least 50 microns. Further, the end surfaces of the wire bonds can be positioned above the third surface at a distance of less than 200 microns.


The semiconductor die can further define edge surfaces extending between the first and second surfaces, and the compliant material layer can further include edge surfaces extending from the third surface thereof to the first surface of the semiconductor die so as to be substantially coplanar with the edge surfaces of the semiconductor die. At least one of the wire bonds can have a shape such that the wire bond defines an axis between the free end and the base thereof and such that the wire bond defines a plane. In such an example a bent portion of the at least one wire bond can extending away from the axis within the plane. The shape of the at least one wire bond can be further such that a substantially straight portion of the wire bond extends between the free end and the bent portion along the axis.


The microelectronic structure can further include conductive metal masses joined with the second portions of the wire bonds and contacting the third surface of the compliant material layer. In such an example, at least one of the conductive metal masses encapsulates at least some of the second portion of a respective one of the wire bonds. The conductive metal masses can be configured to join the second portions of the wire bonds with external conductive features by reflow thereof.


In an example, the semiconductor die can be a first semiconductor die having a first region and a second region surrounding the first region. The electrically conductive elements of the first semiconductor die can be within the second region. The microelectronic structure in such an example, can further include a second semiconductor die mounted on the first semiconductor die within the first region. The second semiconductor die can be electrically connected with at least some of the conductive elements of the first semiconductor die. The compliant material layer can cover the second semiconductor die.


In another example, the semiconductor die can be a first semiconductor die having a first region and a second region surrounding the first region. The electrically conductive elements of the first semiconductor die can be within the second region. The microelectronic structure can further include a second semiconductor die mounted on the first semiconductor die within the first region. The second semiconductor die can have first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface facing away from the first surface of the first semiconductor die. Additional wire bonds can have bases joined to respective ones of the conductive elements of the second semiconductor die. The additional wire bonds can further have free ends remote from the bases, and the free ends can be remote from the first surface of the second semiconductor die and the bases and including the end surfaces thereon. The wire bonds can define edge surfaces extending between the bases and end surfaces thereof. The compliant material layer can further overlie and extend from the first surface of the second semiconductor die outside of the bases of the additional wire bonds, and the compliant material layer can further extending along first portions of the edge surfaces of the additional wire bonds. Second portions of the additional wire bonds can be defined by the end surfaces and portions of the edge surfaces extending from the end surfaces that are uncovered by and extend away from the compliant material layer at the third surface.


Another aspect of the present disclosure can relate to a microelectronic package including a microelectronic element having a first semiconductor die with first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface. The element can further have wire bonds with bases joined to respective ones of the conductive elements at the first surface and end surfaces, the end surfaces being remote from the substrate and the bases. Each of the wire bonds extends from the base to the end surface thereof. A compliant material layer overlies and extends from the first portion of the first surface of the substrate and fills spaces between first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. The compliant material layer has a third surface facing away from the first surface of the substrate, and second portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the compliant material layer at the third surface. The package further includes a substrate having a fourth surface and a plurality of terminals exposed at the fourth surface. The microelectronic element is mounted on the substrate with the third surface facing the fourth surface and at least some of the wire bonds are joined, at the second portions thereof, to respective ones of the terminals.


The second portions of the wire bonds can be electrically and mechanically joined to the terminals by conductive metal masses. The microelectronic package can further include a molded dielectric layer formed over at least a portion of the fourth surface of the substrate and extending away therefrom so as to extend along at least a portion of the microelectronic element. The Young's modulus of the molded dielectric layer can be greater than the Young's Modulus of the compliant material layer. The compliant material layer can have a Young's modulus of less than 2.5 GPa.


The wire bonds can further define edge surfaces extending between the bases and end surfaces thereof, and the compliant material layer can extend along portions of the edge surfaces of the wire bonds at least adjacent the bases thereof and within the first portions of the wire bonds. Portions of the edge surfaces of the wire bonds that extend from the end surfaces thereof can be uncovered by the compliant material layer around entire circumferences thereof at the third surface thereof.


Another aspect of the present disclosure relates to a method for making a microelectronic structure. The method includes forming wire bonds on a semiconductor die, the semiconductor die having first and second oppositely facing surfaces and a plurality of electrically conductive elements at the first surface. The wire bonds are formed having bases joined to respective ones of the conductive elements and having end surfaces remote from the substrate and the bases. Edge surfaces of the wire bonds extend between the bases and the end surfaces. The method further includes forming a compliant material layer overlying and extending from the first surface of the semiconductor die outside of the bases of the wire bonds. The compliant material is further formed to extend along portions of the edge surfaces of first portions of the wire bonds to fill spaces between the first portions of the wire bonds and to separate the first portions of the wire bonds from one another. The compliant material layer is further formed to have a third surface facing away from the first surface of the substrate with second portions of the wire bonds being defined by at least the end surfaces and portions of the edge surfaces of the wire bonds that are uncovered by the conductive material layer at the third surface so as to extend away therefrom.


The method can further include the step of mounting the microelectronic package on a substrate with the third surface facing a surface of the substrate. The surface of the substrate can have terminals at the surface thereof, and the mounting can include joining at least some of the second portions of the wire bonds with the terminals. The second portions of the wire bonds can be joined with the terminals including reflowing of conductive metal masses joined with the second portions of the wire bonds. At least one of the conductive metal masses can encapsulate at least some of the second portion of a respective one of the wire bonds at least after the reflowing thereof. In an alternative example, the second portions of the wire bonds can be joined with the terminals including reflowing of conductive metal masses joined with the terminals.


The method can further include forming a molded dielectric over at least a portion of the surface of the substrate and extending away therefrom so as to extend along at least a portion of the compliant material layer and along at least a portion of the semiconductor die.


The compliant material layer can be deposited over the semiconductor die so as to cover the wire bonds, including the end surfaces thereof, and forming the compliant material layer can further include removing a portion thereof to form the third surface thereof and to uncover the second portions of the wire bonds. Alternatively, forming the compliant material layer can include molding the compliant material over the semiconductor die so as to form the third surface thereof such that the second portions of the wire bonds extend therefrom.


Forming the wire bond can include severing a wire segment joined with one of the conductive elements at least by pressing the wire segment into contact with a secondary surface using a capillary of a bonding tool so as to form the end surface of the wire bond remote from the base.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a sectional view depicting a microelectronic element according to an aspect of the disclosure.



FIG. 2 is a sectional view of a microelectronic package including the microelectronic element of FIG. 1.



FIGS. 3A-3C are schematic views of example wire bonds that can be used in the microelectronic element of FIG. 1.



FIG. 4 is a detail view of a tip of the example wire bonds of FIGS. 3A-3C.



FIG. 5 is a sectional view of an alternative microelectronic element according to another example of the disclosure.



FIG. 6 is a sectional view of an alternative microelectronic element according to another example of the disclosure.



FIGS. 7-12 show various sectional views of an in process unit during steps of a method for fabricating a microelectronic element according to another aspect of the disclosure.



FIG. 13 shows a method step that can be used in a variation of the method depicted in FIGS. 7-12



FIGS. 14 and 15 show schematic views of successive steps in a method for fabricating a wire bond that can be incorporated in the method depicted in FIGS. 7-12 and the variation incorporating the step of FIG. 13.





DETAILED DESCRIPTION

Turning now to the figures, where similar numeric references are used to indicate similar features, there is shown in FIG. 1 a microelectronic structure that can be in the form of a microelectronic element 10 according to an embodiment of the present invention. The embodiment of FIG. 1 is a microelectronic element 10 in the form of a semiconductor die 12 (also referred to as a semiconductor chip) having a plurality of wire bonds 32 extending from conductive elements 28 thereof to extending portions 40 thereof that extend above a compliant material layer 42 that covers and separates remaining portions of the wire bonds 32 from each other, including portions thereof adjacent semiconductor die 12. The structure can then be used in computer or other electronic applications either alone or in an assembly with further components.


