System-in packages

Information

  • Patent Grant
  • 8503186
  • Patent Number
    8,503,186
  • Date Filed
    Thursday, July 22, 2010
    14 years ago
  • Date Issued
    Tuesday, August 6, 2013
    11 years ago
Abstract
System-in packages, or multichip modules, are described which can include multi-layer chips and multi-layer dummy substrates over a carrier, multiple through vias blindly or completely through the multi-layer chips and completely through the multi-layer dummy substrates, multiple metal plugs in the through vias, and multiple metal interconnects, connected to the metal plugs, between the multi-layer chips. The multi-layer chips can be connected to each other or to an external circuit or structure, such as mother board, ball grid array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the metal plugs and the metal interconnects.
Description
BACKGROUND OF THE DISCLOSURE

1. Field of the Disclosure


The disclosure relates to system-in packages, and more particularly, to system-in packages that include through vias formed in stacked chips and in stacked dummy substrates and utilize metal plugs formed in the through vias for electrical interconnection between the stacked chips.


2. Brief Description of the Related Art


Semiconductor wafers are processed to produce IC (integrated circuit) chips having ever-increasing device density and shrinking feature geometries. Multiple conductive and insulating layers are required to enable the interconnection and isolation of the large number of semiconductor devices in different layers. Such large scale integration results in an increasing number of electrical connections between various layers and semiconductor devices. It also leads to an increasing number of leads to the resultant IC chip. These leads are exposed through a passivation layer of the IC chip, terminating in I/O pads that allow connections to external contact structures in a chip package.


Wafer-Level Packaging (WLP) commonly refers to the technology of packaging an IC chip at wafer level, instead of the traditional process of assembling the package of each individual unit after wafer dicing. WLP allows for the integration of wafer fabrication, packaging, test, and burn-in at the wafer level, before being singulated by dicing for final assembly into a chip carrier package, e.g., a ball grid array (BGA) package. The advantages offered by WLP include less size (reduced footprint and thickness), lesser weight, relatively easier assembly process, lower overall production costs, and improvement in electrical performance. WLP therefore streamlines the manufacturing process undergone by a device from silicon start to customer shipment. While WLP is a high throughput and low cost approach to IC chip packaging, it however invites significant challenges in manufacturability and structural reliability.


SUMMARY OF THE DISCLOSURE

The present disclosure is directed to a system-in package or multichip module that include multi-layer chips and multi-layer dummy substrates over a carrier, multiple through vias blindly or completely through the multi-layer chips and completely through the multi-layer dummy substrates, multiple metal plugs in the through vias, and multiple metal interconnects, connected to the metal plugs, between the multi-layer chips. The multi-layer chips can be connected to each other or to an external circuit of the system-in package or multichip module, such as mother board, ball grid array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the metal plugs and the metal interconnects.


Exemplary embodiments of the present disclosure provide system-in packages or multichip modules having multi-layer chips and using metal plugs blindly or completely through the multi-layer chips for inter-chip interconnection or intra-chip interconnection. In one aspect, the invention is directed to a system-in package comprising a carrier, and a first chip over said carrier, wherein said first chip comprises a first semiconductor substrate having a thickness between 1 and 50 micrometers, a first metal layer under a bottom surface of said first semiconductor substrate, and a dielectric layer under said bottom surface of said first semiconductor substrate and over said first metal layer. The system-in package further includes a second chip over said carrier, wherein said second chip comprises a second semiconductor substrate, wherein said second semiconductor substrate has a top surface substantially coplanar with a top surface of said first semiconductor substrate, wherein said second chip is separated from said first chip. Also included are a gap filling material disposed in a gap between said first chip and said second chip, a first metal plug in said first chip, wherein said first metal plug passes through said first semiconductor substrate and said dielectric layer and contacts said first metal layer, and a first insulating material enclosing said first metal plug, wherein said first insulating material is enclosed by said first semiconductor substrate. The system-in package further includes a first dielectric structure on said top surface of said first semiconductor substrate, on said top surface of said second semiconductor substrate, and on said gap filling material, and a first metal interconnect in said first dielectric structure and over said first chip, wherein said first metal interconnect is connected to said first metal plug. Also included in the system-in package are a third chip over said first dielectric structure and over said first metal interconnect, wherein said third chip comprises a third semiconductor substrate having a thickness between 1 and 50 micrometers, and a second metal plug in said third chip, wherein said second metal plug passes through said third chip and contacts said first metal interconnect. The system-in package further includes a second insulating material enclosing said second metal plug, wherein said second insulating material is enclosed by said third semiconductor substrate, a second dielectric structure on a top surface of said third semiconductor substrate, and a second metal interconnect in said second dielectric structure and over said third chip, wherein said second metal interconnect is connected to said second metal plug.


Furthermore, exemplary embodiments can provide for ease for manufacturing multi-layer chip integration.


Furthermore, exemplary embodiments can provide dummy substrates placed between chips to achieve good uniformity of silicon thinning.


These, as well as other components, steps, features, benefits, and advantages of the present disclosure, will now become clear from a review of the following detailed description of illustrative embodiments, the accompanying drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings disclose illustrative embodiments of the present disclosure. They do not set forth all embodiments. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for more effective illustration. Conversely, some embodiments may be practiced without all of the details that are disclosed. When the same numeral appears in different drawings, it refers to the same or like components or steps.


Aspects of the disclosure may be more fully understood from the following description when read together with the accompanying drawings, which are to be regarded as illustrative in nature, and not as limiting. The drawings are not necessarily to scale, emphasis instead being placed on the principles of the disclosure. In the drawings:



FIGS. 1-82 show a process for forming a system-in package or multichip module according to an exemplary embodiment of the present disclosure;



FIG. 83 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 84 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 85 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 86 and 87 are cross-sectional views showing a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 88 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 89-103 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 104 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 105 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 106 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 107 and 108 are cross-sectional views showing a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 109 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 110-128 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 129 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 130 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 131 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 132 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 133-136 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 137 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 138 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 139 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 140 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 141A-141J show a process for forming chips according to an embodiment of the present disclosure;



FIG. 141K shows cross-sectional views of chips according to an embodiment of the present disclosure;



FIG. 141L shows cross-sectional views of chips according to an embodiment of the present disclosure;



FIGS. 142-181 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 182 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 183 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 184 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 185 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 186-207 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 208 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 209 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 210 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 211 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 212A-212L show a process for forming chips according to an embodiment of the present disclosure;



FIG. 212M shows cross-sectional views of chips according to an embodiment of the present disclosure;



FIG. 212N shows cross-sectional views of chips according to an embodiment of the present disclosure;



FIGS. 213-250 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 251 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 252 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 253 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 254 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 255-270 show a process for forming a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 271 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 272 shows a cross-sectional view of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 273 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIG. 274 shows a cross-sectional view of a multichip package according to an embodiment of the present disclosure;



FIGS. 275A-275L show another process for forming the structure shown in FIG. 26;



FIGS. 276 and 285 are circuit diagrams each showing interface circuits between two chips according to an embodiment of the present disclosure;



FIGS. 277 and 280 show inter-chip circuits each including a two-stage cascade inter-chip receiver and an inter-chip ESD (electro static discharge) circuit according to an embodiment of the present disclosure;



FIGS. 278 and 279 show inter-chip circuits each including a two-stage cascade inter-chip driver and an inter-chip ESD (electro static discharge) circuit according to an embodiment of the present disclosure;



FIGS. 281 and 284 show two-stage cascade off-chip receivers according to an embodiment of the present disclosure;



FIGS. 282 and 283 show two-stage cascade off-chip drivers according to an embodiment of the present disclosure;



FIGS. 286-291 show a method for calculating an active area of an ESD unit of a chip and define a size of an ESD circuit composed of one or more of the ESD units according to an embodiment of the present disclosure;



FIGS. 292 and 293 show a method for defining or calculating a physical channel width and a physical channel length of a MOS transistor according to an embodiment of the present disclosure;



FIGS. 294 and 295 are circuit diagrams each showing interface circuits between two chips, according to an embodiment of the present disclosure; and



FIG. 296 is a schematic top perspective view showing the arrangement of a bottom tier of chips, a dummy substrate, metal plugs and metal interconnects of a system-in package or multichip module according to an embodiment of the present disclosure;



FIG. 297 is a schematic top perspective view showing the arrangement of a middle tier of chips, a dummy substrate, metal plugs and metal interconnects of a system-in package or multichip module according to an embodiment of the present disclosure; and



FIG. 298 is a schematic top perspective view showing the arrangement of a top tier of chips, a dummy substrate, metal plugs and metal interconnects of a system-in package or multichip module according to an embodiment of the present disclosure.





While certain embodiments are depicted in the drawings, one skilled in the art will appreciate that the embodiments depicted are illustrative and that variations of those shown, as well as other embodiments described herein, may be envisioned and practiced within the scope of the present disclosure.


DETAILED DESCRIPTION OF THE INVENTION

Illustrative embodiments are now described. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for a more effective presentation. Conversely, some embodiments may be practiced without all of the details that are disclosed.



FIGS. 1-82 show a process for forming a system-in package or multichip module according to an exemplary embodiment of the present disclosure.


Referring to FIG. 1, a dummy substrate 62 can be attached onto a carrier 11, e.g., by the following steps. First, a glue layer 22 having a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers, can be formed on a top surface of the carrier 11 or on a bottom surface of the dummy substrate 62 by using, e.g., a spin coating process, a lamination process, a spraying process, a dispensing process, or a screen printing process. Next, the glue layer 22 can be optionally pre-cured or baked. Next, the dummy substrate 62 can be placed over the carrier 11 with the glue layer 22 between the carrier 11 and the dummy substrate 62. Next, the glue layer 22 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 22. Accordingly, the dummy substrate 62 can be joined with the carrier 11 using the glue layer 22. The glue layer 22 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or silosane, with a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers.


Alternatively, the glue layer 22 can be replaced with a silicon-oxide layer that can be formed on the dielectric or insulating layer 20 of the carrier 11. In this case, the dummy substrate 62 can be joined with the carrier 11, e.g., by bonding a silicon-oxide layer of the dummy substrate 62 onto the silicon-oxide layer 22. The silicon-oxide layer of the dummy substrate 62 contacts the silicon-oxide layer 22.


The dummy substrate 62 can, for example, be a round wafer, a dummy silicon wafer, a rectangular panel, or a substrate of polysilicon, glass, silicon or ceramic. The dummy substrate 62, before being ground or polished as mentioned in the following processes, may have a thickness, e.g., greater than 100 micrometers, such as between 100 and 1,500 micrometers, and preferably between 200 and 500 micrometers or between 100 and 300 micrometers.


In one embodiment, there are no circuits preformed in the dummy substrate 62 or on a top or bottom surface of the dummy substrate 62 before the dummy substrate 62 is joined with the carrier 11. The dummy substrate 62 may have a top surface with a profile that is substantially same as that of a top surface of the carrier 11.


The carrier 11 can be a wafer, a panel, a print circuit board (PCB), or an organic ball-grid-array (BGA) substrate, and the carrier 11 can include a substrate 10, a dielectric layer 12 on a top side of the substrate 10, a conductive layer 18 on the dielectric layer 12, and a dielectric or insulating layer 20 on the conductive layer 18. The substrate 10 can be a silicon substrate, a glass substrate, a ceramic substrate, an aluminum substrate, a copper substrate, or an organic polymer substrate. The substrate 10 can have a thickness, e.g., between 10 and 1,000 micrometers, between 10 and 100 micrometers, or between 100 and 500 micrometers. The dielectric layer 12 can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), or polymer (such as polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), epoxy, or silosane). The dielectric layer 12 may have a thickness, e.g., between 0.3 and 30 micrometers, and preferably between 1 and 10 micrometers. The conductive layer 18, for example, can be a patterned metal layer, and the patterned metal layer may include an adhesion/barrier layer, such as a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel or nickel vanadium, with a thickness, e.g., between 1 nanometer and 0.5 micrometers, a sputtered seed layer, such as a layer of copper, silver, gold, or a titanium-copper alloy, with a thickness, e.g., between 10 nanometers and 0.8 micrometers on the adhesion/barrier layer, and an electroplated metal layer, such as a layer of copper, silver or gold with a thickness, e.g., between 10 nanometers and 2 micrometers, and preferably between 50 nanometers and 1 micrometer, or with a thickness, e.g., between 2 and 30 micrometers, and preferably between 3 and 10 micrometers, on the sputtered seed layer. The dielectric or insulating layer 20, for example, can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), solder mask, or polymer (such as polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), epoxy, or silosane). The thickness of the dielectric or insulating layer 20 above the conductive layer 18 may be in the range between 0.3 and 30 micrometers, and preferably between 1 and 10 micrometers.


