Embodiments of the present disclosure relate to package on package (POP) structures, and more particularly to packaging arrangements that incorporate a base package with a die-down flipped structure.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Typically, with many multi-chip packaging arrangements, a packaging arrangement is arranged in one of either a package-on-package (PoP) arrangement, or a multi-chip module (MCM) arrangement. These packaging arrangements tend to be fairly thick (e.g., approximately 1.7 millimeters to 2.0 millimeters).
A PoP arrangement may include an integrated circuit that combines two or more packages on top of each other. For instance, a PoP arrangement may be configured with two or more memory device packages. A PoP arrangement may also be configured with mixed logic-memory stacking that includes logic in a bottom package and memory in a top package or vice versa.
Typically, a die associated with a package located on the bottom of a PoP arrangement (referred to herein as a “bottom package”) limits the footprint of a package located above the bottom package (referred to herein as a “top package”) to be a certain size. Additionally, such a configuration generally limits the top package to two rows of peripheral solder balls. An example of such a packaging arrangement 1100 is illustrated in
In various embodiments, the present disclosure provides a package on package arrangement comprising a first package including a substrate layer including (i) a top side, and (ii) a bottom side that is opposite to the top side, wherein the top side of the substrate layer defines a substantially flat surface, and a first die coupled to the bottom side of the substrate layer. The package on package arrangement also comprises a second package including a plurality of rows of solder balls and at least one of one or both of (i) an active component or (ii) a passive component. The second package is attached, via the plurality of rows of solder balls, to the substantially flat surface of the top side of the substrate layer of the first package. The at least one of one or both of (i) an active component or (ii) a passive component is attached to the substantially flat surface of the top side of the substrate layer of the first package.
In various embodiments, the present disclosure also provides a method comprising providing a first package including a substrate layer, wherein the substrate layer includes (i) a top side and (ii) a bottom side that is opposite to the top side, wherein the top side of the substrate layer defines a substantially flat surface, and wherein the first package further includes a first die coupled to the bottom side of the substrate layer. The method further comprises providing a second package having a plurality of rows of solder balls attached to a bottom surface of the second package, attaching, via the plurality of rows of solder balls of the second package, the second package to the substantially flat surface of the first package, and attaching at least one of one or both of (i) an active component or (ii) a passive component to the substantially flat surface of the top side of the substrate layer of the first package.
Various embodiments potentially include one or more of the following advantages. Packaging arrangements can provide increased pincount, in accordance with various embodiments described herein. Also, higher speeds may be realized for electronic devices using packaging arrangements in accordance with various embodiments described herein.
Embodiments of the present disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments herein are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In accordance with various embodiments, the first die 108 and the second die 110 are memory devices and, in accordance with an embodiment, the first die 108 and the second die 110 are mobile double data rate (mDDR) synchronous dynamic random access memory (DRAM) for mobile devices. Mobile DDR is also known as low power DDR. However, other types of memory devices may be utilized, including but not limited to a double data rate synchronous dynamic random-access memory (DDR SDRAM), a dynamic random access memory (DRAM), a NOR or a NAND Flash memory, a static random-access memory (SRAM), and the like.
In accordance with another embodiment, the top package 102 with the first die 108 and the second die 110 is directed towards application-specific products, and, in accordance with an embodiment, the first die 108 and/or the second die 110 may represent application-specific integrated circuits (ASICs) for a mobile device.
The top package 102 further includes a plurality of solder balls 115. The plurality of solder balls 115 may be attached to a bottom side of the substrate layer 106 of the top package 102. In the embodiment of
For clarity, materials used within the top package 102 and other components within the top package 102 may not be illustrated and/or described in detail herein. Such materials and components are generally well-known in the art.
The bottom package 104 includes a substrate layer 116 that includes a top side 117a and a bottom side 117b. As shown in
The bottom package 104 includes a die 118 attached to the bottom side 117b of the substrate layer 116 via an adhesive layer 120 in a die-down flipped structure. In other embodiments, as will be further discussed herein, the die 118 may be attached to the bottom side 117b of the substrate layer 116 via solder balls.
In accordance with various embodiments, the die 118 may be a memory device, such as a mobile double data rate (mDDR) synchronous dynamic random access memory (DRAM) for mobile devices. Other types of memory devices may be utilized, including but not limited to a double data rate synchronous dynamic random-access memory (DDR SDRAM), a dynamic random access memory (DRAM), a NOR or a NAND Flash memory, a static random-access memory (SRAM), and the like. In accordance with another embodiment, the die 118 may be a logic device to create a mixed logic-memory stacking that includes logic on the bottom package 104 and memory on the top package 102.