The microelectronic element 10 of FIG. 1 includes semiconductor die 12 having a first surface 14 and a second surface 16. For purposes of this discussion, the first surface 14 may be described as being positioned opposite or remote from second surface 16. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the Figures, and is not limiting.


Conductive elements 28 are at the first surface 14 of semiconductor die 12. As used in the present description, when an electrically conductive element is described as being “at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a terminal or other conductive structure that is at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. Conductive elements 28 can be flat, thin elements of a solid metal material such as copper, gold, nickel, or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel or combinations thereof. In one example, conductive elements 28 can be substantially circular.


Microelectronic element 10 further includes a plurality of wire bonds 32 joined to at least some of the conductive elements 28. Wire bonds 32 are joined at a base 34 thereof to the conductive elements 28 and extend to a corresponding free end 36 remote from the base 34 and from the first surface 14 of semiconductor die 12, the free ends 36 being within the extending portions 40 of the wire bonds 32. The ends 36 of wire bonds 32 are characterized as being free in that they are not connected or otherwise joined to semiconductor die 12 or any other conductive features within microelectronic element 10 that are, in turn, connected to semiconductor die 12. In other words, free ends 36 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature of a component external to microelectronic element 10, such as, for example, a printed circuit board (“PCB”) or another substrate with conductive contacts or terminals thereat. The fact that ends 36 held in a predetermined neutral position by, for example, compliant material layer 42 (as described further below) or otherwise joined or electrically connected to another external component does not mean that they are not “free”. Conversely, base 34 is not free as it is either directly or indirectly electrically connected to semiconductor die 12, as described herein. As shown in FIG. 1, base 34 can be substantially rounded in shape, extending outward from an edge surface 37 (as shown, for example, in FIGS. 3A-C) of wire bond 32 defined between base 34 and end 36.


The particular size and shape of base 34 can vary according to the type of material used to form wire bond 32, the desired strength of the connection between wire bond 32 and conductive element 28, or the particular process used to form wire bond 32. Example methods for making wire bonds 32 are and are described in U.S. Pat. No. 7,391,121 to Otremba and in U.S. Pat. App. Pub. Nos. 2012/0280386 (“the '386 Publication”) and 2005/0095835 (“the '835 Publication,” which describes a wedge-bonding procedure that can be considered a form of wire bonding) the disclosures of which are incorporated herein by reference in their entireties.


Wire bonds 32 can be made from a conductive material such as copper, gold, nickel, solder, aluminum or the like. Additionally, wire bonds 32 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket. In an example, the wire used to form wire bonds 32 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 μm and 150 μm. In other examples, including those in which wedge bonding is used, wire bonds 32 can have a thickness of up to about 500 μm. In general, a wire bond is formed on a conductive element, such as conductive element 28 within contact portion 30 using specialized equipment.


As described further below, during formation of a wire bond of the type shown and described herein, a leading end of a wire segment is heated and pressed against the receiving surface to which the wire segment bonds, typically forming a ball or ball-like base 34 joined to the surface of the conductive element 28. The desired length of the wire segment to form the wire bond is drawn out of the bonding tool, which can then cut the wire bond at the desired length. Wedge bonding, which can be used to form wire bonds of aluminum, for example, is a process in which the heated portion of the wire is dragged across the receiving surface to form a wedge that lies generally parallel to the surface. The wedge-bonded wire bond can then be bent upward, if necessary, and extended to the desired length or position before cutting. In a particular embodiment, the wire used to form a wire bond can be cylindrical in cross-section. Otherwise, the wire fed from the tool to form a wire bond or wedge-bonded wire bond may have a polygonal cross-section such as rectangular or trapezoidal, for example.


The extending portions 40 of the wire bonds 32 can form at least a part of a connection feature in an array formed by respective extending portions 40 of a plurality of wire bonds 32. Such an array can be formed in an area array configuration, variations of which could be implemented using the structures described herein. Such an array can be used to electrically and mechanically connect the microelectronic element 10 to another microelectronic structure, such as to a printed circuit board (“PCB”), a substrate (in a packaged configuration for microelectronic element 10, an example of which is shown in FIG. 2), or to other external components or structures. Conductive metal masses 66 (FIG. 2) can be used to connect the wire bonds 32 to conductive features of such components or structures such as by electronically and mechanically attaching extending portions 40 thereof, including free ends 36 and corresponding end surfaces 38 (FIGS. 3A-3C), thereto.


Microelectronic element 10 further includes a compliant material layer 42 formed from a dielectric material having a Young's modulus of less than about 2.5 GPa. As shown in FIG. 1, compliant material layer 42 extends over the portions of first surface 14 of semiconductor die 12 that are not otherwise covered by or occupied by bases 34 of wire bonds 32. Similarly, compliant material layer 42 extends over the portions of conductive elements 28 that are not otherwise covered by bases 34 of wire bonds 32. Compliant material layer 42 can also partially cover wire bonds 32, including the bases 34 and at least a portion of edge surfaces 37 thereof. Extending portion 40 of wire bonds 32 remains uncovered by compliant material layer 42, thereby making the wire bonds 32 available for electrical connection to a feature or element located outside of compliant material layer 42, as discussed above. In the examples shown in the Figures, a surface, such as major surface 44 of compliant material layer 42 can be spaced apart from first surface 14 of semiconductor die 12 at a distance great enough to cover, for example, bases 34 and portions of the edge surfaces 37 of wire bonds 32 to provide some level of mechanical support therefor and to separate and electrically insulate the wire bonds 32 from each other. Other configurations for compliant material layer 42 are possible. For example, a compliant material layer can have multiple surfaces with varying heights.


The example of wire bonds 32 shown in FIG. 1, which are shown in further detail in FIGS. 3A and 4, define a particular curved shape that can be imparted on the wire bonds 32 by a process of making the wire bonds 32 that utilizes a secondary surface. Such a method is further described below in connection with FIGS. 7-13. The shape of wire bonds 32 can be such that the end surfaces 38 are aligned along an axis 50 with a base end 35 of the wire bond 32 that is immediately adjacent the base 34. In the example of wire bond 32 shown in FIG. 3A, the axis is generally perpendicular to the conductive element 28 such that the end surface 38 is positioned directly above the base end 35. Such a configuration can be useful for a plurality of wire bonds 32 in an array wherein the array of connections on major surface 44 of compliant material layer 42 are intended to have a pitch that generally matches a pitch of the conductive elements 28 to which the wire bonds 32 are respectively joined. In such a configuration, the axis 50 can also be angled with respect to contact portion 30 such that end surface 38 is offset slightly from the base end 35 but is still positioned above base 34. In such an example, the axis 50 can be at an angle of 85° to 90° with respect to contact portion 30.


Wire bond 32 can be configured such that a first portion 52 thereof, on which the end surface 38 is defined, extends generally along a portion of the axis 50. The first portion 52 can have a length that is between about 10% and 50% of the total length of wire bond 32 (as defined by the length of axis 50, for example). A second portion 54 of the wire bond 32 can be curved, or bent, so as to extend away from the axis from a location adjacent the first portion 52 to an apex 56 that is spaced apart from the axis 50. The second portion 54 is further curved so as to be positioned along axis 50 at a location at or near base end 35 and to also extend away from the axis 50 to apex 56 from the side of base end 35. It is noted that first portion 52 need not be straight or follow axis 50 exactly and that there may be some degree of curvature or variation therein. It is also noted that there may be abrupt or smooth transitions between first portion 52 and second portion 54 that may themselves be curved. It is noted, however, that the wire bonds 32 depicted in FIGS. 1 and 3A, including second portion 54, are further configured to lie on a single plane on which axis 50 also lies.