In a first embodiment, the carrier 11 can be a round wafer including the silicon substrate 10, multiple active devices, such as transistors, in and/or over the silicon substrate 10, the dielectric layer 12 on the silicon substrate 10, the patterned metal layer 18 on the dielectric layer 12, and the dielectric or insulating layer 20, such as a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), silicon carbon nitride (such as SiCN), or polymer (such as polyimide, benzocyclobutene, polybenzoxazole, or poly-phenylene oxide), on the patterned metal layer 18.


In a second embodiment, the carrier 11 can be a round wafer including the silicon substrate 10, multiple passive devices, such as resistors, inductors or capacitors, in and/or over the silicon substrate 10, the dielectric layer 12 on the silicon substrate 10, the patterned metal layer 18 on the dielectric layer 12, and the dielectric or insulating layer 20, such as a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), or polymer (such as polyimide, benzocyclobutene, polybenzoxazole, or poly-phenylene oxide), on the patterned metal layer 18 and over the passive devices, but not including any active device, such as transistor, in and/or over the silicon substrate 10.


In a third embodiment, the carrier 11 can be a rectangular panel including the glass substrate 10, the dielectric layer 12 on the glass substrate 10, the conductive layer 18, such as indium-tin-oxide (ITO) layer, on the dielectric layer 12, and the dielectric or insulating layer 20 on the conductive layer 18.


In a fourth embodiment, the carrier 11 can be a print circuit board (PCB) or an organic ball-grid-array (BGA) substrate including the organic polymer substrate 10, the dielectric layer 12 on the organic polymer substrate 10, the patterned metal layer 18 on the dielectric layer 12, and the dielectric or insulating layer 20, such as a layer of solder mask or polymer (such as epoxy), on the patterned metal layer 18.


Alternatively, the carrier 11 can be formed without the layers 12, 18 and 20 over the substrate 10, i.e., the carrier 11 only has the substrate 10 without any circuit in the carrier 11. In this case, the layer 22 can be directly formed on the substrate 10.


Next, referring to FIG. 2, a photoresist layer 172 can be formed on the dummy substrate 62 by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, referring to FIG. 3, a photo exposure process and a development process can be employed to form multiple openings 172a, exposing multiple regions of the dummy substrate 62, in the photoresist layer 172. The photoresist layer 172, after the photo exposure process and the development process, may have a thickness, e.g., between 10 and 200 micrometers. FIG. 4 shows a schematic top view of the photoresist layer 172 with the openings 172a as shown in FIG. 3, and FIG. 3 can be a cross-sectional view cut along the line A-A shown in FIG. 4.


Next, referring to FIG. 5, multiple openings 62a are formed in the dummy substrate 62 and under the openings 172a in the photoresist layer 172, exposing the glue layer 22, using a chemical etching process or a plasma etching process, and then the patterned photoresist layer 172 is removed by using, e.g., an organic chemical. Alternatively, when the glue layer 22 is replaced with the silicon-oxide layer and the dummy substrate 62 has the silicon-oxide layer bonded with the silicon-oxide layer 22, the openings 62a are formed in the dummy substrate 62 and under the openings 172a in the photoresist layer 172, exposing the silicon-oxide layer of the dummy substrate 62, using a chemical etching process or a plasma etching process, and then the patterned photoresist 172 is removed by using, e.g., an organic chemical. FIG. 6 shows a schematic top view of the dummy substrate 62 with the openings 62a as shown in FIG. 5, and FIG. 5 can be a cross-sectional view cut along the line B-B shown in FIG. 6.


Alternatively, a hard mask (not shown), such as silicon oxide or silicon nitride, may be formed on the dummy substrate 62 shown in FIG. 5, e.g., by the following steps. First, the hard mask of silicon oxide or silicon nitride can be formed on the dummy substrate 62 shown in FIG. 1. Next, the photoresist layer 172 can be formed on the hard mask by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 172a, exposing multiple regions of the hard mask, in the photoresist layer 172. Next, multiple openings are formed in the hard mask and under the openings 172a in the photoresist layer 172, exposing multiple regions of the dummy substrate 62, by using, e.g., a wet etching process or a plasma etching process. Next, the patterned photoresist layer 172 can be removed by using, e.g., an organic chemical. Next, multiple openings 62a are formed in the dummy substrate 62 and under the openings in the hard mask, exposing the glue layer 22, by using, e.g., a chemical etching process or a plasma etching process. Alternatively, when the glue layer 22 is replaced with the silicon-oxide layer and the dummy substrate 62 has the silicon-oxide layer bonded with the silicon-oxide layer 22, the openings 62a are formed in the dummy substrate 62 and under the openings in the hard mask, exposing the silicon-oxide layer of the dummy substrate 62, by using, e.g., a chemical etching process or a plasma etching process. The hard mask will be removed by the following grinding or polishing process.


Next, referring to FIG. 7, multiple chips 68 are mounted over the carrier 11 and in the openings 62a in the dummy substrate 62, and the chips 68 have active sides at bottoms of the chips 68 and backsides at tops of the chips 68. In one case, one of the chips 68 may have different circuit designs from those of another one of the chips 68. Also, in another case, one of the chips 68 may have same circuit designs as those of another one of the chips 68. Alternatively, one of the chips 68 may have a different area (top surface) or size from that of another one of the chips 68. Also, in another case, one of the chips 68 may have a same area (top surface) or size as that of another one of the chips 68. FIG. 8 is an example of a schematical top view showing the chips 68 mounted in the openings 62a in the dummy substrate 62, and FIG. 7 is a cross-sectional view cut along the line C-C shown in the schematical top view of FIG. 8.


Mounting the chips 68 over the carrier 11 and in the openings 62a can be performed, e.g., by first forming a glue material (not shown) on the active sides of the chips 68 or on the glue layer 22, next placing the chips 68 in the openings 62a and over the glue layer 22 with the glue material contacting the glue layer 22, and then curing the glue material in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue material. Accordingly, the chips 68 can be joined with the carrier 11 using the glue material.


Each of the chips 68 can include a semiconductor substrate 58, multiple semiconductor devices 36 in and/or on the semiconductor substrate 58, a passivation layer 24 under the semiconductor substrate 58, multiple dielectric layers 42, 44, 46 and 48 between the semiconductor substrate 58 and the passivation layer 24, a patterned metal layer 26 between the semiconductor substrate 58 and the passivation layer 24, an interconnection layer 34 between the semiconductor substrate 58 and the passivation layer 24, multiple via plugs 26a in the dielectric layer 44, and multiple via plugs 34a in the dielectric layer 48. The semiconductor substrate 58 is at the backside of each chip 68, and the semiconductor devices 36, the passivation layer 24, the patterned metal layer 26, the interconnection layer 34, the dielectric layers 42, 44, 46 and 48, and the via plugs 26a and 34a are at the active side of each chip 68.


The semiconductor substrate 58 can be a suitable substrate, such as silicon substrate, silicon-germanium (SiGe) substrate, or gallium-arsenide (GaAs) substrate. The semiconductor substrate 58 before being thinned as mentioned in the following processes may have a thickness, e.g., greater than 100 micrometers, such as between 100 and 500 micrometers, and preferably between 150 and 250 micrometers or between 100 and 300 micrometers.


Each of the semiconductor devices 36 can be a P-channel metal-oxide-semiconductor (PMOS) transistor, an N-channel metal-oxide-semiconductor (NMOS) transistor, a bipolar transistor, or a double-diffused metal-oxide-semiconductor (DMOS) transistor. Each of the semiconductor devices 36 can be provided for a NOR gate, a NAND gate, an AND gate, an OR gate, a flash memory cell, a static-random-access-memory (SRAM) cell, a dynamic-random-access-memory (DRAM) cell, a non-volatile memory cell, an erasable programmable read-only memory (EPROM) cell, a read-only memory (ROM) cell, a magnetic-random-access-memory (MRAM) cell, a sense amplifier, an inverter, an operational amplifier, an adder, a multiplexer, a diplexer, a multiplier, an analog-to-digital (A/D) converter, a digital-to-analog (D/A) converter, an analog circuit, a complementary-metal-oxide-semiconductor (CMOS) sensor, or a charge coupled device (CCD).


The passivation layer 24 may include or can be an inorganic dielectric layer having a bottom surface attached to the glue layer 22, and the inorganic dielectric layer can be a layer of silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN) or silicon oxynitride (such as SiON) with a thickness, e.g., between 0.3 and 1.5 micrometers. Alternatively, each of the chips 68 may further contain an organic polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), epoxy, or silosane, with a thickness, e.g., greater than 3 micrometers, such as between 3 and 20 micrometers, and preferably between 5 and 12 micrometers, under and on the bottom surface of the inorganic dielectric layer of the passivation layer 24. In this case, the organic polymer layer has a bottom surface attached to the glue layer 22. The organic polymer layer has a top surface contacting the bottom surface of the inorganic dielectric layer of the passivation layer 24.


Alternatively, multiple openings (not shown) each having a width, e.g., between 0.5 and 100 micrometers, and preferably between 20 and 60 micrometers, may be formed in the passivation layer 24 and expose multiple contact points of the patterned metal layer 26.


The dielectric layer 42 can be between the passivation layer 24 and the dielectric layer 44. The dielectric layer 44 can be between the dielectric layers 42 and 46 and between the layers 26 and 34. The dielectric layer 46 can be between the dielectric layers 44 and 48. Each of the dielectric layers 42, 44 and 46 may include silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), or a low-k material having a dielectric constant between 1.8 and 3 (such as fluorinated silicate glass (FSG) or Black-diamond). Each of the dielectric layers 42, 44 and 46 may have a thickness, e.g., between 10 nanometers and 2 micrometers or between 50 nanometers and 1 micrometer.


The dielectric layer 48 between the dielectric layer 46 and the semiconductor substrate 58 and between the interconnection layer 34 and the semiconductor substrate 58 may include or can be a layer of phosphorous silicate glass (PSG), borophospho-silicate glass (BPSG), silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or a low-k material having a dielectric constant between 1.8 and 3 (such as fluorinated silicate glass (FSG) or Black-diamond). The dielectric layer 48 may have a thickness, e.g., between 10 nanometers and 1 micrometer.


The patterned metal layer 26, for example, may include an aluminum-copper-alloy layer having a thickness, e.g., between 0.3 and 3 micrometers and a titanium-containing layer having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers. The titanium-containing layer can be between the dielectric layer 44 and the aluminum-copper-alloy layer and on the aluminum-copper-alloy layer, and the aluminum-copper-alloy layer can be between the passivation layer 24 and the titanium-containing layer. The titanium-containing layer can be a single layer of titanium, titanium nitride, or a titanium-tungsten alloy having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers.


Alternatively, the patterned metal layer 26 may include a nickel layer having a thickness, e.g., between 0.5 and 3 micrometers and a gold layer having a thickness, e.g., between 0.01 and 1 micrometers under and on the nickel layer, in the view from the side of the dielectric layer 44 to the side of the passivation layer 24. The nickel layer is between the dielectric layer 44 and the gold layer, and the gold layer is between the nickel layer and the passivation layer 24.


Alternatively, the patterned metal layer 26 can be formed by a damascene or double-damascene process including an electroplating process and a chemical mechanical polishing (CMP) process and can be composed of an electroplated copper layer having a bottom contacting the passivation layer 24, an adhesion/barrier metal layer at a top and sidewalls of the electroplated copper layer, and a seed layer between the electroplated copper layer and the adhesion/barrier metal layer and on the top and sidewalls of the electroplated copper layer. The adhesion/barrier metal layer has a first portion between the top of the electroplated copper layer and the dielectric layer 44 and a second portion at the sidewalls of the electroplated copper layer. The electroplated copper layer may have a thickness, e.g., smaller than 1.5 micrometers, such as between 0.15 and 1.2 micrometers, or smaller than 3 micrometers, such as between 0.3 and 3 micrometers. The electroplated copper layer may have a width, e.g., smaller than 1 micrometer, such as between 0.05 and 1 micrometers. The seed layer may include or can be a layer of copper or a titanium-copper alloy formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum or tantalum nitride formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may have a thickness, e.g., smaller than 0.1 micrometers, such as between 0.005 and 0.1 micrometers. The sidewalls of the electroplated copper layer are covered by the adhesion/barrier metal layer and the seed layer.