The die 118 has surfaces that include one or more bond pads 122a, 122b. The one or more bond pads 122a, 122b generally comprise an electrically conductive material such as, for example, aluminum or copper. Other suitable materials can be used in other embodiments. The die 118 is coupled to one or more substrate pads 124a, 124b located on the substrate layer 116 via bonding wires 126a, 126b that are coupled to corresponding bond pads 122a, 122b. The die 118 may be affixed to the bottom package 104 by molding material. In other embodiments, the die 118 may electrically interconnect with the substrate layer 116 via flip-chip or conductive adhesives. The electrical signals of the die 118 can include, for example, input/output (I/O) signals and/or power/ground for integrated circuit (IC) devices (not illustrated) formed on the die 118.
In accordance with an embodiment, the bottom package 104 is created via a Mold-Array-Process (MAP). The bottom package 104 further includes an enclosure 128, generally in the form of an encapsulant. The enclosure 128 is etched to expose solder balls 129. Alternatively, the solder balls 129 are added into etched openings 131 of the enclosure 128 after etching the enclosure 128. Solder balls 130 are added to solder balls 129 and can be used to couple the packaging arrangement 100 to a substrate (not illustrated) such as, for example, a printed circuit board (PCB), another package, etc. Alternatively, single solder balls (combined solder balls 129 and solder balls 130) are added into the etched openings 131 after etching the enclosure 128. The solder balls 130 are generally at the sides or around the periphery of the bottom package 104, thereby forming a ball grid array (BGA).
For clarity, materials used within the bottom package 104 and other components within the bottom package 104 may not be illustrated and/or described in detail herein. Such materials and components are generally well-known in the art.
Additional embodiments of the present disclosure generally relate to packaging arrangements that include various embodiments of the bottom package 104 with a die-down flipped structure and are illustrated in
The bottom package 204 includes a thermal interface material (TIM) 210 coupled to the thermal conductive material 206. The TIM 210 includes, but is not limited to, a film, a grease composition, and underfill material. A film may be of an ultra-thin, thermally conductive material, which can be prepared by depositing an amorphous material. A grease composition may include a composition that has high thermal conductivity and excellent dispensation characteristics. A common TIM is a white-colored paste or thermal grease, typically silicone oil filled with aluminum oxide, zinc oxide, or boron nitride. Some types of TIMs use micronized or pulverized silver. Another type of TIM includes phase-change materials. Phase-change materials generally are solid at room temperature but liquefy and behave like grease at operating temperatures.
An underfill material may be chosen based on the desired physical properties. Thus, the thermal conductive material 206 provides a path for thermal dissipation to the TIM 210. The packaging arrangement 200 can be coupled to a substrate (not illustrated) such as, for example, a PCB or another packaging arrangement. A hole may be provided in the substrate to accommodate the TIM 210.
The bottom package 304 includes a thermal interface material (TIM) 310 coupled to a backside of the die 118. The TIM 310 includes, but is not limited to, a film, a grease composition, and underfill material, as previously described. In the embodiment of
In the embodiment of
The one or more TSVs 406 are electrically coupled to bond pads (not illustrated) and are generally filled with an electrically conductive material, e.g., copper, to route electrical signals through the die 118. The TSVs 406 tend to provide improved performance with respect to bondwires as the density of the vias is substantially higher and the length of the connections is shorter in comparison to bondwires. The exposed backside of the die 118 provides for thermal dissipation of the bottom package 404. Thus, the packaging arrangement 400 can provide increased pincount and higher speeds for electronic devices using the packaging arrangement 400.
In the embodiment of
In some embodiments, the die 118 and the PCB/interposer 506 both comprise a material (e.g., silicon) having the same or similar coefficient of thermal expansion (CTE). Using a material having the same or similar CTE for the die 118 and the PCB/interposer 506 reduces stress associated with heating and/or cooling mismatch of the materials.
The PCB/interposer 506 provides a physical buffer, support, and strengthening agent to the die 118, particularly during the formation of the one or more layers to embed the die 118 in the enclosure 128. That is, the die 118 coupled to the PCB/interposer 506 as described herein provides a protected integrated circuit structure that is more structurally resilient than the die 118 alone to stresses associated with fabricating the enclosure 128, resulting in improved yield and reliability of the bottom package 504.
In an embodiment, the bottom package 504 includes additional solder balls 512. The additional solder balls 512 attached to the PCB/interposer 506 may be used for, for example, ground/power and input/outputs.
Solder bumps 606 are attached to the bottom side of the die 118. A PCB or an interposer 608 is attached to the solder balls 606. In an embodiment, the PCB/interposer 608 may be exposed or recessed. In an embodiment, the bottom package 604 includes additional solder balls 610. The additional solder balls 610 may be used for, for example, ground/power and input/outputs. The embodiment of
At 704, the method 700 includes providing a second package having a plurality of rows of solder balls attached to a bottom surface of the second package.