Further, both first 52 and second 54 portions of the wire bond 32 can be configured such that any portions thereof that do not intersect axis 50 are all on the same, single side of axis 50. That is, some of first and second portions 52 and 54 may be, for example, on a side of axis 50 opposite the apex 56 of the curved shape defined by second portion 54; however, any such portions would be in areas of the wire bond 32 that axis 50 intersects at least partially. In other words, first and second portions 52 and 54 of wire bond 32 can be configured to not fully cross axis 50 such that the edge surface 37 within those portions is only spaced apart from axis 50 on a single side of axis 50. In the example of FIG. 3A the plane can be along the page on which the illustration of wire bond 32 is presented.



FIGS. 3B and 3C show examples of wire bonds 32 with ends 36 that are not positioned directly above the respective bases 34 thereof. That is, considering first surface 14 of semiconductor die 12 as extending in two lateral directions, so as to substantially define a plane, an end 36 of one of the wire bonds 32 can be displaced in at least one of these lateral directions from a corresponding lateral position of base 34. As shown in FIGS. 3B and 3C, wire bonds 32 can be of the same general shape as the wire bonds of FIG. 3A and can have an end 36 that is aligned with the portion of the wire bond 32 immediately adjacent the base 34 thereof to define an axis 50. The wire bonds 32 can, similarly, include a first portion 52 that extends generally along axis 50 and a second portion 54 that is curved so as to define an apex 56 that is spaced apart from axis 50 on a single side thereof to define a plane that extends along axis 50. The wire bonds 32 of FIGS. 3B and 3C, however, can be configured such that the axis 50, defined as described above, is angled with respect to contact portion 30 at an angle of, for example, less than 85°. In another example, angle 58 can be between about 30° and 75°.


Wire bond 32 can be such that the apex 56 defined within second portion 54 of wire bond can be either exterior to the angle 58, as shown in FIG. 3B, or interior thereto, as shown in FIG. 3C. Further, axis 50 can be angled with respect to contact portion 30 such that end surface 38 of wire bond 32 is laterally displaced relative to contact portion 30 in multiple lateral directions. In such an example, the plane defined by second portion 54 and axis 50 can itself be angled with respect to conductive element 28 and/or first surface 14. Such an angle can be substantially equal to or different than angle 58. That is the displacement of end 36 relative to base 34 can be in two lateral directions and can be by the same or a different distance in each of those directions.


In an example, various ones of wire bonds 32 can be displaced in different directions and by different amounts throughout microelectronic element 10. Such an arrangement allows for microelectronic element 10 to have an array of extending portions 40 that is configured differently on the level of surface 44 compared to on the level of first surface 14 of semiconductor die 12. For example, an array can cover a smaller overall area or have a smaller pitch on surface 44 than at the first surface 14 of semiconductor die 12. In a variation of the microelectronic element 10 of FIG. 1, wire bonds 32 can be angled as shown in FIG. 3B, FIG. 3C, or a combination thereof.


As shown in FIG. 4, the free ends 36 of at least some of the wire bonds can have an asymmetrical configuration the end surfaces 38 thereof defined on tips 62 of the wire bonds 32 that are narrower than the adjacent portions of thereof, at least in one direction. The narrow tip 62 of the free end 36 can be imparted on wire bond 32 by a process used for manufacture thereof, an example of which is discussed further below. As shown, the narrow tip 62 can be offset such that an axis 60 through the center thereof is offset from an axis 50 through the center of the adjacent portion of the wire bond 32. Further, a centroid 61 of the end surface 38 can be along axis 60 such that it is offset from the adjacent wire bond portion. The tip 62 of wire bond 32 may also be narrowed in a direction perpendicular to the dimensions shown in FIG. 11 or can be the same width as the adjacent portion of wire bond 32 or can be somewhat wider. The extending portions 40 of the wire bonds 32 may include all or part of the tips 62 of wire bonds having such tips or may include the entire tips 62 and portions of the wire bonds extending beyond the tips 62.


As discussed above, wire bonds 32 can be used to connect microelectronic element 10 with an external component. FIG. 2 shows an example of an assembly 24 of a microelectronic element 10 that can be as described in connection with FIG. 1, or any of the variations thereof described in connection therewith. The extending portions 40 of wire bonds 32 are joined with contact pads 48 of a substrate 46 by conductive metal masses 66 that extend along the extending portions 40 of wire bonds 32 and along contact pads 48. Substrate 46 can be in the form of a dielectric element that is substantially flat. The dielectric element may be sheet-like and may be thin. In particular embodiments, the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoro-ethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials. The thickness of substrate 46 is preferably within a range of generally acceptable thicknesses for the desired application and, in an example, can be between about 25 and 500 μm. The substrate 46 can further include terminals 49 opposite the contact pads 48 in the same or different array configuration. The terminals 49 can be connected with the contact pads 48 by routing circuitry 64 within substrate 46.


The assembly 24 can further include a molded dielectric layer 68 that can, for example, be molded over the surface of the substrate 46 facing microelectronic element 10. The molded dielectric layer 68 be an encapsulant, for example, and can fill spaces between the conductive metal masses 66 and can contact the substrate 46 and the major surface 44 of the compliant material layer 42 in the area therebetween. Molded dielectric layer 68 can further extend outwardly along substrate 46 and upwardly along the edge surfaces 45 and 23 of the compliant material layer 42 and of semiconductor die 12, respectively, and can optionally cover microelectronic element 10 by extending over second surface 16 of semiconductor die 12. Substrate 46 can include package terminals opposite contact pads 48 or other structures to facilitate connection of the package assembly 24 with an external component.


In another example, a microelectronic element can similarly be joined directly with a printed circuit board (“PCB”) in place of substrate 46. Such a PCB can be assembled within an electronic device such that connection of microelectronic element 10 with the PCB can be done in assembling microelectronic element 10 with such a device. Further, such assembling can be carried out without the incorporation of a molded dielectric.


In either such assembly or application of a microelectronic element 10 as described herein, the structure of the wire bonds 32, along with the incorporation of compliant material layer 42 according to the principles described herein, can help improve the reliability of the attachment of microelectronic element 10 with a substrate in a package assembly or with a PCB (or other component). In particular, the reliability of the connections therebetween, which in the case of microelectronic element 10, is made between the extending portions 40 of wire bonds 32 and corresponding conductive features of the connected component (e.g. contact pads 48) can be improved relative to, for example, a direct connection between contacts of a semiconductor die and terminals of a substrate. This improvement can be accomplished by the ability of wire bonds 32 to flex or bend to accommodate relative movement between the conductive elements 28 of semiconductor die 12 and the contact pads 48 of substrate 46 (or PCB or other similar structure). Such movement can be caused by handling of the components, movement of the device, e.g., in which microelectronic element 10 or an assembly thereof is used, or testing of the microelectronic element 10 or assembly 24. Further, such relative movement can be caused by expansion and corresponding contraction of the components during the use cycle thereof caused by heat generated by the components and/or surrounding structures. Such thermal expansion is related to the coefficient of thermal expansion (“CTE”) of the components, and the relative movement between components in different structures can be caused by a difference, or mismatch, in the CTEs of the various structures or the materials thereof. For example, a semiconductor die can have a CTE of between about 2 and 5 parts per million per degree, Celsius (ppm/° C.). In the same assembly, a PCB or substrate can have a CTE of 15 ppm/° C. or greater.


The CTE of either component can be a “composite” CTE, which refers to a the CTE of the finished structure, which can approximate, but may not exactly match, the CTE of the primary material from which such a structure is constructed and can depend on the construction of the structure and the presence of other materials with different CTEs. In an example, the CTE of the semiconductor die can be on the order of Silicon or another semiconductor material, from which the die is primarily constructed. In another example, substrate 46 can have a CTE on the order of PTFE or another dielectric material, from which substrate 46 can be constructed.