The interconnection layer 34, for example, may include carbon nanotube. Alternatively, the interconnection layer 34 can be composed of a patterned metal layer in the dielectric layer 46. In a first alternative, the patterned metal layer 34 may include an aluminum-copper-alloy layer having a thickness, e.g., between 10 nanometers and 2 micrometers and a titanium-containing layer, such as a single layer of titanium nitride, titanium-tungsten alloy or titanium, having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers. The titanium-containing layer can be between the dielectric layer 48 and the aluminum-copper-alloy layer and on the aluminum-copper-alloy layer, and the aluminum-copper-alloy layer can be in the dielectric layer 46. In a second alternative, the patterned metal layer 34 can be formed by a damascene or double-damascene process including an electroplating process and a chemical mechanical polishing (CMP) process and can be composed of an electroplated copper layer having a bottom contacting the dielectric layer 44, an adhesion/barrier metal layer at a top and sidewalls of the electroplated copper layer, and a seed layer between the electroplated copper layer and the adhesion/barrier metal layer and on the top and sidewalls of the electroplated copper layer. The adhesion/barrier metal layer has a first portion between the top of the electroplated copper layer and the dielectric layer 48 and a second portion at the sidewalls of the electroplated copper layer. The electroplated copper layer may have a thickness, e.g., smaller than 2 micrometers, such as between 0.15 and 1 micrometers or between 10 nanometers and 2 micrometers. The electroplated copper layer may have a width, e.g., smaller than 1 micrometer, such as between 0.05 and 1 micrometers. The seed layer may include or can be a layer of copper or a titanium-copper alloy formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum or tantalum nitride formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may have a thickness, e.g., smaller than 0.1 micrometers, such as between 0.005 and 0.1 micrometers. The sidewalls of the electroplated copper layer are covered by the adhesion/barrier metal layer and the seed layer.


The patterned metal layer 26 in the dielectric layer 42 can be connected to the interconnection layer 34 in the dielectric layer 46 through the via plugs 26a in the dielectric layer 44. The interconnection layer 34 in the dielectric layer 46 can be connected to the semiconductor devices 36 through the via plugs 34a in the dielectric layer 48. The via plugs 26a may include electroplated copper, tungsten, or carbon nanotube in the dielectric layer 44. The via plugs 34a may include electroplated copper, tungsten, or carbon nanotube in the dielectric layer 48.


Each of the chips 68 may include multiple interconnects or metal traces 35a, 35b, 35c and 35d provided by the patterned metal layer 26, the interconnection layer 34 and the via plugs 26a and 34a. Each of the interconnects or metal traces 35a, 35b, 35c and 35d can be connected to one or more of the semiconductor devices 36 and can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, each of the chips 68 may further include a patterned metal layer (not shown), having a thickness greater than that of the patterned metal layer 26 and greater than that of the interconnection layer 34, between the glue layer 22 and the passivation layer 24. The patterned metal layer under the passivation layer 24 may include an electroplated metal layer under the passivation layer 24, an adhesion/barrier metal layer between the electroplated metal layer and the passivation layer 24, and a seed layer between the electroplated metal layer and the adhesion/barrier metal layer. In the view from the side of the passivation layer 24 to the side of the glue layer 22, the adhesion/barrier metal layer can be on the seed layer, and the seed layer can be on the electroplated metal layer. Sidewalls of the electroplated metal layer are not covered by the adhesion/barrier metal layer and the seed layer. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride or nickel with a thickness, e.g., smaller than 0.6 micrometers, such as between 1 nanometer and 0.5 micrometers or between 0.005 and 0.1 micrometers. The seed layer may include or can be a layer of copper, a titanium-copper alloy, silver, gold, or nickel with a thickness, e.g., smaller than 0.8 micrometers, such as between 5 nanometers and 0.1 micrometers or between 10 nanometers and 0.8 micrometers. Each of the adhesion/barrier metal layer and the seed layer can be formed by a suitable process, such as sputtering process. The electroplated metal layer may include or can be a layer of electroplated copper, electroplated silver or electroplated gold with a thickness, e.g., greater than 2 micrometers, such as between 2 and 30 micrometers, and preferably between 3 and 10 micrometers or between 5 and 25 micrometers.


Alternatively, when the silicon-oxide layer of the dummy substrate 62 remains on the silicon-oxide layer 22, after forming the openings 62a, and is exposed by the openings 62a in the dummy substrate 62, mounting the chips 68 over the carrier 11 and in the openings 62a can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 24, at the active side of each chip 68, with the remaining silicon-oxide layer of the dummy substrate 62 under the passivation layer 24. The silicon-oxide layer of the passivation layer 24 contacts the silicon-oxide layer of the dummy substrate 62. Accordingly, the chips 68 can be joined with the carrier 11 using these silicon-oxide layers.


Alternatively, another technique to form the structure illustrated in FIGS. 7 and 8 is performed by first providing a patterned dummy substrate 62, such as patterned dummy wafer, patterned panel, patterned silicon frame, or patterned substrate of polysilicon, glass, silicon, ceramic, or polymer, with multiple openings 62a passing through the patterned dummy substrate 62, next joining the patterned dummy substrate 62 with the carrier 11 using the layer 22, which can be referred to as the steps illustrated in FIG. 1, and then mounting the chips 68 over the carrier 11 and in the openings 62a in the patterned dummy substrate 62, which can be referred to as the steps illustrated in FIG. 7.


As shown in FIGS. 7 and 8, there are multiple gaps 4 each between the dummy substrate 62 and one of the chips 68, and there are multiple gaps 8 (one of them is shown) each between neighboring two chips 68. Each of the gaps 4 may have a transverse distance or spacing D1, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8 may have a transverse distance or spacing D2, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers.



FIG. 9 shows another technique to form the structure with the same cross-sectional view as shown in FIG. 7. FIG. 7 is a cross-sectional view cut along the line C-C shown in a schematical top view of FIG. 9. The structure shown in FIGS. 7 and 9 can be formed, e.g., by the following steps. First, the previously described glue layer 22 can be formed on the previously described carrier 11 by using, e.g., a spin coating process, a laminating process, a spraying process, a dispensing process, or a screen printing process. The glue layer 22 can be formed on the dielectric or insulating layer 20 of the carrier 11 or formed on the substrate 10 of the carrier 11 if the carrier 11 is formed without the layers 12, 18 and 20. Next, the glue layer 22 can be optionally pre-cured or baked. Next, the previously described chips 68 and multiple separate dummy substrates 62 can be placed on the glue layer 22. When a gap between neighboring two chips 68 is too great, such as greater than 500 or 1,000 micrometers, one or more of the separate dummy substrates 62 can be placed in the gap. Alternatively, when a gap between neighboring two chips 68 is small enough, such as smaller than 500 or 1,000 micrometers, there can be no separate dummy substrates 62 placed in the gap. Next, the glue layer 22 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 22. Accordingly, the separate dummy substrates 62 and the chips 68 can be joined with the carrier 11 using the glue layer 22. The separate dummy substrates 62, for example, can be separate silicon bars, separate dummy chips, separate dummy silicon dies, or separate substrates of polysilicon, glass, silicon, or ceramic.


Alternatively, referring to FIGS. 7 and 9, the glue layer 22 can be replaced with a silicon-oxide layer that is formed on the dielectric or insulating layer 20 of the carrier 11 or formed on the substrate 10 of the carrier 11 if the carrier 11 is formed without the layers 12, 18 and 20. In this case, joining the chips 68 with the carrier 11 and joining the separate dummy substrates 62 with the carrier 11 can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 24, at the active side of each chip 68, with the silicon-oxide layer 22 and by bonding another silicon-oxide layer of each of the separate dummy substrates 62 with the silicon-oxide layer 22. The silicon-oxide layer of the passivation layer 24 of each chip 68 contacts the silicon-oxide layer 22, and the silicon-oxide layer of each of the separate dummy substrates 62 contacts the silicon-oxide layer 22. Accordingly, the chips 68 and the separate dummy substrates 62 can be joined with the carrier 11 using these silicon-oxide layers.


As shown in FIGS. 7 and 9, there are multiple gaps 4 each between one of the chips 68 and one of the separate dummy substrates 62, and there are multiple gaps 8 (one of them is shown) each between neighboring two chips 68. Each of the gaps 4 may have a transverse distance or spacing D1, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8 may have a transverse distance or spacing D2, e.g., smaller than 500 micrometers, such as between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. In one embodiment, there are no circuits preformed in each separate dummy substrate 62 or on a top or bottom surface of each separate dummy substrate 62 before the separate dummy substrates 62 are joined with the carrier 11.


Referring to FIG. 10, after the steps illustrated in FIGS. 7 and 8 or in FIGS. 7 and 9, an encapsulation/gap filling material 64, such as polysilicon, silicon oxide, or a polymer, can be formed on a backside of the semiconductor substrate 58 of each chip 68, on the dummy substrate(s) 62, and in the gaps 4 and 8. If the encapsulation/gap filling material 64 is polysilicon, the polysilicon can be formed by a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. If the encapsulation/gap filling material 64 is silicon oxide, the silicon oxide can be formed by a chemical vapor deposition (CVD) process, a plasma-enhanced chemical vapor deposition (PECVD) process, or an atmospheric pressure chemical vapor deposition (APCVD) process. If the encapsulation/gap filling material 64 is a polymer, such as polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), the polymer can be formed by a process including a spin coating process, a dispensing process, a molding process, or a screen printing process.


Next, referring to FIG. 11, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 are ground or polished by, e.g., a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the semiconductor substrate 58 of one of the chips 68 is thinned to a thickness T1, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Preferably, each of the chips 68, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. After the grinding or polishing process, the dummy substrate(s) 62 can be thinned to a thickness T2, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 remaining in the gaps 4 and 8 may have a vertical thickness T3, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the ground or polished surface(s) 62s of the dummy substrate(s) 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The ground or polished surface(s) 62s may be substantially coplanar with the ground or polished surface 58s of each chip 68 and with the ground or polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8.


Alternatively, FIGS. 12 and 13 show another technique to form the structure illustrated in FIG. 11. Referring to FIG. 12, after the steps illustrated in FIGS. 7 and 8 or in FIGS. 7 and 9, an encapsulation/gap filling material 64, such as polysilicon or silicon oxide, can be formed on the backside of the semiconductor substrate 58 of each chip 68, on the dummy substrate(s) 62 and in the gaps 4 and 8, and then a polymer 65, such as molding compound, polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), can be formed on the encapsulation/gap filling material 64 and in the gaps 4 and 8. The encapsulation/gap filling material 64 in the gaps 4 and 8 may have a vertical thickness T4, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers.


Next, referring to FIG. 13, a mechanical grinding process can be performed, e.g., by using an abrasive or grinding pad with water to grind the polymer 65, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68 and the dummy substrate(s) 62 until all of the polymer 65 is removed and until a predetermined vertical thickness T5 of the encapsulation/gap filling material 64 in the gaps 4 and 8 is reached. The predetermined vertical thickness T5 can be, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers. The abrasive or grinding pad can be provided with rough grit having an average grain size, e.g., between 0.5 and 15 micrometers for performing the mechanical grinding process. Thereafter, a chemical-mechanical-polishing (CMP) process can be performed, e.g., by using a polish pad with a slurry containing chemicals and a fine abrasive like silica with an average grain size, e.g., between 0.02 and 0.05 micrometers to polish the backside of the semiconductor substrate 58 of each chip 68, the dummy substrate(s) 62 and the encapsulation/gap filling material 64 in the gaps 4 and 8 until the semiconductor substrate 58 of one of the chips 68 is thinned to the thickness T1 between 1 and 30 micrometers, and preferably between 2 and 5 micrometers, between 2 and 10 micrometers, between 2 and 20 micrometers, or between 3 and 30 micrometers, as shown in FIG. 11.


After the chemical-mechanical-polishing (CMP) process, the polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the polished surface(s) 62s of the dummy substrate(s) 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The polished surface(s) 62s may be substantially coplanar with the polished surface 58s of each chip 68 and with the polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8. The polished surfaces 58s, 62s and 64s may have a micro-roughness, e.g., less than 20 nanometers. The chemical-mechanical-polishing (CMP) process, using a very fine abrasive like silica and a relatively weak chemical attack, will create the surfaces 58s, 62s and 64s almost without deformation and scratches, and this means that the chemical-mechanical-polishing (CMP) process is very well suited for the final polishing step, creating the clean surfaces 58s, 62s and 64s. Using the mechanical grinding process and the chemical-mechanical-polishing (CMP) process can be performed to create a very thin semiconductor substrate 10 of each chip 68. Accordingly, after the chemical-mechanical-polishing (CMP) process, each of the chips 68 can be thinned to a thickness, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, the dummy substrate(s) 62 can be thinned to the thickness T2, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 in the gaps 4 and 8 can be thinned to the thickness T3, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers.