At 706, the method 700 includes attaching, via the plurality of rows of solder balls of the second package, the second package to the substantially flat surface of the first package.
The packaging arrangement 800 includes one or more packaged devices 802 that can be coupled via solder balls 806 to the top side 117a of the substrate layer 116 of the bottom package 804. The packaged device 802 may optionally include a substrate layer 808 on which various components and/or dies (not illustrated) included with packaged device 802 can be attached via various methods to create packaged device 802. Thus, the packaged device 802 may include one or more dies (not illustrated) that are memory devices. For example, the package device may be similar to the top package 102 illustrated in
The packaging arrangement 800 further includes one or more passive and/or active electronic components 810. The passive and/or active electronic components 810 can be attached to the top side 117a of the substrate 116 in any suitable manner. For example, the passive and/or active electronic components 810 can be attached to the top side 117a of the substrate 116 via leads 812 and solder 814. Examples of passive components 810 include, but are not limited to, capacitors, resistors, conductors, transformers, transducers, censors, and antennas. Another example of passive components includes, but is not limited to networks, e.g., a resistor capacitor (RC) circuit and an inductor capacitor (LC) circuit. Examples of active components 810 include, but are not limited to, semiconductor dies, integrated circuits, diodes (e.g., light emitting diodes (LEDs), laser diodes, etc.), optoelectronic devices and power sources. Signals from the packaged device 802 and/or the passive/active electronic components 810 can be routed through the substrate 116. The packaging arrangement 800 can include multiple bottom packages 804 arranged on top of one another, if desired. The multiple bottom packages 804 can be arranged the same as one another or differently from one another.
The packaging arrangement 900 includes a die 902 that is flip chip attached to the top side 117a of the substrate 116 of the bottom package 904 with solder balls 906. One or more passive and/or active components 910 are attached to the top side 117a of the substrate 116 of bottom package 904. The passive and/or active electronic components 910 can be attached to the top side 117a of the substrate 116 in any suitable manner. For example, the passive and/or active electronic components 910 can be attached to the top side 117a of the substrate 116 via leads 912 and solder 914. Examples of passive components 910 include, but are not limited to, capacitors, resistors, conductors, transformers, transducers, censors, and antennas. Another example of passive components includes, but is not limited to networks, e.g., a resistor capacitor (RC) circuit and an inductor capacitor (LC) circuit. Examples of active components 910 include, but are not limited to, semiconductor dies, integrated circuits, diodes (e.g., light emitting diodes (LEDs), laser diodes, etc.), optoelectronic devices and power sources.
The packaging arrangement 900 also includes a die 916 that is attached to the top side 117a of the substrate 116 of bottom package 904. The die 912 is wire bonded via wires 918 to the top side 117a of the substrate 116 of the bottom package 904. An adhesive layer 920 may be utilized to attach the die 916 to the top side 117a of the substrate 116. Signals from the die 902, the passive/active electronic components 910 and/or the die 916 can be routed through the substrate 116 of the bottom package 904. The packaging arrangement 900 can include multiple bottom packages 904 arranged on top of one another, if desired. The multiple bottom packages 904 can be arranged the same as one another or differently from one another.
At 1004, the method 1000 includes providing a second package having a plurality of rows of solder balls attached to a bottom surface of the second package.
At 1006, the method 1000 includes attaching, via the plurality of rows of solder balls of the second package, the second package to the substantially flat surface of the first package.
At 1008, the method 1000 includes attaching at least one of one or both of (i) an active component or (ii) a passive component to the substantially flat surface of the top side of the substrate layer of the first package.
The description may use perspective-based descriptions such as up/down, over/under, and/or, or top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments described herein to any particular orientation.
For the purposes of the present disclosure, the phrase “A/B” means A or B. For the purposes of the present disclosure, the phrase “A and/or B” means “(A), (B), or (A and B).” For the purposes of the present disclosure, the phrase “at least one of A, B, and C” means “(A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).” For the purposes of the present disclosure, the phrase “(A)B” means “(B) or (AB)” that is, A is an optional element.
Various operations are described as multiple discrete operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order-dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.
The description uses the phrases “in an embodiment,” “in embodiments,” or similar language, which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
The terms chip, integrated circuit, monolithic device, semiconductor device, die, and microelectronic device are often used interchangeably in the microelectronics field. The present invention is applicable to all of the above as they are generally understood in the field.
Further aspects of the present invention relate to one or more of the following clauses.
The package on package arrangement further comprises a second die attached to the substantially flat surface of the top side of the substrate layer of the first package.
The second die is wire bonded to the substantially flat surface of the top side of the substrate layer of the first package.
The second die is attached to the substantially flat surface of the top side of the substrate layer of the first package via a flip-chip process.