Accordingly, a CTE mismatch between materials can cause relative movement between the conductive elements 28 of semiconductor die 12 and the contact pads 48 of substrate 46 (or another structure, such as a PCB or the like) as the semiconductor die 12 and the substrate 46 expand and contract during thermal cycling of the assembly 24 thereof because the semiconductor die 12 and substrate 46 expand at different rates and by different amounts in response to the same temperature change. This can cause displacement of the contact pads 48 with respect to the conductive elements 28, particularly in the peripheral areas of the substrate 46 or the semiconductor die 12 (i.e. toward edge surfaces 23 thereof) or in other areas depending on the particular configurations of the components and/or conductive elements 28 and contact pads 48.


The flexibility of wire bonds 32 along the respective lengths thereof can allow the end surfaces 38 thereof to displace with respect to the bases 34 in a resilient manner. Such flexibility can be used to compensate for relative movement of the associated conductive elements 28 and contact pads 48 between which the wire bonds 32 are connected. Because wire bonds 32 are flexible, however, they may not themselves be able to reliably support semiconductor die 12 relative to substrate 46 or other structure. For example, the flexing of unsupported wire bonds 32 could lead to adjacent wire bonds 32 coming into contact with one another, which could cause shorting or otherwise damage wire bonds 32 or the associated components. Accordingly, compliant material layer 42 is configured to separate wire bonds 32 from each other and to adding to the structural rigidity along the height thereof, while permitting desired flexing of wire bonds 32 to compensate for displacement of contact pads 48 relative to conductive elements 28. Accordingly, compliant material layer 42 can be made of a resiliently deformable (i.e. compliant) composition such as a material with a Young's modulus of less than 2.5 GPa. Further, compliant material layer 42, as mentioned above, can be dielectric so as to electrically insulate the wire bonds 32 from one another without requiring additional coatings or the like. Suitable materials for compliant material layer include silicone, benzocyclobutene (“BCB”), epoxy, or the like.


In such a structure, it may be beneficial to configure microelectronic element 10 to be able to make a connection with semiconductor die 12 with the connection being robust enough to cause and flexing of wire bonds 32 within compliant layer 42 (which requires deformation of compliant layer 42). The extending portions 40 of wire bonds 132 can be configured to achieve such a connection. For example, by being uncovered by compliant material layer 42 so as to be physically separated therefrom, extending portions 40 allow conductive metal masses 66 to completely surround at least some of the edge surfaces 37 of wire bonds 32 within extending portions 40, which can provide a more robust connection than one achieved by a mass 66 that simply extends along a side thereof, for example. To allow adequate access for a conductive metal mass 66 to surround a extending portion 40, the extending portions 40 can be oriented relative compliant material layer 42 such that the axes 50 of wire bonds 32 within extending portions 40 are at an angle of between about 30° and 90° with respect to surface 44. Further, the strength of the bond can be increased by structuring wire bonds 32 and compliant material layer 42 such that extending portions have a height above surface 44 of 200 μm or less. In an example, extending portions 40 can have heights of between 50 and 200 μm.


In some examples where a molded dielectric layer 68 is also included in an assembly 24 with microelectronic element 10, the molded dielectric can itself be compliant, with a Young's modulus that, in an example, can be greater than that of compliant material layer 42 and, in a further example, less than that of either semiconductor die 12 or substrate 46.



FIGS. 5 and 6 show examples of microelectronic elements 110 and 210 that incorporate multiple semiconductor dies in a stacked arrangement. In the example of FIG. 5, first surface 114 of semiconductor die 112 is considered as being divided into a first region 118 and a second region 120. The first region 118 lies within the second region 120 and includes a central portion of first surface 114 and extends outwardly therefrom. The second region 120 substantially surrounds the first region 118 and extends outwardly therefrom to the outer edges of semiconductor die 112. In this example, no specific characteristic of the semiconductor die 112 physically separates the two regions; however, the regions are demarked for purposes of discussion herein with respect to treatments or features applied thereto or contained therein. The wire bonds 132 are connected with conductive elements 128 at surface 114 within the second region 120.


A second semiconductor die 122 is mounted on semiconductor die 112 within first region 118. In the example shown in FIG. 5, semiconductor die 122 is mounted face down on semiconductor die 112 and is electrically and mechanically joined therewith by conductive metal masses 66 that can be solder masses, for example. In such a structure, conductive elements at the surface of semiconductor die 122 that faces first surface 114 can be connected with routing circuitry at surface 114 of semiconductor die 112 that extends within first region 118. Such routing circuitry can include traces, for example, that extend into second region 120 and connect with some of the conductive elements 128 at surface 114 within second region 120. Other conductive elements 128 are connected to the internal components of semiconductor die 112. As such, wire bonds 132 can be used to facilitate connections with both semiconductor die 112 and semiconductor die 122 at major surface 144 of compliant material layer 142. To achieve such a structure, both wire bonds 132 and compliant material layer 142 can be of a height sufficient for extending portions 140 of wire bonds 132 to be positioned above semiconductor die 122, which can be covered by compliant material layer 142. Microelectronic element 110 can be mounted to a substrate, PCB, or other structure in a manner similar to microelectronic element 10, described above, in which wire bonds 132 within compliant material layer 142 can compensate for a CTE mismatch between components in a similar manner.


In the example of FIG. 6, second semiconductor die 222 is mounted on semiconductor die 212 within first region 218. Semiconductor die 212 has conductive elements 228a disposed within second region 220 surrounding semiconductor die 222 with wire bonds 232a connected therewith. In this example, however, semiconductor die 222 is mounted face-up on semiconductor die 212 such that the conductive elements 228b thereof face away from surface 214 of semiconductor die 212. In this structure, second wire bonds 232b are connected with conductive elements 228b and extend to ends 238 remote from the conductive elements 228b. Compliant material layer 242 covers surface 214 of semiconductor die 212 in areas outside of wire bonds 232a and outside of semiconductor die 222. Compliant material layer further covers semiconductor die 222 such that compliant material layer 242 separates and extends between the edge surfaces 237 of wire bonds 232a and 232b. As such, microelectronic element 210 can be mounted on a substrate, PCB, or other structure by connecting the extending portions 240 of wire bonds 232a and 232b with features of that structure in a manner similar to microelectronic element 10, described above.


In such a structure, it may be desired to configure wire bonds 232a and 232b with heights sufficient to compensate for a CTE mismatch among components, as described above. In this structure, wire bonds 232a and 232b can be configured with a height sufficient to provide a desired height for extending portions 240 and sufficient compensation for displacement of features with which they are connected due to CTE mismatch. Displacement of contact pads on a substrate, for example, relative to the conductive elements 228a may be greater than with respect to conductive elements 228b because displacement is greater towards the peripheries of such structures. Accordingly, wire bonds 232b may have heights that are less than would be necessary within a similarly-sized microelectronic element including only one semiconductor die.



FIGS. 7-12 show a microelectronic element 10 in various steps of a fabrication method thereof. FIG. 7 shows in-process unit 10′ consisting of semiconductor die 12, as described above, with conductive elements 28 at first surface 14 thereof. In FIG. 8, in process unit 10″ is shown having a wire bonds 32 formed on conductive element 28 of the semiconductor die 12. Such wire bonds can be formed using specially-adapted equipment that can be configured to form a plurality of successive wire bonds in an assembly by heating a leading end of a wire that passes through a bonding capillary. The capillary is aligned with one of the conductive elements 28, which accordingly aligns the leading end of the wire therewith. The base 34 of a wire bond is then formed joined to the conductive element 28 by pressing the heated free end thereagainst by appropriate movement of the capillary.