Referring to FIG. 14, after forming the structure illustrated in FIG. 11, a dielectric layer 60 can be formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, and on the surface 64s of the encapsulation/gap filling material 64. The dielectric layer 60 may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


The dielectric layer 60, for example, can be an inorganic layer formed by, e.g., a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. The inorganic layer can be, e.g., a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC), or a layer including silicon oxide, silicon nitride, silicon carbon nitride and silicon oxynitride. The inorganic layer may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


Alternatively, the dielectric layer 60 can be a polymer layer, such as a layer of polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), formed by, e.g., a process including a spin coating process, a dispensing process, a molding process, or a screen printing process. The polymer layer may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


Alternatively, the dielectric layer 60 can be composed of multiple inorganic layers which include an etch stop layer, such as etch stop layer of silicon oxynitride. The etch stop layer will later be used to stop etching when etching patterns into the dielectric layer 60. In this case, the dielectric layer 60, for example, can be composed of a first silicon-oxide layer on the surfaces 58s, 62s and 64s, a silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and a second silicon-oxide layer having a thickness, e.g., between 0.1 and 5 micrometers or between 0.3 and 1.5 micrometers on the silicon-oxynitride layer.


Next, referring to FIG. 15, multiple through vias 170v, including through vias 170a, 170b, 170c, 170d, 170e and 170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68, by, e.g., the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, is formed on the dielectric layer 60 by using a suitable process, such as spin coating process or lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 60, in the photoresist layer. The photoresist layer may have a thickness, e.g., between 3 and 50 micrometers. Next, the dielectric layer 60 under the openings in the photoresist layer is removed by using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 62 under the openings in the photoresist layer and the chips 68 under the openings in the photoresist layer are etched away until predetermined regions of the layers 26 and 34 in the chips 68 and predetermined regions of the conductive layer 18 in the carrier 11 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 170v, including the vias 170a-170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the predetermined regions of the conductive layer 18 of the carrier 11 and exposing the predetermined regions of the layers 26 and 34 of the chips 68. The through via 170a is formed in the dummy substrate 62, and the through vias 170b, 170c, 170d, 170e and 170f are formed in the same chip 68.


Alternatively, another technique to form the through vias 170v in the chips 68 and in the dummy substrate(s) 62 can be performed by the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 60 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 60, in the photoresist layer. Next, multiple openings are formed in the dielectric layer 60 and under the openings in the photoresist layer, exposing the dummy substrate(s) 62 and the semiconductor substrates 58 of the chips 68, by removing the dielectric layer 60 under the openings in the photoresist layer using, e.g., an anisotropic plasma etching process. Next, the photoresist layer is removed by using, e.g., an organic chemical. Next, the dummy substrate(s) 62 under the openings in the dielectric layer 60 and the chips 68 under the openings in the dielectric layer 60 can be etched away until the predetermined regions of the layers 26 and 34 of the chips 68 and the predetermined regions of the conductive layer 18 of the carrier 11 are exposed by the openings in the dielectric layer 60. Accordingly, the through vias 170v, including the through vias 170a, 170b, 170c, 170d, 170e and 170f, can be formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68. The through via 170a is formed in the dummy substrate 62, and the through vias 170b, 170c, 170d, 170e and 170f are formed in the same chip 68. Each of the through vias 170v, such as the through via 170a, 170b, 170c, 170d, 170e or 170f, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers.


One of the through vias 170v, such as the through via 170a, passes through the dielectric layer 60, the dummy substrate 62, the glue layer or silicon-oxide layer 22, and the dielectric or insulating layer 20 of the carrier 11, exposing the conductive layer 18 of the carrier 11. Another one of the through vias 170v, such as the through via 170b, passes through the dielectric layer 60, through the semiconductor substrate 58, dielectric layers 42, 44, 46 and 48, and passivation layer 24 of one of the chips 68, through the glue layer or silicon-oxide layer 22, and through the dielectric or insulating layer 20 of the carrier 11, exposing the conductive layer 18 of the carrier 11. Another one of the through vias 170v, such as the through via 170c, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layer 48 of one of the chips 68, exposing the interconnect or metal trace 35d in the interconnection layer 34 of the one of the chips 68. Another one of the through vias 170v, such as the through via 170d, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layers 44, 46 and 48 of one of the chips 68, exposing the interconnect or metal trace 35c in the patterned metal layer 26 of the one of the chips 68. Another one of the through vias 170v, such as the through via 170f, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layer 48 of one of the chips 68, exposing the interconnect or metal trace 35b in the interconnection layer 34 of the one of the chips 68. Another one of the through vias 170v, such as the through via 170e, passes through the dielectric layer 60, through the semiconductor substrate 58, dielectric layers 42, 44, 46 and 48, and passivation layer 24 of one of the chips 68, through the glue layer or silicon-oxide layer 22, and through the dielectric or insulating layer 20 of the carrier 11, exposing the interconnect or metal trace 35a in the interconnection layer 34 of the one of the chips 68 and exposing the conductive layer 18 of the carrier 11. A supporter 801 provided by the layers 20, 22, 24, 42 and 44 is between the conductive layer 18 of the carrier 11 and the interconnect or metal trace 35a in the interconnection layer 34 exposed by the through via 170e for the purpose of supporting the exposed interconnect or metal trace 35a. The supporter 801 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. FIGS. 16-18 are three examples of schematic top perspective views showing the through via 170e and the interconnect or metal trace 35a illustrated in FIG. 15.


As shown in FIGS. 15 and 16, the through via 170e in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes two regions of the conductive layer 18 in the carrier 11 under the one of the chips 68. The interconnect or metal trace 35a has a line-shaped region, exposed by the through via 170e, extending in a horizontal direction from a side of the through via 170e to the opposite side of the through via 170e through a center of the through via 170e. The previously described supporter 801, between the conductive layer 18 of the carrier 11 and the exposed line-shaped region of the interconnect or metal trace 35a in the interconnection layer 34, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 35a. Preferably, the through via 170e can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 15 and 17, the through via 170e in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes a region of the conductive layer 18 in the carrier 11 under the one of the chips 68. The interconnect or metal trace 35a has a peninsula region, exposed by the through via 170e, extending in a horizontal direction from one side of the through via 170e at least to a center of the through via 170e, but does not reach to the opposite side of the through via 170e; the interconnect or metal trace 35a has an end exposed by the through via 170e. The previously described supporter 801, between the conductive layer 18 of the carrier 11 and the exposed peninsula region of the interconnect or metal trace 35a in the interconnection layer 34, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 35a. Preferably, the through via 170e can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 15 and 18, the through via 170e in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes a region of the conductive layer 18 in the carrier 11 under the one of the chips 68. The interconnect or metal trace 35a has a peninsula region, exposed by the through via 170e, extending in a horizontal direction from one side of the through via 170e at least to a center of the through via 170e, but does not reach to the opposite side of the through via 170e; the interconnect or metal trace 35a has a circular end exposed by the through via 170e. The previously described supporter 801, between the conductive layer 18 of the carrier 11 and the exposed peninsula region of the interconnect or metal trace 35a in the interconnection layer 34, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 35a. Preferably, the through via 170e can be, but is not limited to, a circular shape from a top perspective view.



FIG. 16A is an example of a schematic top perspective view showing the through via 170e and the interconnect or metal trace 35a illustrated in FIG. 15. In this case, the through via 170e can be, but is not limited to, oval-shaped and has a width W1, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers. The oval-shaped through via 170e in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes two regions of the conductive layer 18 in the carrier 11 under the one of the chips 68. The interconnect or metal trace 35a has a line-shaped region, exposed by the oval-shaped through via 170e, extending in a horizontal direction from a side of the oval-shaped through via 170e to the opposite side of the oval-shaped through via 170e through a center of the oval-shaped through via 170e. The previously described supporter 801, between the conductive layer 18 of the carrier 11 and the exposed line-shaped region of the interconnect or metal trace 35a in the interconnection layer 34, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 35a. The interconnect or metal trace 35a exposed by the oval-shaped through via 170e has a width W2, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 20 micrometers, between 0.3 and 10 micrometers, between 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. A horizontal distance S1 between an endpoint of the long axis of the oval-shaped through via 170e and an edge, which is closer to the endpoint than the other opposite edge, of the interconnect or metal trace 35a exposed by the oval-shaped through via 170e can be, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers.


Next, referring to FIG. 19, a dielectric layer 50 is formed on a top surface of the dielectric layer 60, on the conductive layer 18, exposed by the through vias 170v (such as the through vias 170a, 170b and 170e), of the carrier 11, on the layers 26 and 34, exposed by the through vias 170v (such as the through vias 170c, 170d, 170e and 170f), of the chips 68, and on sidewalls of the through vias 170v.


The dielectric layer 50 can be composed of an insulating material. For example, the dielectric layer 50 can be an inorganic layer having a thickness, e.g., between 20 nanometers and 1 micrometer, and the inorganic layer can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC). Alternatively, the dielectric layer 50 can be a polymer layer having a thickness, e.g., between 1 and 10 micrometers, and preferably between 1 and 5 micrometers, and the polymer layer can be a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO).


Next, referring to FIG. 20, a photoresist layer 168, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 50 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a wet chemical can be employed to form multiple openings 168a, exposing the dielectric layer 50, in the photoresist layer 168. The photoresist layer 168 may have a thickness, e.g., between 0.5 and 30 micrometers.


Next, referring to FIG. 21, the dielectric layer 50 formed on the layers 18, 26 and 34 and on the top surface of the dielectric layer 60 under the openings 168a can be removed by, e.g., etching the dielectric layer 50 under the openings 168a using an anisotropic plasma etching process. The dielectric layer 50 at bottoms of the through vias 170v, on the top surface of the dielectric layer 60 under the openings 168a, and on a top surface of the interconnect or metal trace 35a over the supporter 801 can be etched away. Accordingly, the layers 18, 26 and 34 at the bottoms of the through vias 170v, the top surface of the dielectric layer 60 under the openings 168a, and the interconnect or metal trace 35a over the supporter 801 are exposed by the openings 168a, and the dielectric layer 50 remains on the sidewalls of the through vias 170v, so called as sidewall dielectric layers in the through vias 170v. The sidewall dielectric layers 50 are formed on the sidewalls of the through vias 170v in the chips 68 or in the dummy substrate(s) 62 and are enclosed by the semiconductor substrates 58 of the chips 68 or by the dummy substrate(s) 62.


Next, referring to FIG. 22, multiple trenches 60t, damascene openings, are formed in the dielectric layer 60 by etching the dielectric layer 60 and the sidewall dielectric layers 50 under the openings 168a to a depth D3, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers, using, e.g., an anisotropic plasma etching process. Preferably, the dielectric layer 60 and the sidewall dielectric layers 50 have a same material, such as silicon nitride, silicon oxide, or silicon oxynitride. After the etching process, the dielectric layer 60 under the trenches 60t has a remaining thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Alternatively, an etching-stop technique may be applied to the process of forming the trenches 60t in the dielectric layer 60. In this case, the dielectric layer 60 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 58s, 62s and 64s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. The trenches 60t can be formed in the dielectric layer 60 by etching the second silicon-oxide layer of the dielectric layer 60 under the openings 168a and the sidewall dielectric layers 50 under the openings 168a until the silicon-oxynitride layer of the dielectric layer 60 is exposed by the openings 168a. Accordingly, the trenches 60t are formed in the second silicon-oxide layer of the dielectric layer 60, and the remaining dielectric layer 60, composed of the silicon-oxynitride layer and the first silicon-oxide layer, under the trenches 60t has a thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Next, referring to FIG. 23, the photoresist layer 168 is removed by using, e.g., an organic chemical. The trenches 60t formed in the dielectric layer 60 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The sidewall dielectric layers 50 formed on the sidewalls of the through vias 170v (such as the through vias 170b, 170c, 170d, 170e and 170f) in the chips 68 can prevent transition metals, such as copper, sodium or moisture from penetrating into IC devices of the chips 68. FIG. 24 is a schematic top perspective view showing the through vias 170v, the trenches 60t and the sidewall dielectric layers 50 shown in FIG. 23 according an embodiment of the present invention, and FIG. 23 is a cross-sectional view cut along the line D-D shown in FIG. 24.


