1. Field
The present invention relates to the field of semiconductor packaging and more particularly to an embedded die in a semiconductor package and its method of fabrication.
2. Discussion of Related Art
Semiconductor packages are used for protecting an integrated circuit (IC) chip or die, and also to provide the die with an electrical interface to external circuitry. With the increasing demand for smaller electronic devices, semiconductor packages are designed to be even more compact and must support larger layout density. For example, some semiconductor packages now use a coreless substrate, which does not include the thick resin core layer commonly found in conventional substrates. Furthermore, the demand for higher performance devices results in a need for an improved semiconductor package that enables mixed technology die stacking or provide package stacking capability while maintaining a thin packaging profile.
A semiconductor package having an embedded die and its method of fabrication are described. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. In other instances, well known semiconductor processing techniques and features have not been described in particular detail in order not to unnecessarily obscure the present invention.
Embodiments of the present invention describe a semiconductor package having an embedded die. In one embodiment, the semiconductor package comprises a coreless substrate that contains the embedded die. By embedding the die in the coreless substrate, the assembly steps commonly used in conventional flip-chip assembly are eliminated, thus reducing assembly costs. Furthermore, the semiconductor package enables mixed-technology die stacking or package stacking Hence, the semiconductor package provides the advantages of thin-profile packaging with die-stacking or package-stacking capabilities at reduced package assembly costs.
An integrated circuit (IC) chip or die 300 is disposed in the die cavity 213. The die 300 includes a front side 310 and a back side 320. In one embodiment, the back side 320 of the die 300 is secured or adhered to the bottom surface 222 of the layer of adhesive 220. In one embodiment, the front side 310 includes a plurality of die pads 341, 342.
A second dielectric layer 250 is formed onto the bottom surface of the first dielectric layer 210. The second dielectric layer 250 also encapsulates the die 300. In one embodiment, a plurality of die interconnects 271, 272 are formed in the second dielectric layer 250, where the die interconnects 271, 272 are electrically coupled to the die pads 341, 342 on the die 300.
In an embodiment of the present invention, a third dielectric layer 280 is formed onto the second dielectric layer 250. In one embodiment, a plurality of die interconnects 291, 292 are formed in the third dielectric layer 280. The die interconnects 291, 292 at the third dielectric layer 280 are electrically coupled to the die interconnects 271, 272 in the second dielectric layer 250.
In an embodiment of the present invention, a plurality of package pads 231, 232, 233, 234 are formed in the first dielectric layer 210. The package pads 231, 232, 233, 234 are formed at the periphery regions of the die 300. In one embodiment, each of the package pads 231, 232, 233, 234 comprises an exposed surface that is substantially coplanar with the top surface 211 of the first dielectric layer 210. Furthermore, a plurality of package interconnects 273, 274, 275, 276 are formed in the second dielectric layer 250, and are electrically coupled to the package pads 231, 232, 233, 234. In one embodiment, additional package interconnects 293, 294 are formed in the third dielectric layer 280, and are electrically coupled to the package interconnects 273, 276 in the second dielectric layer 250. In one embodiment, die interconnects 291, 292 are formed in the third dielectric layer, where the die interconnects 291, 292 are electrically coupled to the die interconnects 271, 272.
In one embodiment, a solder resist layer 400 is formed on the third dielectric layer 280. In one embodiment, the solder resist layer 400 comprises openings that expose the die interconnects 291, 292 as well as the package interconnects 293, 294. Solder balls or bumps 411, 412, 413, 414 are formed onto the die interconnects 291, 292 and the packaged interconnects 293, 294. The solder bumps 411, 412 are electrically coupled to the die interconnects 291, 292. The solder bumps 413, 414 are electrically coupled to the package interconnects 293, 294.
In one embodiment, the dielectric layers 210, 250, 280 with die interconnects 271, 272, 291, 292 and package interconnects 273-276, 293, 294 constitute a coreless substrate, where the die 300 is entirely embedded in the coreless substrate. By embedding the die 300 in the coreless substrate of the semiconductor package 201, the assembly steps commonly used in conventional flip-chip assembly are eliminated, thus reducing assembly costs. In addition, the semiconductor package 201 is no longer confined to strip manufacturing capability, which enables full panel processing, further reducing manufacturing costs. Furthermore, the semiconductor package 201 enables mixed-technology die stacking or package stacking Hence, the semiconductor package 201 provides the advantages of low-profile packaging, thin die assembly, POP compatibility, mixed-technology (e.g. wire-bond) die stacking at reduced package assembly costs.