After a desired length of the wire has been drawn out of the capillary so as to extend above first surface 14 of semiconductor die 12 at an appropriate distance for the height of the wire bond to be formed (which can also include positioning of the wire to achieve a desired location for the free end 36 thereof and/or shaping of the wire bond 32 itself), the wire is severed to detach the wire bond 32 at the end surface 38 from a portion of the wire that remains in the capillary and is used in the formation of a successive wire bond. This process is repeated until the desired number of wire bonds is formed. Various steps and structures can be used to sever the wire bonds 32, including electronic flame-off (“EFO”), various forms of cutting or the like, examples of which are provided in U.S. patent application Ser. Nos. 13/462,158 and 13/404,408, and in U.S. Pat. No. 8,372,741. A further example of wire bond severing is discussed below with respect to FIGS. 14 and 15. In variations of the above-described wire bond formation steps, wire bonds 32 can be formed on the in-process unit 10″ by edge bonding steps, including wedge bonding or stitch bonding, using specially-adapted equipment, as described in U.S. patent application Ser. No. 13/404,408.


After formation of the desired number of wire bonds 32, compliant material layer 42 can be formed by depositing the desired material in a flowable state over in-process unit 10″, as shown in FIG. 9, before being allowed to harden or cure in place. This can be done by placing the unit 10′ in an appropriately-configured mold having a cavity in the desired shape of the compliant material layer 42 that can receive unit 10′. Such a mold and the method of forming a compliant material layer therewith can be done in a procedure similar to the procedure for forming an encapsulation layer over wire bonds on a substrate that is shown and described in U.S. Pat. App. Pub. No 2010/0232129, the disclosure of which is incorporated by reference herein in its entirety. Compliant material layer 42 can be formed such that, initially, surface 44 thereof is spaced above end surfaces 38 of wire bonds 32. To form extending portions 40, including end surfaces 38, the portion of compliant material layer 42 that is above end surfaces 38 can be removed, creating a new surface 44 that is positioned below end surfaces 38. Alternatively, compliant material layer 42 can be formed such that surface 44 is initially below end surfaces 38 at a distance to define the desired height of detached portions 40. Removal, if necessary, of a portion of compliant material layer 42 can be achieved by grinding, dry etching, laser etching, wet etching, lapping, or the like. If desired, a portion of the free ends 36 of wire bonds 32 can also be removed in the same, or an additional, step to achieve substantially planar end surfaces 38 that are substantially even with each other.


As discussed above, the microelectronic element 10 resulting from the above steps, or variations thereof, can be packaged on a substrate or mounted on a PCB. Either of these subsequent steps can be carried out in a similar manner. In an example shown in FIG. 10, microelectronic element 10 can be prepared for bonding with an external component by depositing conductive metal masses 66, which can be of solder or the like over the extending portions 40 of wire bonds 32. The masses 66 can be allowed to cool and solidify so that the masses 66 remain at least temporarily fixed in the locations on respective extending portions 40. As shown in FIG. 11, the microelectronic element 10 from FIG. 10 can be aligned with a PCB 90 with the masses 66, and accordingly the extending portions 40 of the wire bonds 32, aligned with contact pads 92 of the PCB. The masses 66 can then be brought into contact with the pads 92 and heated to reflow the conductive material to join it with the pads 92 and to fix microelectronic element 10 to PCB 90, as shown in FIG. 12.


In a variation of the mounting steps of FIGS. 10-12, conductive metal masses 66 can be deposited on contact pads 92, as shown in FIG. 13 in preparation for microelectronic element mounting. Microelectronic element 10 can then be positioned over PCB 90 with extending portions 40 of wire bonds 32 aligned with the masses 66 (and, thus, with contact pads 92). The masses 66 can be heated to cause reflow and microelectronic element 10 can be moved toward PCB 90 such that extending portions 40 are positioned within masses 66, which can then be allowed to cool to join with extending portions 40.


Either of the above-discussed steps (from FIGS. 1012 and 13) can also be used to join a microelectronic element 10, formed as described above, to a substrate 46 in a package assembly 24, as described above with respect to FIG. 2. Such a package assembly 24 can be further processes to deposit molded dielectric layer 68 thereon, as shown in FIG. 2, which can be done using molding or other methods used elsewhere for molded dielectric formation in microelectronic packaging. Alternatively, an underfill can be deposited in the area between the microelectronic element 10 and the substrate 46 surrounding the conductive metal masses 66.


Variations of the above-described method steps can also be used to form and package or mount the multi-die arrangements shown in FIGS. 5 and 6. In such variations, second die 122 or 222 can be mounted on die 112 or 212 before or after wire bond formation (which can be done by any of the methods discussed herein). In the example of FIG. 6, mounting die 222 on die 212 before wire bond formation could result in the wire bonds 232 being formed all at once, instead of in subsequent steps. After die mounting and wire bond formation, the compliant material layers 142 and 242 can be deposited as discussed above, and the packages can be mounted, as previously discussed and in the same manner as single die microelectronic element 10.



FIGS. 14 and 15 show an in-process unit 10′ during particular method steps that can be used in wire bond formation. As shown in FIG. 14, capillary 70 of a wire bonding tool in proximity to the first surface 14 of semiconductor die 12. The capillary 70 shown schematically in FIG. 4, along with the bonding tool (not shown) with which it is associated can be of the type generally described above and can join the bases 34 of wire bonds 32 to the conductive elements 28 of semiconductor die 12.


In this particular set of method steps, after a desired length of the wire 74 has been drawn out of capillary 70 for the desired height of the wire bond to be formed, the wire 74 is severed and appropriately positioned using a face 76 of the capillary 70 and a secondary surface 80. As shown in FIG. 14, the severing and positioning is started by moving capillary 70 to a position over a secondary surface 80, which is shown schematically as a surface of an element in FIG. 14. In various applications, the secondary surface 80 can be on an element of sufficient hardness for the severing application described below such as metal or the like. Such an element can be attached with the bonding tool in a position to follow capillary 70 as it is moved during the wire bonding process. In another example, the element can be fixed relative to the bonding tool in the area of the semiconductor die 12.


In the example shown in FIG. 14, the capillary 70 is positioned over the secondary surface 80. After capillary 70 is appropriately positioned, it is pressed toward secondary surface 80 with a portion of the wire 74 between secondary surface 80 and a face 76 of capillary 70 that extends outwardly from wire 74. Pressure is then applied to the wire to move face 76 toward secondary surface 80, which compresses wire 74 therebetween, causing plastic deformation of wire 74, e.g., flattening or constriction of the wire, in area 78. Through such deformation, area 78 of wire 74 becomes somewhat weaker than the remaining portions of wire 74 on either side thereof and weaker than the joint between base 34 and contact portion 30. For example, area 78 may be somewhat flattened, constricted, or twisted relative to other portions of the wire 74 on either side thereof.


After deformation of area 78 of wire 74, the capillary 70 is then moved back toward a final desired position for the free end 36 of the wire bond 32 to-be formed. This position can be directly above base 34 or can be laterally displaced therefrom, as discussed above with respect to the examples of FIGS. 3B and 3C. The position of capillary 70 can be generally in the desired lateral area of free end 36 and can be just somewhat closer to first surface 14 than the desired final position. Further, the wire may remain partially bent, including a shape similar to the shape of the finished wire bonds 32 discussed above including a first portion 52 and second portion 54.