Next, referring to FIG. 25, an adhesion/barrier layer 52 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, can be formed on the layers 18, 26 and 34 exposed by the through vias 170v, on sidewalls and bottoms of the trenches 60t, on the dielectric layer 50, and on the interconnect or metal trace 35a that is on the supporter 801. The adhesion/barrier layer 52 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 54 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 52 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a conduction layer 56 having a thickness, e.g., between 0.5 and 20 micrometers or between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, can be formed on the seed layer 54 by using, e.g., an electroplating process.


The adhesion/barrier layer 52 may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness, e.g., smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 54 may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness, e.g., smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers. The conduction layer 56 may include or can be an electroplated metal layer of copper, gold, or silver having a thickness, e.g., between 0.5 and 20 micrometers or between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers.


Next, referring to FIG. 26, by using a grinding or polishing process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, the layers 52, 54 and 56 outside the trenches 60t can be removed, and the dielectric layer 50 on the top surface of the dielectric layer 60 can be removed. Accordingly, the dielectric layer 60 has an exposed top surface 60s that can be substantially coplanar with the ground or polished surface 56s of the conduction layer 56 in the trenches 60t, and the surfaces 56s and 60s can be substantially flat. The dielectric layer 60 has a thickness T7, between the exposed top surface 60s and the surface 58s or 62s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers or between 2 and 5 micrometers. The adhesion/barrier layer 52 and the seed layer 54 are at sidewalls and a bottom of the conduction layer 56 in the trenches 60t, and the sidewalls and the bottom of the conduction layer 56 in the trenches 60t are covered by the adhesion/barrier layer 52 and the seed layer 54.


In a first alternative, after the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the adhesion/barrier layer 52 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a second alternative, after the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the adhesion/barrier layer 52 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a third alternative, after the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the adhesion/barrier layer 52 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


After the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the layers 52, 54 and 56 in the trenches 60t compose multiple metal interconnects (or damascene metal traces) 1, including metal interconnects (or damascene metal traces) 1a and 1b, in the trenches 60t. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f as shown in FIG. 23, respectively. Each of the metal plugs 5p in the chips 68 and in the dummy substrate(s) 62 is enclosed by one of the sidewall dielectric layers 50 in the through vias 170v. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The metal interconnects 1, such as 1a and 1b, in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers.


For example, one of the metal plugs 5p, such as the metal plug 5a, can be formed in the dummy substrate 62 and formed on a first contact point of the conductive layer 18 at a bottom of one of the through vias 170v, such as the through via 170a. Another one of the metal plugs 5p, such as the metal plug 5b, can be formed in one of the chips 68 and formed on a second contact point of the conductive layer 18 at a bottom of another one of the through vias 170v, such as the through via 170b. Another one of the metal plugs 5p, such as the metal plug 5c, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170c), of the interconnect or metal trace 35d in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5d, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170d), of the interconnect or metal trace 35c in the patterned metal layer 26 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5f, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170f), of the interconnect or metal trace 35b in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5e, can be formed in one of the chips 68, formed on a contact point of the interconnect or metal trace 35a over a supporter (such as the supporter 801) that is between two lower left and right portions of the another one of the metal plugs 5p (such as the metal plug 5e), and formed on a third contact point of the conductive layer 18 at a bottom of one of the through vias 170v (such as the through via 170e). The previously described first, second and third contact points of the conductive layer 18 can be separated from one another by the dielectric or insulating layer 20 of the carrier 11.


One of the metal interconnects 1, such as 1a or 1b, can be formed over the dummy substrate(s) 62, over multiple of the chips 68, and across multiple edges of the multiple of the chips 68. The metal interconnect 1a can be connected to the previously described first contact point of the conductive layer 18 at the bottom of the through via 170a through the metal plug 5a in the dummy substrate 62, can be connected to the previously described second contact point of the conductive layer 18 at the bottom of the through via 170b through the metal plug 5b in one of the chips 68, can be connected to the contact point, at the bottom of the through via 170c, of the interconnect or metal trace 35d in the one of the chips 68 through the metal plug 5c in the one of the chips 68, and can be connected to the contact point, at the bottom of the through via 170d, of the interconnect or metal trace 35c in the one of the chips 68 through the metal plug 5d in the one of the chips 68. The metal interconnect 1b can be connected to the contact point, at the bottom of the through via 170f, of the interconnect or metal trace 35b in the one of the chips 68 through the metal plug 5f in the one of the chips 68, can be connected to the previously described third contact point of the conductive layer 18 at the bottom of the through via 170e through the metal plug 5e in the one of the chips 68, and can be connected to the interconnect or metal trace 35a on the supporter 801 through the metal plug 5e in the one of the chips 68. The metal interconnect 1a can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68. The metal interconnect 1b can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68.


Accordingly, one of the semiconductor devices 36 in one of the chips 68 can be connected to another one of the semiconductor devices 36 in the one of the chips 68 or in another one of the chips 68 through one of the metal interconnects 1, such as 1a or 1b, and can be connected to a contact point, at a bottom of one of the through vias 170v (such as the through via 170a, 170b or 170e), of the conductive layer 18 in the carrier 11 through the one of the metal interconnects 1. Each of the metal interconnects 1 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 27, after forming the structure illustrated in FIG. 26, an insulating or dielectric layer 66 can be formed on the ground or polished surface 52s of the adhesion/barrier layer 52, on the ground or polished surface 54s of the seed layer 54, on the ground or polished surface 56s of the conduction layer 56, and on the exposed top surface 60s of the dielectric layer 60. The insulating or dielectric layer 66 may have a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers.


The insulating or dielectric layer 66, for example, may include or can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC) with a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers, formed by a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process.


Alternatively, the insulating or dielectric layer 66 may include or can be a polymer layer with a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers, formed by, e.g., a process including a spin coating process and a curing process. The polymer layer can be a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO).


Next, referring to FIG. 28, a dummy substrate 165 can be attached onto the insulating or dielectric layer 66, e.g., by the following steps. First, a glue layer 116 having a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers, can be formed on a top surface of the insulating or dielectric layer 66 or on a bottom surface of the dummy substrate 165 by using, e.g., a spin coating process, a lamination process, a spraying process, a dispensing process, or a screen printing process. Next, the glue layer 116 can be optionally pre-cured or baked. Next, the dummy substrate 165 can be placed over the insulating or dielectric layer 66 with the glue layer 116 between the insulating or dielectric layer 66 and the dummy substrate 165. Next, the glue layer 116 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 116. Accordingly, the dummy substrate 165 can be joined with the insulating or dielectric layer 66 using the glue layer 116. The glue layer 116 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or silosane, with a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers.


Alternatively, the glue layer 116 can be replaced with an inorganic insulating layer, such as silicon oxide, that can be formed on the insulating or dielectric layer 66. In this case, the dummy substrate 165 can be joined with the insulating or dielectric layer 66, e.g., by bonding an inorganic insulating layer, such as silicon oxide, of the dummy substrate 165 onto the inorganic insulating layer 116, such as silicon oxide. The silicon-oxide layer of the dummy substrate 165 contacts the silicon-oxide layer 116.


The dummy substrate 165 can be a round wafer, a dummy silicon wafer, a rectangular panel, or a substrate of polysilicon, glass, silicon or ceramic. The dummy substrate 165, before being ground or polished as mentioned in the following processes, may have a thickness, e.g., greater than 100 micrometers, such as between 100 and 1,500 micrometers, and preferably between 200 and 500 micrometers or between 100 and 300 micrometers.


In one embodiment, there are no circuits preformed in the dummy substrate 165 or on a top or bottom surface of the dummy substrate 165 before the dummy substrate 165 is joined with the insulating or dielectric layer 66. The dummy substrate 165 may have a top surface with the profile that is substantially same as that of the top surface of the carrier 11.


Next, referring to FIG. 29, a photoresist layer 166 can be formed on the dummy substrate 165 by using, e.g., a spin coating process, a screen printing process, or a lamination process, and then a photo exposure process and a development process can be employed to form multiple openings 166a, exposing multiple regions of the dummy substrate 165, in the photoresist layer 166. The photoresist layer 166, after the photo exposure process and the development process, may have a thickness, e.g., between 10 and 200 micrometers. FIG. 30 shows a schematic top view of the photoresist layer 166 with the openings 166a as shown in FIG. 29, and FIG. 30 can be a cross-sectional view cut along the line E-E shown in FIG. 29.


Next, referring to FIG. 31, multiple openings 165a are formed in the dummy substrate 165 and under the openings 166a in the photoresist layer 166, exposing the glue layer 116, by using, e.g., a chemical etching process or a plasma etching process, and then the patterned photoresist layer 166 is removed by using, e.g., an organic chemical. Alternatively, when the glue layer 116 is replaced with the silicon-oxide layer and the dummy substrate 165 has the silicon-oxide layer bonded with the silicon-oxide layer 116, the openings 165a are formed in the dummy substrate 165 and under the openings 166a in the photoresist layer 166, exposing the silicon-oxide layer of the dummy substrate 165, by using, e.g., a chemical etching process or a plasma etching process, and then the patterned photoresist 166 is removed by using, e.g., an organic chemical. FIG. 32 shows a schematic top view of the dummy substrate 165 with the openings 165a as shown in FIG. 31, and FIG. 31 can be a cross-sectional view cut along the line F-F shown in FIG. 32.


Alternatively, a hard mask (not shown), such as silicon oxide or silicon nitride, may be formed on the dummy substrate 165 shown in FIG. 31, e.g., by the following steps. First, the hard mask of silicon oxide or silicon nitride can be formed on the dummy substrate 165 shown in FIG. 28. Next, the photoresist layer 166 can be formed on the hard mask by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 166a, exposing multiple regions of the hard mask, in the photoresist layer 166. Next, multiple openings are formed in the hard mask and under the openings 166a in the photoresist layer 166, exposing multiple regions of the dummy substrate 165, by using, e.g., a wet etching process or a plasma etching process. Next, the patterned photoresist layer 166 is removed by using, e.g., an organic chemical. Next, multiple openings 165a are formed in the dummy substrate 165 and under the openings in the hard mask, exposing the glue layer 116, by using, e.g., a chemical etching process or a plasma etching process. Alternatively, when the glue layer 116 is replaced with the silicon-oxide layer and the dummy substrate 165 has the silicon-oxide layer bonded with the silicon-oxide layer 116, the openings 165a are formed in the dummy substrate 165 and under the openings in the hard mask, exposing the silicon-oxide layer of the dummy substrate 165, by using, e.g., a chemical etching process or a plasma etching process. The hard mask will be removed by the following grinding or polishing process.


Next, referring to FIG. 33, multiple chips 72 can be mounted over the insulating or dielectric layer 66 and in the openings 165a in the dummy substrate 165, and the chips 72 have active sides at bottoms of the chips 72 and backsides at tops of the chips 72. In one case, one of the chips 72 may have different circuit designs from those of another one of the chips 72. Also, in another case, one of the chips 72 may have same circuit designs as those of another one of the chips 72. Alternatively, one of the chips 72 may have a different area (top surface) or size from that of another one of the chips 72. Also, in another case, one of the chips 72 may have a same area (top surface) or size as that of another one of the chips 72. FIG. 34 is an example of a schematical top view showing the chips 72 mounted in the openings 165a in the dummy substrate 165, and FIG. 33 is a cross-sectional view cut along the line G-G shown in the schematical top view of FIG. 34.


Mounting the chips 72 over the insulating or dielectric layer 66 and in the openings 165a can be performed, e.g., by first forming a glue material (not shown) on the active sides of the chips 72 or on the glue layer 116, next placing the chips 72 in the openings 165a and over the glue layer 116 with the glue material contacting the glue layer 116, and then curing the glue material in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue material. Accordingly, the chips 72 can be joined with the glue layer 116 using the glue material.


Each of the chips 72 can include a semiconductor substrate 96, multiple semiconductor devices 102 in and/or on the semiconductor substrate 96, a passivation layer 74 under the semiconductor substrate 96, multiple dielectric layers 82, 108, 104 and 100 between the semiconductor substrate 96 and the passivation layer 74, a patterned metal layer 114 between the semiconductor substrate 96 and the passivation layer 74, an interconnection layer 106 between the semiconductor substrate 96 and the passivation layer 74, multiple via plugs 114a in the dielectric layer 108, and multiple via plugs 106a in the dielectric layer 100. The semiconductor substrate 96 is at the backside of each chip 72, and the semiconductor devices 102, the passivation layer 74, the patterned metal layer 114, the interconnection layer 106, the dielectric layers 82, 108, 104 and 100, and the via plugs 106a and 114a are at the active side of each chip 72.