In an embodiment of the present invention, the semiconductor package 201 with additional die 500 forms a System-in-Package (SIP) that can be used in a variety of applications, for example portable or handheld devices such as laptops or mobile phones. In a specific embodiment, the die 300 is a System-on-Chip (SOC) containing a processor module while the die 500 is a memory module for the SOC.
In one embodiment, the POP structure shown in
In an embodiment of the present invention, the semiconductor package 201 can be used with a combination of die stacking and package stacking technologies. In one embodiment, the die 500 is attached to the top surface 221 of the layer of adhesive 220 as shown in
In an alternative embodiment, the die 300 is fully embedded in a semiconductor package without the package pads 231, 232, 233, 234 and the package interconnects 273, 274, 275, 276, 293, 294. For example,
Next, the first dielectric layer 210 is formed on the conductive surface 110 of the carrier 100 as shown in
In an embodiment of the present invention, the first dielectric layer 210 is made of a photo-imageable or photo-definable material. In one embodiment, the first dielectric layer 210 is made of a positive photo-definable material, where portions of the first dielectric layer 210 exposed to the radiation source are removed upon developing the first dielectric layer 210. In another embodiment, the first dielectric layer 210 is made of a negative photo-definable material, where portions of the first dielectric layer 210 exposed to the radiation source are retained upon developing the first dielectric layer 210. The photo-definable material includes but is not limited to epoxy-based photoresists. In an embodiment of the present invention, the fabrication of the (photo-definable) first dielectric layer 210 begins by laminating a layer of photo-definable material onto the conductive surface 110 (as shown in
In an alternative embodiment, the first dielectric layer 210 is made of common dielectric materials that are not photo-definable. In this case, the first dielectric layer 210 is fabricated by depositing the first dielectric layer 210 onto the conductive surface 110 (as shown in
Next, the layer of adhesive 220 is formed on the die region 111 of the conductive surface 110 as shown in
In one embodiment, the layer of adhesive 220 is formed with a thickness of around 10 to 50 um. The layer of adhesive 220 is made from materials, such as but not limited to filled epoxy-based materials. In an embodiment of the present invention, the layer of adhesive 220 remains as a permanent feature of the semiconductor package 201 to protect a die subsequently embedded in the first dielectric layer 210. Furthermore, the layer of adhesive 220 can be used as a surface for subsequent marking or used to minimize any warpage that may occur within the die.
Next, the plurality of package pads 231, 232, 233, 234 are formed on the pad regions 112, 113, 114, 115 of the conductive surface 110 as shown in
Next, the die 300 is attached to the layer of adhesive 220 as shown in
The layer of adhesive 220 serves as a protection layer for the die backside 320. Furthermore, the layer of adhesive 220 can be used to minimize any warpage that may occur in the die 300. In one embodiment, the layer of adhesive 220 comprises a UV-curable property that can be subsequently activated to attach a wirebond die to the top surface 221 of the layer of adhesive 220. In one embodiment, the layer of adhesive 220 comprises thermal conductive properties that facilitate heat dissipation of the die 300.
Next, a second dielectric layer 250 is formed onto the first dielectric layer 210 and the die 300 as shown in
In one embodiment, the second dielectric layer 250 encapsulates the entire die 300, including the front side 310 and sidewalls of the die 300. Furthermore, the second dielectric layer 250 is formed onto the plurality of package pads 231, 232, 233, 234. In one embodiment, the second dielectric layer 250 is formed with a level surface 251 to facilitate the subsequent build-up process.