Capillary 70 can then be moved away from surface 14 to apply tension to the segment of wire 74 (which can be clamped or otherwise secured within capillary 70) between capillary 70 and base 34. This tension causes wire 74 to break within area 78, as shown in FIG. 15, which separates wire bond 32 from the remaining portion of wire 74 with a portion of area 78 forming the tip 62 of free end 36 with end surface 38 defined thereon. A remaining portion of area 78 remains on a new leading end 72 of the wire 74. These steps can be repeated on other conductive elements 28 at the surface 14 of the semiconductor die 12 to form an array of wire bonds 32 in a desired pattern.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A microelectronic structure, comprising: a first semiconductor die having a first surface, the first surface having a first region and a second region, a plurality of first electrically conductive elements at the first surface of the first semiconductor die;a second semiconductor die mounted on the first semiconductor die within the first region the second semiconductor die has a front surface and a plurality of second electrically conductive elements at the front surface, wherein the front surface of the second semiconductor die faces away from the first surface of the first semiconductor die;first wire bonds having bases joined to respective ones of the first conductive elements, the first wire bonds further having end surfaces remote from the bases, the first wire bonds defining edge surfaces extending between the bases and the end surfaces thereof; anda compliant material layer overlying the first surface of the first semiconductor die and overlying the second semiconductor die, the compliant material layer contacting edge surfaces of first portions of the first wire bonds and fully encapsulating each first portion such that the first portions of the first wire bonds are separated from one another by the compliant material layer, the compliant material layer further having a surface facing away from the first surface of the first semiconductor die, wherein second portions of the first wire bonds including the end surfaces are disposed above the surface of the compliant material layer, the second portions configured to connect with contacts of a substrate external to the microelectronic structure,the microelectronic structure further comprising a plurality of second wire bonds having bases joined to the second electrically conductive elements and having free ends remote from the bases of the second wire bonds, the free ends of the second wire bonds remote from the first surface of the second semiconductor die, and the free ends of the second wire bonds including end surfaces of the second wire bonds, the second wire bonds defining edge surfaces extending between the bases of the second wire bonds and the end surfaces of the second wire bonds,wherein the compliant material layer overlies the first surface of the second semiconductor die and contacts the edge surfaces of first portions of the second wire bonds, wherein second portions of the second wire bonds are defined by the end surfaces of the second wire bonds and portions of the edge surfaces of the second wire bonds extending from the end surfaces of the second wire bonds that are uncovered by and project above the surface of the compliant material layer overlying the front surface of the second semiconductor die.
  • 2. The microelectronic structure of claim 1, wherein the second portions of the first wire bonds are moveable with respect to the bases thereof.
  • 3. The microelectronic structure of claim 1, wherein the compliant material layer has a Young's modulus of 2.5 GPa or less.
  • 4. The microelectronic structure of claim 1, wherein the second portions of the first wire bonds extend along axes of the first wire bonds that are disposed at angles of at least 30 degrees with respect to the first surface of the compliant material layer.
  • 5. The microelectronic structure of claim 1, wherein the end surfaces of the first wire bonds are positioned above the first surface of the compliant material layer by a distance of at least 50 microns.
  • 6. The microelectronic structure of claim 1, wherein the first semiconductor die has a second surface opposite the first surface and a plurality of edge surfaces extending between the first and second surfaces, and wherein the compliant material layer further includes edge surfaces extending from the first surface of the compliant material layer thereof to the first surface of the first semiconductor die, the edge surfaces of the compliant material layer being substantially coplanar with the edge surfaces of the first semiconductor die.
  • 7. The microelectronic structure of claim 1, wherein a first one of the first wire bonds has a shape such that the first one of the first wire bonds defines an axis between a free end of the first one of the first wire bonds and the base of the first one of the first wire bonds and such that the first one of the first wire bonds defines a plane, a bent portion of the first one of the first wire bonds extending away from the axis within the plane.
  • 8. The microelectronic structure of claim 7, wherein the shape of the first one of the first wire bonds is further such that a substantially straight portion of the first one of the first wire bonds extends between the free end of the first one of the first wire bonds and the bent portion along the axis.
  • 9. The microelectronic structure of claim 1, wherein the second region surrounds the first region of the first surface of the first semiconductor die.
  • 10. A microelectronic structure, comprising: a first semiconductor die having a first surface, the first surface having a first region and a second region, a plurality of first electrically conductive elements at the first surface of the first semiconductor die;a second semiconductor die mounted on the first semiconductor die within the first region, the second semiconductor die has a front surface and a plurality of second electrically conductive elements at the front surface, wherein the front surface of the second semiconductor die faces away from the first surface of the first semiconductor die;a plurality of first wire bonds having bases joined to respective ones of the first conductive elements, the first wire bonds further having end surfaces remote from the bases, the first wire bonds defining edge surfaces extending between the bases and the end surfaces thereof; anda compliant material layer overlying the first surface of the first semiconductor die and overlying the second semiconductor die, the compliant material layer contacting edge surfaces of first portions of the first wire bonds and fully encapsulating each first portion such that the first portions of the first wire bonds are separated from one another by the compliant material layer, the compliant material layer further having a surface facing away from the first surface of the first semiconductor die, wherein second portions of the first wire bonds including the end surfaces are disposed above the surface of the compliant material layer, the second portions configured to connect with contacts of a substrate external to the microelectronic structure,wherein the first portions of the first wire bonds are movable within the compliant material layer by deformation of the compliant material layer, such that, in a state of the microelectronic structure assembled with the substrate and the second portions of the first wire bonds connected with contacts of the substrate, such movement of the first wire bonds compensates for displacement of the contacts relative to the first conductive elements, such as caused by differential thermal expansion between the first semiconductor die and the substrate,the microelectronic structure further comprising a plurality of second wire bonds having bases joined to the second electrically conductive elements and having free ends remote from the bases of the second wire bonds, the free ends of the second wire bonds remote from the first surface of the second semiconductor die, and the free ends of the second wire bonds including end surfaces of the second wire bonds, the second wire bonds defining edge surfaces extending between the bases of the second wire bonds and the end surfaces of the second wire bonds,wherein the compliant material layer overlies the first surface of the second semiconductor die and contacts the edge surfaces of first portions of the second wire bonds, wherein second portions of the second wire bonds are defined by the end surfaces of the second wire bonds and portions of the edge surfaces of the second wire bonds extending from the end surfaces of the second wire bonds that are uncovered by and project above the surface of the compliant material layer overlying the front surface of the second semiconductor die.
  • 11. The microelectronic structure of claim 10, wherein the second portions of the wire bonds are moveable with respect to the bases thereof.
  • 12. The microelectronic structure of claim 10, wherein the first semiconductor die has a second surface opposite the first surface and a plurality of edge surfaces extending between the first and second surfaces, and wherein the compliant material layer further includes edge surfaces extending from the first surface of the compliant material layer thereof to the first surface of the first semiconductor die, the edge surfaces of the compliant material layer being substantially coplanar with the edge surfaces of the first semiconductor die.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 14/027,571, filed on Sep. 16, 2013, the disclosure of which is incorporated herein by reference.