The semiconductor substrate 96 can be a suitable substrate, such as silicon substrate, silicon-germanium (SiGe) substrate, or gallium-arsenide (GaAs) substrate. The semiconductor substrate 96 before being thinned as mentioned in the following processes may have a thickness, e.g., greater than 100 micrometers, such as between 100 and 500 micrometers, and preferably between 150 and 250 micrometers or between 100 and 300 micrometers.


Each of the semiconductor devices 102 can be a bipolar transistor, a P-channel metal-oxide-semiconductor (PMOS) transistor, an N-channel metal-oxide-semiconductor (NMOS) transistor, or a double-diffused metal-oxide-semiconductor (DMOS) transistor. Each of the semiconductor devices 102 can be provided for a NOR gate, a NAND gate, an AND gate, an OR gate, a static-random-access-memory (SRAM) cell, a dynamic-random-access-memory (DRAM) cell, a flash memory cell, a non-volatile memory cell, an erasable programmable read-only memory (EPROM) cell, a read-only memory (ROM) cell, a magnetic-random-access-memory (MRAM) cell, a sense amplifier, an inverter, an operational amplifier, an adder, a multiplexer, a diplexer, a multiplier, an analog-to-digital (A/D) converter, a digital-to-analog (D/A) converter, an analog circuit, a complementary-metal-oxide-semiconductor (CMOS) sensor, or a charge coupled device (CCD).


The passivation layer 74 may include or can be an inorganic dielectric layer having a bottom surface attached to the glue layer 116, and the inorganic dielectric layer can be a layer of silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN) or silicon oxynitride (such as SiON) with a thickness, e.g., between 0.3 and 1.5 micrometers. Alternatively, each of the chips 72 may further contain an organic polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), epoxy, or silosane, with a thickness, e.g., greater than 3 micrometers, such as between 3 and 20 micrometers, and preferably between 5 and 12 micrometers, under and on the bottom surface of the inorganic dielectric layer of the passivation layer 74. In this case, the organic polymer layer has a bottom surface attached to the glue layer 116. The organic polymer layer has a top surface contacting the bottom surface of the inorganic dielectric layer of the passivation layer 74.


Alternatively, multiple openings (not shown) each having a width, e.g., between 0.5 and 100 micrometers, and preferably between 20 and 60 micrometers, may be formed in the passivation layer 74 and expose multiple contact points of the patterned metal layer 114.


The dielectric layer 82 can be between the passivation layer 74 and the dielectric layer 108. The dielectric layer 108 can be between the dielectric layers 82 and 104 and between the layers 106 and 114. The dielectric layer 104 can be between the dielectric layers 100 and 108. Each of the dielectric layers 82, 108 and 104 may include silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), or a low-k material having a dielectric constant between 1.8 and 3 (such as fluorinated silicate glass (FSG) or Black-diamond). Each of the dielectric layers 82, 108 and 104 may have a thickness, e.g., between 10 nanometers and 2 micrometers, and preferably between 50 nanometers and 1 micrometer.


The dielectric layer 100 between the dielectric layer 104 and the semiconductor substrate 96 and between the interconnection layer 106 and the semiconductor substrate 96 may include or can be a layer of phosphorous silicate glass (PSG), borophospho-silicate glass (BPSG), silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or a low-k material having a dielectric constant between 1.8 and 3 (such as fluorinated silicate glass (FSG) or Black-diamond). The dielectric layer 100 may have a thickness, e.g., between 10 nanometers and 1 micrometer.


The patterned metal layer 114, for example, may include an aluminum-copper-alloy layer having a thickness, e.g., between 0.3 and 3 micrometers and a titanium-containing layer having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers. The titanium-containing layer can be between the dielectric layer 108 and the aluminum-copper-alloy layer and on the aluminum-copper-alloy layer, and the aluminum-copper-alloy layer is between the passivation layer 74 and the titanium-containing layer. The titanium-containing layer can be a single layer of titanium, titanium nitride, or a titanium-tungsten alloy having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers.


Alternatively, the patterned metal layer 114 may include a nickel layer having a thickness, e.g., between 0.5 and 3 micrometers, and a gold layer having a thickness, e.g., between 0.01 and 1 micrometers under and on the nickel layer, in the view from the side of the dielectric layer 108 to the side of the passivation layer 74. The nickel layer is between the dielectric layer 108 and the gold layer, and the gold layer is between the nickel layer and the passivation layer 74.


Alternatively, the patterned metal layer 114 can be formed by a damascene or double-damascene process including an electroplating process and a chemical mechanical polishing (CMP) process and can be composed of an electroplated copper layer having a bottom contacting the passivation layer 74, an adhesion/barrier metal layer at a top and sidewalls of the electroplated copper layer, and a seed layer between the electroplated copper layer and the adhesion/barrier metal layer and on the top and sidewalls of the electroplated copper layer. The adhesion/barrier metal layer has a first portion between the top of the electroplated copper layer and the dielectric layer 108 and a second portion at the sidewalls of the electroplated copper layer. The electroplated copper layer may have a thickness, e.g., smaller than 1.5 micrometers, such as between 0.15 and 1.2 micrometers, or smaller than 3 micrometers, such as between 0.3 and 3 micrometers. The electroplated copper layer may have a width, e.g., smaller than 1 micrometer, such as between 0.05 and 1 micrometers. The seed layer may include or can be a layer of copper or a titanium-copper alloy formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, or tantalum nitride formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may have a thickness, e.g., smaller than 0.1 micrometers, such as between 0.005 and 0.1 micrometers. The sidewalls of the electroplated copper layer are covered by the adhesion/barrier metal layer and the seed layer.


The interconnection layer 106, for example, may include carbon nanotube. Alternatively, the interconnection layer 106 can be composed of a patterned metal layer in the dielectric layer 104. In a first alternative, the patterned metal layer 106 may include an aluminum-copper-alloy layer having a thickness, e.g., between 10 nanometers and 2 micrometers and a titanium-containing layer, such as a single layer of titanium nitride, titanium-tungsten alloy or titanium, having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers. The titanium-containing layer can be on the aluminum-copper-alloy layer and between the dielectric layer 100 and the aluminum-copper-alloy layer, and the aluminum-copper-alloy layer can be in the dielectric layer 104. In a second alternative, the patterned metal layer 106 can be formed by a damascene or double-damascene process including an electroplating process and a chemical mechanical polishing (CMP) process and can be composed of an electroplated copper layer having a bottom contacting the dielectric layer 108, an adhesion/barrier metal layer at a top and sidewalls of the electroplated copper layer, and a seed layer between the electroplated copper layer and the adhesion/barrier metal layer and on the top and sidewalls of the electroplated copper layer. The adhesion/barrier metal layer has a first portion between the top of the electroplated copper layer and the dielectric layer 100 and a second portion at the sidewalls of the electroplated copper layer. The electroplated copper layer may have a thickness, e.g., smaller than 2 micrometers, such as between 0.15 and 1 micrometers or between 10 nanometers and 2 micrometers. The electroplated copper layer may have a width, e.g., smaller than 1 micrometer, such as between 0.05 and 1 micrometers. The seed layer may include or can be a layer of copper or a titanium-copper alloy formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may include or can be a layer of titanium, titanium nitride, a titanium-tungsten alloy, chromium, tantalum or tantalum nitride formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may have a thickness, e.g., smaller than 0.1 micrometers, such as between 0.005 and 0.1 micrometers. The sidewalls of the electroplated copper layer are covered by the adhesion/barrier metal layer and the seed layer.


The patterned metal layer 114 in the dielectric layer 82 can be connected to the interconnection layer 106 in the dielectric layer 104 through the via plugs 114a in the dielectric layer 108. The interconnection layer 106 in the dielectric layer 104 can be connected to the semiconductor devices 102 through the via plugs 106a in the dielectric layer 100. The via plugs 114a may include electroplated copper, tungsten, or carbon nanotube in the dielectric layer 108. The via plugs 106a may include electroplated copper, tungsten, or carbon nanotube in the dielectric layer 100.


Each of the chips 72 may include multiple interconnects or metal traces 55a, 55b and 55c provided by the interconnection layer 106, the patterned metal layer 114 and the via plugs 106a and 114a. Each of the interconnects or metal traces 55a, 55b and 55c can be connected to one or more of the semiconductor devices 102 and can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, each of the chips 72 may further include a patterned metal layer (not shown), having a thickness greater than that of the patterned metal layer 114 and greater than that of the interconnection layer 106, between the glue layer 116 and the passivation layer 74. The patterned metal layer under the passivation layer 74 may include an electroplated metal layer under the passivation layer 74, an adhesion/barrier metal layer between the electroplated metal layer and the passivation layer 74, and a seed layer between the electroplated metal layer and the adhesion/barrier metal layer. In the view from the side of the passivation layer 74 to the side of the glue layer 116, the adhesion/barrier metal layer can be on the seed layer, and the seed layer can be on the electroplated metal layer. Sidewalls of the electroplated metal layer are not covered by the adhesion/barrier metal layer and the seed layer. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or nickel with a thickness, e.g., smaller than 0.6 micrometers, such as between 1 nanometer and 0.5 micrometers or between 0.005 and 0.1 micrometers. The seed layer may include or can be a layer of copper, a titanium-copper alloy, silver, gold, or nickel with a thickness, e.g., smaller than 0.8 micrometers, such as between 5 nanometers and 0.1 micrometers or between 10 nanometers and 0.8 micrometers. Each of the adhesion/barrier metal layer and the seed layer can be formed by a suitable process, such as sputtering process. The electroplated metal layer may include or can be a layer of electroplated copper, electroplated silver, or electroplated gold with a thickness, e.g., greater than 2 micrometers, such as between 2 and 30 micrometers, and preferably between 3 and 10 micrometers or between 5 and 25 micrometers.


Alternatively, when the silicon-oxide layer of the dummy substrate 165 remains on the silicon-oxide layer 116, after forming the openings 165a, and is exposed by the openings 165a in the dummy substrate 165, mounting the chips 72 over the insulating or dielectric layer 66 and in the openings 165a can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 74, at the active side of each chip 72, with the remaining silicon-oxide layer of the dummy substrate 165 under the passivation layer 74. The silicon-oxide layer of the passivation layer 74 contacts the silicon-oxide layer of the dummy substrate 165. Accordingly, the chips 72 can be joined with the insulating or dielectric layer 66 using these silicon-oxide layers.


Alternatively, another technique to form the structure illustrated in FIGS. 33 and 34 is performed by first providing a patterned dummy substrate 165, such as patterned dummy wafer, patterned panel, patterned silicon frame, or patterned substrate of polysilicon, glass, silicon, ceramic, or polymer, with multiple openings 165a passing through the patterned dummy substrate 165, next joining the patterned dummy substrate 165 with the insulating or dielectric layer 66 using the layer 116, which can be referred to as the steps illustrated in FIG. 28, and then mounting the chips 72 over the insulating or dielectric layer 66 and in the openings 165a in the patterned dummy substrate 165, which can be referred to as the steps illustrated in FIG. 33.


As shown in FIGS. 33 and 34, there are multiple gaps 4a each between the dummy substrate 165 and one of the chips 72, and there are multiple gaps 8a (one of them is shown) each between neighboring two chips 72. Each of the gaps 4a may have a transverse distance or spacing D4, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8a may have a transverse distance or spacing D5, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers.



FIG. 35 shows another technique to form the structure with the same cross-sectional view as shown in FIG. 33. FIG. 33 is a cross-sectional view cut along the line G-G shown in a schematical top view of FIG. 35. The structure shown in FIGS. 33 and 35 can be formed, e.g., by the following steps. First, the previously described glue layer 116 can be formed on the insulating or dielectric layer 66 shown in FIG. 27 by using, e.g., a spin coating process, a laminating process, a spraying process, a dispensing process, or a screen printing process. Next, the glue layer 116 can be optionally pre-cured or baked. Next, the previously described chips 72 and multiple separate dummy substrates 165 can be placed on the glue layer 116. When a gap between neighboring two chips 72 is too great, such as greater than 500 or 1,000 micrometers, one or more of the separate dummy substrates 165 can be placed in the gap. Alternatively, when a gap between neighboring two chips 72 is small enough, such as smaller than 500 or 1,000 micrometers, there can be no separate dummy substrates 165 placed in the gap. Next, the glue layer 116 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 116. Accordingly, the separate dummy substrates 165 and the chips 72 can be joined with the insulating or dielectric layer 66 using the glue layer 116. The separate dummy substrates 165, for example, can be separate silicon bars, separate dummy chips, separate dummy silicon dies, or separate substrates of polysilicon, glass, silicon, or ceramic.