The package on package arrangement further comprises an adhesive layer located between the first die and the substrate layer. The adhesive layer attaches the first die to the bottom side of the substrate layer of the second package.
The package on package arrangement further comprises a bond pad located on the bottom side of the first die, and a substrate pad located on the bottom side of the substrate layer of the second package. The bond pad of the die is coupled, via a wire, to the substrate pad of the substrate layer to route electrical signals of the first die.
The plurality of rows of solder balls comprises first solder balls and the package on package arrangement further comprises second solder balls attached to the bottom side of the substrate layer to electrically connect the first die to the substrate layer of the second package, and an underfill material located between the second solder balls and the substrate layer of the second package.
The plurality of rows of solder balls comprises first solder balls and the package on package arrangement further comprises second solder balls attached to a bottom side of the second package, and the second solder balls are located around a periphery of the second package to thereby form a ball grid array.
The plurality of rows of solder balls comprises first solder balls. The substrate layer comprises a first substrate layer. The first package further comprises a second die arranged next to the first die. Each of the first die and the second die is connected to a second substrate layer in the first package via second solder balls.
The package on package arrangement further comprises thermal interface material attached to a bottom side of the first die.
The package on package arrangement further comprises thermal conductive material attached to the thermal interface material.
The thermal interface material comprises one of a film, a grease composition, or an underfill material.
One of (i) an interposer or (ii) a printed circuit board is attached to a bottom side of the die.
The plurality of rows of solder balls comprises a first plurality of rows of solder balls, the package on package arrangement further comprises a third package including a second plurality of rows of solder balls, the first package is attached, via the first plurality of rows of solder balls, to the substantially flat surface of the second package, and the third package is attached, via the second plurality of rows of solder balls, to the substantially flat surface of the second package.
The plurality of rows of solder balls comprises first solder balls and the package on package arrangement further comprises second solder balls attached to the bottom side of the substrate layer and a top side of the first die, and a plurality of through-silicon vias located in the first die, wherein the plurality of through-silicon vias respectively extend between at least some of the second solder balls, and a plurality of third solder balls that are attached to a bottom side of the bottom package.
The method further comprises attaching a second die to the substantially flat surface of the top side of the substrate layer of the first package.
Attaching the first die to the bottom side of the substrate layer comprises attaching the first die to the bottom side of the substrate layer via an adhesive layer.
The plurality of rows of solder balls comprises first solder balls and the attaching the first die to the bottom side of the substrate layer comprises attaching the first die to the bottom side of the substrate layer via second solder balls.
The method further comprises providing underfill material between space located (i) among the second solder balls and (ii) between the first die and the bottom side of the substrate layer of the first package.
The method further comprises providing a bond pad on the first die, wherein the bond pad is positioned on a bottom side of the first die; providing a substrate pad on the substrate layer, wherein the substrate pad is positioned on the bottom side of the substrate layer of the first package; and coupling, via a wire bonding process, the bond pad on the first die to the substrate pad on the substrate layer to thereby route electrical signals of the first die.
The plurality of rows of solder balls comprises first solder balls and the method further comprises attaching second solder balls to a bottom side of the first package, wherein the second solder balls are positioned on a right side and a left side of the first package.
The method further comprises attaching a thermal interface material to a bottom side of the first die.
The plurality of rows of solder balls comprises first solder balls and the method further comprises attaching second solder balls on the bottom side of the substrate layer; attaching the first die to the bottom side of the substrate layer via the second solder balls; and providing through-silicon vias in the first die to connect the second solder balls to third solder balls attached to a bottom side of the first package.
The plurality of rows of solder balls comprises first solder balls and the method further comprises attaching second solder balls to a bottom side of the first die; and coupling one of (i) an interposer or (ii) a printed circuit board to the second solder balls.
The plurality of rows of solder balls comprises a first plurality of rows of solder balls, and the method further comprises providing a third package having a second plurality of rows of solder balls attached to a bottom surface of the third package, and attaching, via the second plurality of rows of solder balls, the third package to the substantially flat surface of the first package.
Although certain embodiments have been illustrated and described herein, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments illustrated and described without departing from the scope of the present disclosure. This disclosure is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments described herein be limited only by the claims and the equivalents thereof.
This claims priority to U.S. Provisional Application No. 61/763,285, filed Feb. 11, 2013, the entire specification of which is incorporated herein by reference. This is also a continuation-in-part of U.S. patent application Ser. No. 13/584,027, filed Aug. 13, 2012, which claims priority to U.S. Provisional Application No. 61/525,521, filed Aug. 19, 2011, the entire specifications of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61763285 | Feb 2013 | US | |
61525521 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13584027 | Aug 2012 | US |
Child | 14176695 | US |