US Referenced Citations (821)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 Difrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor et al. Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6550666 Chew et al. Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chillipeddi et al. Sep 2004 B1
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabrizi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
6933608 Fujisawa Aug 2005 B2
6946380 Takahashi Sep 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276799 Lee et al. Oct 2007 B2
7287322 Mathieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7344917 Gautham Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7517733 Camacho et al. Apr 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682960 Wen Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7902644 Huang et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Roberts et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8071424 Haba et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8120054 Seo et al. Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8174119 Pendse May 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8264091 Cho et al. Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau et al. Mar 2013 B1
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8507297 Pan et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558392 Chua et al. Oct 2013 B2
8618659 Sato et al. Dec 2013 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson et al. Jun 2014 B2
8766436 DeLucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8802494 Lee et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8878353 Haba et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8975726 Chen et al. Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9012263 Mathew et al. Apr 2015 B1
9054095 Pagaila Jun 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9378982 Lin et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9412661 Lu et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9508622 Higgins, III Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9653442 Yu et al. May 2017 B2
9659877 Bakalski et al. May 2017 B2
9663353 Ofner et al. May 2017 B2
9735084 Katkar et al. Aug 2017 B2
9788466 Chen Oct 2017 B2
20010002607 Sugiura et al. Jun 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010007370 Distefano Jul 2001 A1
20010021541 Akram et al. Sep 2001 A1
20010028114 Hosomi Oct 2001 A1
20010040280 Funakura et al. Nov 2001 A1
20010042925 Yamamoto et al. Nov 2001 A1
20010045012 Beaman et al. Nov 2001 A1
20010048151 Chun Dec 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020027257 Kinsman et al. Mar 2002 A1
20020066952 Taniguchi et al. Jun 2002 A1
20020096787 Fjelstad Jul 2002 A1
20020113308 Huang et al. Aug 2002 A1
20020117330 Eldridge Aug 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020125571 Corisis et al. Sep 2002 A1
20020153602 Tay et al. Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020171152 Miyazaki Nov 2002 A1
20020185735 Sakurai et al. Dec 2002 A1
20020190738 Beaman et al. Dec 2002 A1
20030002770 Chakravorty et al. Jan 2003 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030068906 Light et al. Apr 2003 A1
20030094666 Clayton et al. May 2003 A1
20030094685 Shiraishi et al. May 2003 A1
20030094700 Aiba et al. May 2003 A1
20030106213 Beaman et al. Jun 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030124767 Lee et al. Jul 2003 A1
20030162378 Mikami Aug 2003 A1
20030164540 Lee et al. Sep 2003 A1
20030234277 Dias et al. Dec 2003 A1
20040014309 Nakanishi Jan 2004 A1
20040036164 Koike et al. Feb 2004 A1
20040038447 Corisis et al. Feb 2004 A1
20040041757 Yang et al. Mar 2004 A1
20040075164 Pu et al. Apr 2004 A1
20040090756 Ho et al. May 2004 A1
20040110319 Fukutomi et al. Jun 2004 A1
20040119152 Kamezos et al. Jun 2004 A1
20040124518 Kamezos Jul 2004 A1
20040148773 Beaman et al. Aug 2004 A1
20040152292 Babinetz et al. Aug 2004 A1
20040160751 Inagaki et al. Aug 2004 A1
20040164426 Pai et al. Aug 2004 A1
20040188499 Nosaka Sep 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20040262734 Yoo Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050062173 Vu et al. Mar 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050116326 Haba et al. Jun 2005 A1
20050121764 Mallik et al. Jun 2005 A1
20050133916 Kamezos Jun 2005 A1
20050133932 Pohl et al. Jun 2005 A1
20050140265 Hirakata Jun 2005 A1
20050146008 Miyamoto et al. Jul 2005 A1
20050151235 Yokoi Jul 2005 A1
20050151238 Yamunan Jul 2005 A1
20050161814 Mizukoshi et al. Jul 2005 A1
20050173805 Damberg et al. Aug 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20050181544 Haba et al. Aug 2005 A1
20050181655 Haba et al. Aug 2005 A1
20050212109 Cherukuri et al. Sep 2005 A1
20050253213 Jiang et al. Nov 2005 A1
20050266672 Jeng et al. Dec 2005 A1
20050285246 Haba et al. Dec 2005 A1
20060087013 Hsieh Apr 2006 A1
20060118641 Hwang et al. Jun 2006 A1
20060139893 Yoshimura Jun 2006 A1
20060166397 Lau et al. Jul 2006 A1
20060197220 Beer Sep 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060228825 Hembree Oct 2006 A1
20060255449 Lee et al. Nov 2006 A1
20060278682 Lange et al. Dec 2006 A1
20060278970 Yano et al. Dec 2006 A1
20070010086 Hsieh Jan 2007 A1
20070013067 Nishida et al. Jan 2007 A1
20070015353 Craig et al. Jan 2007 A1
20070035015 Hsu Feb 2007 A1
20070045803 Ye et al. Mar 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070090524 Abbott Apr 2007 A1
20070126091 Wood et al. Jun 2007 A1
20070145563 Punzalan et al. Jun 2007 A1
20070148822 Haba et al. Jun 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070181989 Corisis et al. Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070235850 Gerber et al. Oct 2007 A1
20070235856 Haba et al. Oct 2007 A1
20070241437 Kagaya et al. Oct 2007 A1
20070246819 Hembree et al. Oct 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080029849 Hedler et al. Feb 2008 A1
20080032519 Murata Feb 2008 A1
20080042265 Merilo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048309 Corisis et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080073771 Seo et al. Mar 2008 A1
20080076208 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080110667 Ahn et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080211084 Chow et al. Sep 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080230887 Sun et al. Sep 2008 A1
20080277772 Groenhuis et al. Nov 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284001 Mori et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303132 Mohammed et al. Dec 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20080315385 Gerber et al. Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090026609 Masuda Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090039523 Jiang et al. Feb 2009 A1
20090045497 Kagaya et al. Feb 2009 A1
20090050994 Ishihara et al. Feb 2009 A1
20090079094 Lin Mar 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090085205 Sugizaki Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090091022 Meyer et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090104736 Haba et al. Apr 2009 A1
20090115044 Hoshino et al. May 2009 A1
20090121351 Endo May 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090146301 Shimizu et al. Jun 2009 A1
20090146303 Kwon Jun 2009 A1
20090160065 Haba et al. Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090206461 Yoon Aug 2009 A1
20090212418 Gurrum et al. Aug 2009 A1
20090212442 Chow et al. Aug 2009 A1
20090236700 Moriya Sep 2009 A1
20090236753 Moon et al. Sep 2009 A1
20090239336 Lee et al. Sep 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090260228 Val Oct 2009 A1
20090261466 Pagaila et al. Oct 2009 A1
20090302445 Pagaila et al. Dec 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20090316378 Haba et al. Dec 2009 A1
20100000775 Shen et al. Jan 2010 A1
20100003822 Miyata et al. Jan 2010 A1
20100006963 Brady Jan 2010 A1
20100007009 Chang et al. Jan 2010 A1
20100007026 Shikano Jan 2010 A1
20100025835 Oh et al. Feb 2010 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100052135 Shim et al. Mar 2010 A1
20100052187 Lee et al. Mar 2010 A1
20100072588 Yang Mar 2010 A1
20100078789 Choi et al. Apr 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100087035 Yoo et al. Apr 2010 A1
20100090330 Nakazato Apr 2010 A1
20100109138 Cho May 2010 A1
20100117212 Corisis et al. May 2010 A1
20100133675 Yu et al. Jun 2010 A1
20100148360 Lin et al. Jun 2010 A1
20100148374 Castro Jun 2010 A1
20100171205 Chen et al. Jul 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100213560 Wang et al. Aug 2010 A1
20100216281 Pagaila et al. Aug 2010 A1
20100224975 Shin et al. Sep 2010 A1
20100232119 Schmidt et al. Sep 2010 A1
20100232129 Haba et al. Sep 2010 A1
20100237471 Pagaila et al. Sep 2010 A1
20100246141 Leung et al. Sep 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100320585 Jiang et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110057308 Choi et al. Mar 2011 A1
20110068453 Cho et al. Mar 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110115081 Osumi May 2011 A1