Next, a plurality of interconnects are formed on the die pads 341, 342 and the package pads 231, 232, 233, 234. In an embodiment of the present invention, a semi-additive process (SAP) is used to form the plurality of interconnects. For example, the fabrication of the plurality of interconnects begins, in
In one embodiment, the via openings 261, 262, 263, 264, 265, 266 are formed by a mechanical or laser drilling process. In one embodiment, the via openings 261, 262 and the via openings 263, 264, 265, 266 are defined in separate drilling processes due to the different diameter and depth. For example, the via openings 261, 262 are formed by using a UV YAG laser source. The via openings 261, 262 are formed with a diameter size of less than 50 um. Then, the via openings 263, 264, 265, 266 are formed with a CO2 laser source. The via openings 263, 264, 265, 266 are formed with a diameter size of around 50-150 um. In an embodiment of the present invention, the surfaces of the via openings 261, 262, 263, 264, 265, 266 can be cleaned by using a desmear process based on permanganate chemistry that is commonly used in substrate manufacturing.
After forming the via openings 261, 262, 263, 264, 265, 266, a metal layer (not shown) is deposited into the via openings 261, 262, 263, 264, 265, 266, and onto the die pads 341, 342 and package pads 231, 232, 233, 234. In a specific embodiment, the metal layer starts from a copper seed layer deposited by electroless plating. Subsequently, the metal layer is patterned using well known photolithography, electrolytic copper plating, resist stripping, and etching techniques to form separate interconnects 271, 272, 273, 274, 275, 276 shown in
The number of build-up layers in the semiconductor package can be increased by using the SAP build-up process. For example, repeating the steps of forming the dielectric layer, followed by forming the interconnects, thereby creating more metallization layers. For example, in
For illustrations purposes,
In an embodiment of the present invention, a solder resist layer 400 is formed over the uppermost dielectric layer (i.e. the third dielectric layer 280) as shown in
Next, the carrier 100 is removed from the semiconductor package 201 to expose the package pads 231, 232, 233, 234 and the adhesive layer 220 as shown in
Then, the solder balls or bumps 411, 412 are formed onto the exposed interconnects 292, 293. The solder bumps 411, 412 are made from well known solder materials and are formed by well known techniques, such as but not limited to evaporation, electroplating or direct placement. This completes the fabrication of the semiconductor device shown in
Next, in
Next, in
One or more of the components shown in system 800 may be included in/and or may include one or more integrated circuit packages, such as the package structure of
These elements perform their conventional functions well known in the art. In particular, memory device 820 may be used in some cases to provide long-term storage for the executable instructions for a method for forming packaged structures in accordance with embodiments of the present invention, and in other embodiments may be used to store on a shorter term basis the executable instructions of a method for forming package structures in accordance with embodiments of the present invention during execution by processor 810. In addition, the instructions may be stored, or otherwise associated with, machine accessible mediums communicatively coupled with the system, such as compact disk read only memories (CD-ROMs), digital versatile disks (DVDs), and floppy disks, carrier waves, and/or other propagated signals, for example. In one embodiment, memory device 820 may supply the processor 810 with the executable instructions for execution.
System 800 may include computers (e.g., desktops, laptops, hand-helds, servers, Web appliances, routers, etc.), wireless communication devices (e.g., cellular phones, cordless phones, pagers, personal digital assistants, etc.), computer-related peripherals (e.g., printers, scanners, monitors, etc.), entertainment devices (e.g., televisions, radios, stereos, tape and compact disc players, video cassette recorders, camcorders, digital cameras, MP3 (Motion Picture Experts Group, Audio Layer 3) players, video games, watches, etc.), and the like.
Several embodiments of the invention have thus been described. However, those ordinarily skilled in the art will recognize that the invention is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims that follow.