Alternatively, referring to FIGS. 33 and 35, the glue layer 116 can be replaced with a silicon-oxide layer that is formed on the insulating or dielectric layer 66. In this case, joining the chips 72 with the layer 66 and joining the separate dummy substrates 165 with the layer 66 can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 74, at the active side of each chip 72, with the silicon-oxide layer 116 and by bonding another silicon-oxide layer of each of the separate dummy substrates 165 with the silicon-oxide layer 116. The silicon-oxide layer of the passivation layer 74 of each chip 72 contacts the silicon-oxide layer 116, and the silicon-oxide layer of each of the separate dummy substrates 165 contacts the silicon-oxide layer 116. Accordingly, the chips 72 and the separate dummy substrates 165 can be joined with the insulating or dielectric layer 66 using these silicon-oxide layers.


As shown in FIGS. 33 and 35, there are multiple gaps 4a each between one of the chips 72 and one of the separate dummy substrates 165, and there are multiple gaps 8a (one of them is shown) each between neighboring two chips 72. Each of the gaps 4a may have a transverse distance or spacing D4, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8a may have a transverse distance or spacing D5, e.g., smaller than 500 micrometers, such as between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. In one embodiment, there are no circuits preformed in each separate dummy substrate 165 or on a top or bottom surface of each separate dummy substrate 165 before the separate dummy substrates 165 are joined with the insulating or dielectric layer 66.


Referring to FIG. 36, after the steps illustrated in FIGS. 33 and 34 or in FIGS. 33 and 35, an encapsulation/gap filling material 98, such as polysilicon, silicon oxide, or a polymer, can be formed on a backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165, and in the gaps 4a and 8a. If the encapsulation/gap filling material 98 is polysilicon, the polysilicon can be formed by a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. If the encapsulation/gap filling material 98 is silicon oxide, the silicon oxide can be formed by a chemical vapor deposition (CVD) process, a plasma-enhanced chemical vapor deposition (PECVD) process, or an atmospheric pressure chemical vapor deposition (APCVD) process. If the encapsulation/gap filling material 98 is a polymer, such as polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), the polymer can be formed by a process including a spin coating process, a dispensing process, a molding process, or a screen printing process.


Next, referring to FIG. 37, the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 are ground or polished by, e.g., a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the semiconductor substrate 96 of one of the chips 72 is thinned to a thickness T8, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Preferably, each of the chips 72, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. After the grinding or polishing process, the dummy substrate(s) 165 can be thinned to a thickness T9, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 98 remaining in the gaps 4a and 8a may have a vertical thickness T10, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 96s of the semiconductor substrate 96, at the backside of each chip 72, and the ground or polished surface(s) 165s of the dummy substrate(s) 165 can be substantially flat and not covered by the encapsulation/gap filling material 98. The ground or polished surface(s) 165s may be substantially coplanar with the ground or polished surface 96s of each chip 72 and with the ground or polished surface 98s of the encapsulation/gap filling material 98 in the gaps 4a and 8a.


Alternatively, FIGS. 38 and 39 show another technique to form the structure illustrated in FIG. 37. Referring to FIG. 38, after the steps illustrated in FIGS. 33 and 34 or in FIGS. 33 and 35, an encapsulation/gap filling material 98, such as polysilicon or silicon oxide, can be formed on the backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165 and in the gaps 4a and 8a, and then a polymer 99, such as molding compound, polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), can be formed on the encapsulation/gap filling material 98 and in the gaps 4a and 8a. The encapsulation/gap filling material 98 in the gaps 4a and 8a may have a vertical thickness T11, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers.


Next, referring to FIG. 39, a mechanical grinding process can be performed, e.g., by using an abrasive or grinding pad with water to grind the polymer 99, the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72 and the dummy substrate(s) 165 until all of the polymer 99 is removed and until a predetermined vertical thickness T12 of the encapsulation/gap filling material 98 in the gaps 4a and 8a is reached. The predetermined vertical thickness T12 can be, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers. The abrasive or grinding pad can be provided with rough grit having an average grain size, e.g., between 0.5 and micrometers for performing the mechanical grinding process. Thereafter, a chemical-mechanical-polishing (CMP) process can be performed, e.g., by using a polish pad with a slurry containing chemicals and a fine abrasive like silica with an average grain size, e.g., between 0.02 and 0.05 micrometers to polish the dummy substrate(s) 165, the backside of the semiconductor substrate 96 of each chip 72 and the encapsulation/gap filling material 98 in the gaps 4a and 8a until the semiconductor substrate 96 of one of the chips 72 is thinned to the thickness T8 between 1 and 30 micrometers, and preferably between 2 and 5 micrometers, between 2 and 10 micrometers, between 2 and 20 micrometers, or between 3 and 30 micrometers, as shown in FIG. 37.


After the chemical-mechanical-polishing (CMP) process, the polished surface 96s of the semiconductor substrate 96, at the backside of each chip 72, and the polished surface(s) 165s of the dummy substrate(s) 165 can be substantially flat and not covered by the encapsulation/gap filling material 98. The polished surface(s) 165s may be substantially coplanar with the polished surface 96s of each chip 72 and with the polished surface 98s of the encapsulation/gap filling material 98 in the gaps 4a and 8a. The polished surfaces 96s, 165s and 98s may have a micro-roughness, e.g., less than 20 nanometers. The chemical-mechanical-polishing (CMP) process, using a very fine abrasive like silica and a relatively weak chemical attack, will create the surfaces 96s, 165s and 98s almost without deformation and scratches, and this means that the chemical-mechanical-polishing (CMP) process is very well suited for the final polishing step, creating the clean surfaces 96s, 165s and 98s. Using the mechanical grinding process and the chemical-mechanical-polishing (CMP) process can be performed to create a very thin semiconductor substrate 96 of each chip 72. Accordingly, after the chemical-mechanical-polishing (CMP) process, each of the chips 72 can be thinned to a thickness, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, the dummy substrate(s) 165 can be thinned to the thickness T9, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 98 in the gaps 4a and 8a can be thinned to the thickness T10, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers.


Referring to FIG. 40, after forming the structure illustrated in FIG. 37, a dielectric layer 88 is formed on the surfaces 96s, 165s and 98s. The dielectric layer 88 may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


The dielectric layer 88, for example, can be an inorganic layer formed by, e.g., a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. The inorganic layer can be, e.g., a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC), or a layer including silicon oxide, silicon nitride, silicon carbon nitride and silicon oxynitride. The inorganic layer may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


Alternatively, the dielectric layer 88 can be a polymer layer, such as a layer of polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), formed by, e.g., a process including a spin coating process, a dispensing process, a molding process, or a screen printing process. The polymer layer may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


Alternatively, the dielectric layer 88 can be composed of multiple inorganic layers which include an etch stop layer, such as etch stop layer of silicon oxynitride. The etch stop layer will later be used to stop etching when etching patterns into the dielectric layer 88. In this case, the dielectric layer 88, for example, can be composed of a first silicon-oxide layer on the surfaces 96s, 165s and 98s, a silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and a second silicon-oxide layer having a thickness, e.g., between 0.1 and 5 micrometers or between 0.3 and 1.5 micrometers on the silicon-oxynitride layer.


Next, referring to FIG. 41, multiple through vias 164v, including through vias 164a, 164b, 164c, 164d and 164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72, by the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, is formed on the dielectric layer 88 by using a suitable process, such as spin coating process or lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 88, in the photoresist layer. The photoresist layer may have a thickness, e.g., between 3 and 50 micrometers. Next, the dielectric layer 88 under the openings in the photoresist layer is removed by using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 165 under the openings in the photoresist layer and the chips 72 under the openings in the photoresist layer are etched away until predetermined regions of the layers 106 and 114 in the chips 72 and predetermined regions of the conduction layer 56 of the metal interconnects 1 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 164v, including the vias 164a-164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the predetermined regions of the conduction layer 56 of the metal interconnects 1 and exposing the predetermined regions of the layers 114 and 106 of the chips 72. The through via 164a is formed in the dummy substrate 165, the through vias 164b and 164c are formed in one of the chips 72, and the through vias 164d and 164e are formed in another one of the chips 72.


Alternatively, another technique to form the through vias 164v in the chips 72 and in the dummy substrate(s) 165 can be performed by the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 88 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 88, in the photoresist layer. Next, multiple openings are formed in the dielectric layer 88 and under the openings in the photoresist layer, exposing the dummy substrate(s) 165 and the semiconductor substrates 96 of the chips 72, by removing the dielectric layer 88 under the openings in the photoresist layer using, e.g., an anisotropic plasma etching process. Next, the photoresist layer is removed by using, e.g., an organic chemical. Next, the dummy substrate(s) 165 under the openings in the dielectric layer 88 and the chips 72 under the openings in the dielectric layer 88 can be etched away until the predetermined regions of the layers 114 and 106 in the chips 72 and the predetermined regions of the conduction layer 56 of the metal interconnects 1 are exposed by the openings in the dielectric layer 88. Accordingly, the through vias 164v, including the through vias 164a, 164b, 164c, 164d and 164e, can be formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72. The through via 164a is formed in the dummy substrate 165, the through vias 164b and 164c are formed in one of the chips 72, and the through vias 164d and 164e are formed in another one of the chips 72. Each of the through vias 164v, such as the through via 164a, 164b, 164c, 164d, or 164e, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers.


One of the through vias 164v, such as the through via 164a, passes through the dielectric layer 88, the dummy substrate 165, the layer 116, and the insulating or dielectric layer 66, exposing the conduction layer 56 of one of the metal interconnects 1. Another one of the through vias 164v, such as the through via 164b, passes through the dielectric layer 88, through the semiconductor substrate 96, dielectric layers 82, 108, 104 and 100, and passivation layer 74 of one of the chips 72, through the layer 116, and through the insulating or dielectric layer 66, exposing the conduction layer 56 of one of the metal interconnects 1. Another one of the through vias 164v, such as the through via 164c, passes through the dielectric layer 88 and through the semiconductor substrate 96 and dielectric layer 100 of one of the chips 72, exposing the interconnect or metal trace 55c in the interconnection layer 106 of the one of the chips 72. Another one of the through vias 164v, such as the through via 164d, passes through the dielectric layer 88 and through the semiconductor substrate 96 and dielectric layers 100, 104 and 108 of one of the chips 72, exposing the interconnect or metal trace 55b in the patterned metal layer 114 of the one of the chips 72. Another one of the through vias 164v, such as the through via 164e, passes through the dielectric layer 88, through the semiconductor substrate 96, dielectric layers 82, 108, 104 and 100, and passivation layer 74 of one of the chips 72, through the layer 116, and through the insulating or dielectric layer 66, exposing the interconnect or metal trace 55a in the interconnection layer 106 of the one of the chips 72 and exposing the conduction layer 56 of one of the metal interconnects 1. A supporter 802 provided by the layers 66, 116, 74, 82 and 108 is between the conduction layer 56 of the metal interconnect 1b and the interconnect or metal trace 55a in the interconnection layer 106 exposed by the through via 164e for the purpose of supporting the exposed interconnect or metal trace 55a. The supporter 802 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. FIGS. 42-44 are three examples of schematic top perspective views showing the through via 164e and the interconnect or metal trace 55a illustrated in FIG. 41.


As shown in FIGS. 41 and 42, the through via 164e in one of the chips 72 exposes the interconnect or metal trace 55a in the one of the chips 72 and exposes two regions of the conduction layer 56 of the metal interconnect 1b that is under the one of the chips 72. The interconnect or metal trace 55a has a line-shaped region, exposed by the through via 164e, extending in a horizontal direction from a side of the through via 164e to the opposite side of the through via 164e through a center of the through via 164e. The previously described supporter 802, between the conduction layer 56 of the metal interconnect 1b and the exposed line-shaped region of the interconnect or metal trace 55a in the interconnection layer 106, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 55a. Preferably, the through via 164e can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 41 and 43, the through via 164e in one of the chips 72 exposes the interconnect or metal trace 55a in the one of the chips 72 and exposes a region of the conduction layer 56 of the metal interconnect 1b that is under the one of the chips 72. The interconnect or metal trace 55a has a peninsula region, exposed by the through via 164e, extending in a horizontal direction from one side of the through via 164e at least to a center of the through via 164e, but does not reach to the opposite side of the through via 164e; the interconnect or metal trace 55a has an end exposed by the through via 164e. The previously described supporter 802, between the conduction layer 56 of the metal interconnect 1b and the exposed peninsula region of the interconnect or metal trace 55a in the interconnection layer 106, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 55a. Preferably, the through via 164e can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 41 and 44, the through via 164e in one of the chips 72 exposes the interconnect or metal trace 55a in the one of the chips 72 and exposes a region of the conduction layer 56 of the metal interconnect 1b that is under the one of the chips 72. The interconnect or metal trace 55a has a peninsula region, exposed by the through via 164e, extending in a horizontal direction from one side of the through via 164e at least to a center of the through via 164e, but does not reach to the opposite side of the through via 164e; the interconnect or metal trace 55a has a circular end exposed by the through via 164e. The previously described supporter 802, between the conduction layer 56 of the metal interconnect 1b and the exposed peninsula region of the interconnect or metal trace 55a in the interconnection layer 106, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 55a. Preferably, the through via 164e can be, but is not limited to, a circular shape from a top perspective view.