20110140259 Cho et al. Jun 2011 A1
20110147911 Kohl et al. Jun 2011 A1
20110156249 Chang et al. Jun 2011 A1
20110157834 Wang Jun 2011 A1
20110175213 Mori et al. Jul 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20110220395 Cho et al. Sep 2011 A1
20110223721 Cho et al. Sep 2011 A1
20110237027 Kim et al. Sep 2011 A1
20110241192 Ding et al. Oct 2011 A1
20110241193 Ding et al. Oct 2011 A1
20110272449 Pirkle et al. Nov 2011 A1
20110272798 Lee et al. Nov 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120007232 Haba Jan 2012 A1
20120015481 Kim Jan 2012 A1
20120018885 Lee et al. Jan 2012 A1
20120020026 Oganesian et al. Jan 2012 A1
20120025365 Haba Feb 2012 A1
20120034777 Pagaila et al. Feb 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120056312 Pagaila et al. Mar 2012 A1
20120061814 Camacho et al. Mar 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120086130 Sasaki et al. Apr 2012 A1
20120104595 Haba et al. May 2012 A1
20120104624 Choi et al. May 2012 A1
20120119380 Haba May 2012 A1
20120126431 Kim et al. May 2012 A1
20120145442 Gupta et al. Jun 2012 A1
20120146235 Choi et al. Jun 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20120280374 Choi et al. Nov 2012 A1
20120280386 Sato Nov 2012 A1
20120326337 Camacho et al. Dec 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130032944 Sato et al. Feb 2013 A1
20130037802 England et al. Feb 2013 A1
20130040423 Tung Feb 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130049221 Han et al. Feb 2013 A1
20130069222 Camacho Mar 2013 A1
20130082399 Kim et al. Apr 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130093087 Chau Apr 2013 A1
20130093088 Chau et al. Apr 2013 A1
20130093091 Ma et al. Apr 2013 A1
20130095610 Chau et al. Apr 2013 A1
20130105979 Yu et al. May 2013 A1
20130134588 Yu et al. May 2013 A1
20130153646 Ho Jun 2013 A1
20130182402 Chen et al. Jul 2013 A1
20130200524 Han et al. Aug 2013 A1
20130200533 Chau et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130241083 Yu et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130313716 Mohammed Nov 2013 A1
20130323409 Read et al. Dec 2013 A1
20140021605 Yu et al. Jan 2014 A1
20140035892 Shenoy et al. Feb 2014 A1
20140036454 Caskey et al. Feb 2014 A1
20140103527 Marimuthu et al. Apr 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140220744 Damberg et al. Aug 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140264945 Yap et al. Sep 2014 A1
20140312503 Seo Oct 2014 A1
20150017765 Co et al. Jan 2015 A1
20150044823 Mohammed Feb 2015 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee et al. May 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20160043813 Chen et al. Feb 2016 A1
20160225692 Kim et al. Aug 2016 A1
20170117231 Awujoola et al. Apr 2017 A1
20170229432 Lin et al. Aug 2017 A1
Foreign Referenced Citations (139)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10-135221 May 1998 JP
H10135220 May 1998 JP
1118364 Jan 1999 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11-260856 Sep 1999 JP
11317476 Nov 1999 JP
2000323516 Nov 2000 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
200447702 Feb 2004 JP
2004047702 Feb 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
2007335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009-508324 Feb 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
20070058680 Jun 2007 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
0213256 Feb 2002 WO
03045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (68)
Entry
International Search Report and Written Opinion for Application No. PCT/US2014/055695 dated Mar. 20, 2015.
International Preliminary Report on Patentability, Chapter II, for Application No. PCT/US2014/055695 dated Dec. 15, 2015.
International Search Report and Written Opinion for Application No. PCT/US2014/050148 dated Feb. 9, 2015.
Partial International Search Report for Application No. PCT/US2014/014181 dated May 8, 2014.
International Search Report and Written Opinion for Application No. PCT/US2014/014181 dated Jun. 13, 2014.
Taiwanese Office Action for Application No. 103103350 dated Mar. 21, 2016.
U.S. Appl. No. 13/477,532, filled May 22, 2012.
International Search Report and Written Opinion for Application No. PCT/US2014/050125 dated Feb. 4, 2015.
Written Opinion for Application No. PCT/US2014/050125 dated Jul. 15, 2015.
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking, ”IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, “Processed Intra-layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version 2001.6.
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 6 pages (2008).
International Search Report, PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report Application No. PCT/US2011/024143, dated Sep. 14, 2011.
Korean Search Report KR10-2011-0041843 dated Feb. 24, 2011.
International Search Report and Written Opinion PCT/US2011/044342 dated May 7, 2012.
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2001.
International Search Report and Written Opinion for Application No. PCT/US2011/044346 dated May 11, 2012.
Partial International Search Report from Invitation to Pay Additional Fees for Application No. PCT/US2012/028738 dated Jun. 6, 2012.
Korean Office Action for Application No. 10-2011-0041843 dated Jun. 20, 2011.
“EE Times Asia” [online]. [Retrieved Aug. 5, 2010]. Retrieved from intemet. <http://www.eetasia.com/ART_8800428222_480300_nt_dec52276.HTM>, 4 pages.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
“Wafer Level Stack—WDoD”, [online]. [Retrieved Aug. 5, 2010]. Retrieved from the internet. <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France May 21, 2010.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D integration,” May 2010, Stats ChipPAC LTD.
Search Report from Korean Patent Applicatin No. 10-2010-0113271 dated Jan. 12, 2011.
International Search Report and Written Opinion for PCT/US2011/060551 dated Apr. 18, 2012.
Meiser 5, “Klein Und Komplex”, Elektronik, IRL Press Limited, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992), pp. 72-77, XP000277326. (International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise statement of relevance.).
Partial International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013.
International Search Report and Written Opinion for Application No. PCT/US2012/060402 dated Apr. 2, 2011.
Partial International Search Report for Application No. PCT/US2013/026126 dated Jun. 17, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/026126 dated Jul. 25, 2013.
Extended European Search Report for Application No. EP13162975 dated Sep. 5, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/052883 dated Oct. 21, 2013.
Japanese Office Action for Application No. 2013-509325 dated Oct. 18, 2013.
Office Action from U.S. Appl. No. 12/769,930 dated May 5, 2011.
International Search Report and Written Opinion for Application No. PCT/US2013/053437 dated Nov. 25, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/041981 dated Nov. 13, 2013.
Office Action for Taiwan Application No. 100125521 dated Dec. 20, 2013.
Office Action from Taiwan for Application No. 100125522 dated Jan. 27, 2014.
Partial International Search Report for Application No. PCT/US2013/075672 dated Mar. 12, 2014.
Taiwanese Office Action for Application No. 100141695 dated Mar. 19, 2014.
International Search Report and Written Opinion for Application No. PCT/US2013/075672 dated Apr. 22, 2014.
Taiwanese Office Action for Application No. 101138311 dated Jun. 27, 2014.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
International Search Report and Written Opinion for Application No. PCT/US2011/024143 dated Jan. 17, 2012.
Taiwanese Office Action for Application No. 100140428 dated Jan. 26, 2015.
Korean Office Action for Application No. 2014-7025992 dated Feb. 5, 2015.
Japanese Office Action for Application No. 2013-520776 dated Apr. 21, 2015.
International Search Report and Written Opinion for Application No. PCT/US2015/011715 dated Apr. 20, 2015.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Japanese Office Action for Application No. 2013-520777 dated May 22, 2015.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
Partial International Search Report for Application No. PCT/US2015/033004 dated Sep. 9, 2015.
Taiwanese Office Action for Application No. 102106326 dated Sep. 18, 2015.
International Search Report for Application No. PCT/US2015/032679, dated Nov. 11, 2015, 2 pages.
International Search Report for Application No. PCT/US2016/056402, dated Jan. 31, 2017, 3 pages.
International Search Report for Application No. PCT/US2016/056526, dated Jan. 20, 2017, 3 pages.
International Search Report for Application No. PCT/US2016/068297, dated Apr. 17, 2017, 3 pages.
Partial International Search Report for Application No. PCT/US2015/032679, dated Sep. 4, 2015, 2 pages.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Taiwanese Search Report for Application No. TW105128420 dated Sep. 26, 2017.
Related Publications (1)
Number Date Country
20170025390 A1 Jan 2017 US
Divisions (1)
Number Date Country
Parent 14027571 Sep 2013 US
Child 15286086 US