The present application is a divisional of U.S. patent application Ser. No. 12/655,335, filed on Dec. 29, 2009, now U.S. Pat. No. 8,901,724, entitled “SEMICONDUCTOR PACKAGE WITH EMBEDDED DIE AND ITS METHODS OF FABRICATION” which is hereby incorporated herein by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3691628 | Kim | Sep 1972 | A |
5306670 | Mowatt | Apr 1994 | A |
5324687 | Wojnarowski | Jun 1994 | A |
5353498 | Fillion et al. | Oct 1994 | A |
5497033 | Fillion et al. | Mar 1996 | A |
5527741 | Cole et al. | Jun 1996 | A |
5841193 | Eichelberger | Nov 1998 | A |
5963429 | Chen | Oct 1999 | A |
6154366 | Ma et al. | Nov 2000 | A |
6159767 | Eichelberger | Dec 2000 | A |
6239482 | Fillion et al. | May 2001 | B1 |
6242282 | Fillion et al. | Jun 2001 | B1 |
6271469 | Ma et al. | Aug 2001 | B1 |
6306680 | Fillion et al. | Oct 2001 | B1 |
6306686 | Horton et al. | Oct 2001 | B1 |
6396148 | Eichelberger et al. | May 2002 | B1 |
6396153 | Fillion et al. | May 2002 | B2 |
6423570 | Ma et al. | Jul 2002 | B1 |
6426545 | Eichelberger et al. | Jul 2002 | B1 |
6489185 | Towle et al. | Dec 2002 | B1 |
6555906 | Towle et al. | Apr 2003 | B2 |
6555908 | Eichelberger et al. | Apr 2003 | B1 |
6580611 | Vandentop et al. | Jun 2003 | B1 |
6586276 | Towle et al. | Jul 2003 | B2 |
6586822 | Vu et al. | Jul 2003 | B1 |
6586836 | Ma et al. | Jul 2003 | B1 |
6617682 | Ma et al. | Sep 2003 | B1 |
6703400 | Johnson et al. | Mar 2004 | B2 |
6706553 | Towle et al. | Mar 2004 | B2 |
6709898 | Ma et al. | Mar 2004 | B1 |
6713859 | Ma | Mar 2004 | B1 |
6734534 | Vu et al. | May 2004 | B1 |
6794223 | Ma et al. | Sep 2004 | B2 |
6818544 | Eichelberger et al. | Nov 2004 | B2 |
6825063 | Vu et al. | Nov 2004 | B2 |
6841413 | Liu et al. | Jan 2005 | B2 |
6872589 | Strandberg et al. | Mar 2005 | B2 |
6888240 | Towle et al. | May 2005 | B2 |
6894399 | Vu et al. | May 2005 | B2 |
6902950 | Ma et al. | Jun 2005 | B2 |
6964889 | Ma et al. | Nov 2005 | B2 |
7067356 | Towle et al. | Jun 2006 | B2 |
7071024 | Towle et al. | Jul 2006 | B2 |
7078788 | Vu et al. | Jul 2006 | B2 |
7098070 | Chen et al. | Aug 2006 | B2 |
7109055 | McDonald et al. | Sep 2006 | B2 |
7112467 | Eichelberger et al. | Sep 2006 | B2 |
7160755 | Lo et al. | Jan 2007 | B2 |
7183658 | Towle et al. | Feb 2007 | B2 |
7189596 | Mu et al. | Mar 2007 | B1 |
7242092 | Hsu | Jul 2007 | B2 |
7416918 | Ma | Aug 2008 | B2 |
7420273 | Liu et al. | Sep 2008 | B2 |
7425464 | Fay et al. | Sep 2008 | B2 |
7442581 | Lytle et al. | Oct 2008 | B2 |
7449363 | Hsu | Nov 2008 | B2 |
7476563 | Mangrum et al. | Jan 2009 | B2 |
7588951 | Mangrum et al. | Sep 2009 | B2 |
7595226 | Lytle et al. | Sep 2009 | B2 |
7619901 | Eichelberger et al. | Nov 2009 | B2 |
7632715 | Hess et al. | Dec 2009 | B2 |
7648858 | Tang et al. | Jan 2010 | B2 |
7651889 | Tang et al. | Jan 2010 | B2 |
7655502 | Mangrum et al. | Feb 2010 | B2 |
7659143 | Tang et al. | Feb 2010 | B2 |
7723164 | Lu et al. | May 2010 | B2 |
7842887 | Sakamoto | Nov 2010 | B2 |
8264849 | Guzek | Sep 2012 | B2 |
8304913 | Nalla et al. | Nov 2012 | B2 |
8313958 | Swaminathan et al. | Nov 2012 | B2 |
20040155337 | Strandberg et al. | Aug 2004 | A1 |
20050098891 | Wakabayashi | May 2005 | A1 |
20050161799 | Jobetto | Jul 2005 | A1 |
20050161833 | Takeuchi et al. | Jul 2005 | A1 |
20060065972 | Khan et al. | Mar 2006 | A1 |
20060115931 | Hsu | Jun 2006 | A1 |
20060186531 | Hsu | Aug 2006 | A1 |
20070235882 | Sekiguchi et al. | Oct 2007 | A1 |
20070252287 | Pogge et al. | Nov 2007 | A1 |
20080023819 | Chia et al. | Jan 2008 | A1 |
20080054448 | Lu et al. | Mar 2008 | A1 |
20080116569 | Huang et al. | May 2008 | A1 |
20080315377 | Eichelberger et al. | Dec 2008 | A1 |
20080315391 | Kohl et al. | Dec 2008 | A1 |
20090007282 | Tomizuka et al. | Jan 2009 | A1 |
20090072382 | Guzek | Mar 2009 | A1 |
20090079063 | Chrysler et al. | Mar 2009 | A1 |
20090079064 | Tang et al. | Mar 2009 | A1 |
20090212416 | Skeete | Aug 2009 | A1 |
20090294942 | Palmer et al. | Dec 2009 | A1 |
20090309202 | Hsu et al. | Dec 2009 | A1 |
20100044855 | Eichelberger et al. | Feb 2010 | A1 |
20100047970 | Eichelberger et al. | Feb 2010 | A1 |
20110101491 | Skeete et al. | May 2011 | A1 |
20110108999 | Nalla et al. | May 2011 | A1 |
20110156231 | Guzek | Jun 2011 | A1 |
20110228464 | Guzek et al. | Sep 2011 | A1 |
20110241186 | Nalla et al. | Oct 2011 | A1 |
20110241195 | Nalla et al. | Oct 2011 | A1 |
20110241215 | Sankman et al. | Oct 2011 | A1 |
20110254124 | Nalla et al. | Oct 2011 | A1 |
20110316140 | Nalla et al. | Dec 2011 | A1 |
20120001339 | Malatkar | Jan 2012 | A1 |
20120009738 | Crawford et al. | Jan 2012 | A1 |
20120074581 | Guzek et al. | Mar 2012 | A1 |
20120112336 | Guzek et al. | May 2012 | A1 |
20120129298 | Lin | May 2012 | A1 |
20120139095 | Manusharow et al. | Jun 2012 | A1 |
20120139116 | Manusharow et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1498417 | May 2004 | CN |
0225825 | Mar 2002 | WO |
2011090570 | Jul 2011 | WO |
2011090570 | Oct 2011 | WO |
Entry |
---|
Circuit Package, May 1968, IBM Technical Disclosure Bulletin No. NN68051977, vol. 10, Issue No. 12, pp. 1977-1978. |
Office Action received for Taiwan Patent Application No. 099142999, mailed on Jul. 28, 2015, 11 pages of Taiwan Office Action and 1 page of English Search Report. |
Office Action received for Chinese Patent Application No. 201080054650.4, mailed on Apr. 23, 2014, 17 pages of English Translation and 10 Pages of Chinese Office Action. |
Office Action received for Chinese Patent Application No. 201080054650.4, mailed on Oct. 20, 2014, 11 pages of English Translation and 8 Pages of Chinese Office Action. |
Notice of Allowance received for Korean Patent Application No. 2012-7016887, mailed on Sep. 25, 2014, 1 page of English Translation and 2 pages of Korean NOA. |
Office Action received for Korean Patent Application No. 2012-7016887, mailed on Feb. 3, 2014, 1 page of English Translation and 1 page of Office Action. |
Office Action received for Korean Patent Application No. 2012-7016887, mailed on Jun. 17, 2014, 3 pages of English Translation only. |
International Preliminary Report on Patentability and Written Opinion received for PCT Patent Application No. PCT/US2010/059237, mailed on Jul. 12, 2012, 5 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/059237, mailed on Aug. 19, 2011, 7 pages. |
Ma, et al., “Direct Build-Up Layer on an Encapsulated Die Package”, U.S. Appl. No. 09/640,961, filed Aug. 16, 2000, 70 pages. |
Office Action received for Chinese Patent Application No. 201080054650.4, mailed on Apr. 13, 2015, 10 pages of English Translation of Chinese Office Action and 7 pages of Chinese Office Action. |
Number | Date | Country | |
---|---|---|---|
20150050781 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12655335 | Dec 2009 | US |
Child | 14529881 | US |