FIG. 42A is an example of a schematic top perspective view showing the through via 164e and the interconnect or metal trace 55a illustrated in FIG. 41. In this case, the through via 164e can be, but is not limited to, oval-shaped and has a width W3, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers. The oval-shaped through via 164e in one of the chips 72 exposes the interconnect or metal trace 55a in the one of the chips 72 and exposes two regions of the conduction layer 56 of the metal interconnect 1b that is under the one of the chips 72. The interconnect or metal trace 55a has a line-shaped region, exposed by the oval-shaped through via 164e, extending in a horizontal direction from a side of the oval-shaped through via 164e to the opposite side of the oval-shaped through via 164e through a center of the oval-shaped through via 164e. The previously described supporter 802, between the conduction layer 56 of the metal interconnect 1b and the exposed line-shaped region of the interconnect or metal trace 55a in the interconnection layer 106, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 55a. The interconnect or metal trace 55a exposed by the oval-shaped through via 164e has a width W4, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 20 micrometers, between 0.3 and 10 micrometers, between 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. A horizontal distance S2 between an endpoint of the long axis of the oval-shaped through via 164e and an edge, which is closer to the endpoint than the other opposite edge, of the interconnect or metal trace 55a exposed by the oval-shaped through via 164e can be, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers.


Next, referring to FIG. 45, a dielectric layer 90 is formed on a top surface of the dielectric layer 88, on the conduction layer 56, exposed by the through vias 164v (such as the through vias 164a, 164b and 164e), of the metal interconnects 1, on the layers 106 and 114, exposed by the through vias 164v (such as the through vias 164c, 164d and 164e), of the chips 72, and on sidewalls of the through vias 164v.


The dielectric layer 90 can be composed of an insulating material. For example, the dielectric layer 90 can be an inorganic layer having a thickness, e.g., between 20 nanometers and 1 micrometer, and the inorganic layer can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC). Alternatively, the dielectric layer 90 can be a polymer layer having a thickness, e.g., between 1 and 10 micrometers, and preferably between 1 and 5 micrometers, and the polymer layer can be a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO).


Next, referring to FIG. 46, a photoresist layer 162, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 90 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a wet chemical can be employed to form multiple openings 162a, exposing the dielectric layer 90, in the photoresist layer 162. The photoresist layer 162 may have a thickness, e.g., between 0.5 and 30 micrometers.


Next, referring to FIG. 47, the dielectric layer 90 formed on the layers 56, 106 and 114 and on the top surface of the dielectric layer 88 under the openings 162a can be removed by, e.g., etching the dielectric layer 90 under the openings 162a using an anisotropic plasma etching process. The dielectric layer 90 at bottoms of the through vias 164v, on the top surface of the dielectric layer 88 under the openings 162a, and on a top surface of the interconnect or metal trace 55a over the supporter 802 can be etched away. Accordingly, the layers 56, 106 and 114 at the bottoms of the through vias 164v, the top surface of the dielectric layer 88 under the openings 162a, and the interconnect or metal trace 55a over the supporter 802 are exposed by the openings 162a, and the dielectric layer 90 remains on the sidewalls of the through vias 164v, so called as sidewall dielectric layers in the through vias 164v. The sidewall dielectric layers 90 are formed on the sidewalls of the through vias 164v in the chips 72 or in the dummy substrate(s) 165 and are enclosed by the semiconductor substrates 96 of the chips 72 or by the dummy substrate(s) 165.


Next, referring to FIG. 48, multiple trenches 88t, damascene openings, can be formed in the dielectric layer 88 by etching the dielectric layer 88 and the sidewall dielectric layers 90 under the openings 162a to a depth D6, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers, using, e.g., an anisotropic plasma etching process. Preferably, the dielectric layer 88 and the sidewall dielectric layers 90 have a same material, such as silicon nitride, silicon oxide, or silicon oxynitride. After the etching process, the dielectric layer 88 under the trenches 88t has a remaining thickness T13, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Alternatively, an etching-stop technique may be applied to the process of forming the trenches 88t in the dielectric layer 88. In this case, the dielectric layer 88 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 96s, 165s and 98s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. The trenches 88t can be formed in the dielectric layer 88 by etching the second silicon-oxide layer of the dielectric layer 88 under the openings 162a and the sidewall dielectric layers 90 under the openings 162a until the silicon-oxynitride layer of the dielectric layer 88 is exposed by the openings 162a. Accordingly, the trenches 88t are formed in the second silicon-oxide layer of the dielectric layer 88, and the remaining dielectric layer 88, composed of the silicon-oxynitride layer and the first silicon-oxide layer, under the trenches 88t has a thickness T13, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Next, referring to FIG. 49, the photoresist layer 162 is removed by using, e.g., an organic chemical. The trenches 88t formed in the dielectric layer 88 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The sidewall dielectric layers 90 formed on the sidewalls of the through vias 164v (such as the through vias 164b, 164c, 164d and 164e) in the chips 72 can prevent transition metals, such as copper, sodium or moisture from penetrating into IC devices of the chips 72. FIG. 50 is a schematic top perspective view showing the through vias 164v, the trenches 88t and the sidewall dielectric layers 90 shown in FIG. 49 according an embodiment of the present invention, and FIG. 49 is a cross-sectional view cut along the line H-H shown in FIG. 50.


Next, referring to FIG. 51, an adhesion/barrier layer 92 having a thickness, e.g., smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, can be formed on the layers 56, 106 and 114 exposed by the through vias 164v, on sidewalls and bottoms of the trenches 88t, on the dielectric layer 90, and on the interconnect or metal trace 55a that is on the supporter 802. The adhesion/barrier layer 92 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 94 having a thickness, e.g., smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 92 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a conduction layer 86 having a thickness, e.g., between 0.5 and 20 micrometers or between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, can be formed on the seed layer 94 by using, e.g., an electroplating process.


The adhesion/barrier layer 92 may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness, e.g., smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 94 may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness, e.g., smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers. The conduction layer 86 may include or can be an electroplated metal layer of copper, gold, or silver having a thickness, e.g., between 0.5 and 20 micrometers or between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers.


Next, referring to FIG. 52, by using a grinding or polishing process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, the layers 92, 94 and 86 outside the trenches 88t can be removed, and the dielectric layer 90 on the top surface of the dielectric layer 88 can be removed. Accordingly, the dielectric layer 88 has an exposed top surface 88s that can be substantially coplanar with the ground or polished surface 86s of the conduction layer 86 in the trenches 88t, and the surfaces 86s and 88s can be substantially flat. The dielectric layer 88 has a thickness T14, between the exposed top surface 88s and the surface 96s or 165s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers or between 2 and 5 micrometers. The adhesion/barrier layer 92 and the seed layer 94 are at sidewalls and a bottom of the conduction layer 86 in the trenches 88t, and the sidewalls and the bottom of the conduction layer 86 in the trenches 88t are covered by the adhesion/barrier layer 92 and the seed layer 94.


In a first alternative, after the steps of removing the layers 92, 94 and 86 outside the trenches 88t and removing the dielectric layer 90 on the top surface of the dielectric layer 88, the adhesion/barrier layer 92 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t, on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a second alternative, after the steps of removing the layers 92, 94 and 86 outside the trenches 88t and removing the dielectric layer 90 on the top surface of the dielectric layer 88, the adhesion/barrier layer 92 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t, on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a third alternative, after the steps of removing the layers 92, 94 and 86 outside the trenches 88t and removing the dielectric layer 90 on the top surface of the dielectric layer 88, the adhesion/barrier layer 92 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t, on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


After the steps of removing the layers 92, 94 and 86 outside the trenches 88t and removing the dielectric layer 90 on the top surface of the dielectric layer 88, the layers 92, 94 and 86 in the trenches 88t compose multiple metal interconnects (or damascene metal traces) 2, including metal interconnects 2a and 2b, in the trenches 88t. The layers 92, 94 and 86 in the through vias 164v compose multiple metal plugs (or metal vias) 6p in the through vias 164v, including metal plugs (or metal vias) 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e as shown in FIG. 49, respectively. Each of the metal plugs 6p in the chips 72 and in the dummy substrate(s) 165 is enclosed by one of the sidewall dielectric layers 90 in the through vias 164v. The metal plug 6a is formed in the dummy substrate 165, the metal plugs 6b and 6c are formed in one of the chips 72, and the metal plugs 6d and 6e are formed in another one of the chips 72. These metal plugs 6p formed in the chips 72 and in the dummy substrate(s) 165 can connect the metal interconnects 2 and the semiconductor devices 102 in the chips 72 and connect the metal interconnects 1 and 2. The supporter 802 and the interconnect or metal trace 55a, in the interconnection layer 106, on the supporter 802 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 106 is positioned, of the metal plug 6e. The metal interconnects 2, such as 2a and 2b, in the trenches 88t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers.


For example, one of the metal plugs 6p, such as the metal plug 6a, can be formed in the dummy substrate 165 and formed on a contact point, at a bottom of one of the through vias 164v (such as the through via 164a), of the conduction layer 56 of one of the metal interconnects 1, such as the metal interconnect 1b. Another one of the metal plugs 6p, such as the metal plug 6e, can be formed in one of the chips 72, formed on a contact point of the interconnect or metal trace 55a over a supporter (such as the supporter 802) that is between two lower left and right portions of the another one of the metal plugs 6p (such as the metal plug 6e), and formed on another contact point, at a bottom of another one of the through vias 164v (such as the through via 164e), of the conduction layer 56 in the one of the metal interconnects 1, such as the metal interconnect 1b. Another one of the metal plugs 6p, such as the metal plug 6d, can be formed in the one of the chips 72 and formed on a contact point, at a bottom of another one of the through vias 164v (such as the through via 164d), of the interconnect or metal trace 55b in the one of the chips 72. Another one of the metal plugs 6p, such as the metal plug 6b, can be formed in another one of the chips 72 and formed on another contact point, at a bottom of another one of the through vias 164v (such as the through via 164b), of the conduction layer 56 in another one of the metal interconnects 1, such as the metal interconnect 1a. Another one of the metal plugs 6p, such as the metal plug 6c, can be formed in the another one of the chips 72 and formed on a contact point, at a bottom of another one of the through vias 164v (such as the through via 164c), of the interconnect or metal trace 55c in the another one of the chips 72.


The metal interconnect 2a can be formed over the dummy substrate(s) 165, over multiple of the chips 72, and across multiple edges of the multiple of the chips 72. The metal interconnect 2a can be connected to a contact point, at a bottom of the through via 164b, of the metal interconnect 1a through the metal plug 6b in one of the chips 72, can be connected to a contact point, at a bottom of the through via 164c, of the interconnect or metal trace 55c in the one of the chips 72 through the metal plug 6c in the one of the chips 72, and can be connected to a contact point, at a bottom of the through via 164d, of the interconnect or metal trace 55b in another one of the chips 72 through the metal plug 6d in the another one of the chips 72. These contact points at the bottoms of the through vias 164b, 164c and 164d can be connected to each other through the metal interconnect 2a.


The metal interconnect 2b can be formed over multiple of the chips 72 to connect multiple of the semiconductor devices 102 in the multiple of the chips 72. The metal interconnect 2b can be connected to a contact point, at a bottom of the through via 164e, of the metal interconnect 1b through the metal plug 6e in one of the chips 72, can be connected to one or more of the semiconductor devices 102 in the one of the chips 72 through the metal plug 6e and the interconnect or metal trace 55a in the one of the chips 72, and can be connected to a contact point, at a bottom of another one of the through vias 164v, of the interconnect or metal trace 55a, 55b or 55c in another one of the chips 72 through another one of the metal plugs 6p in the another one of the chips 72.


Accordingly, one of the semiconductor devices 102 in one of the chips 72 can be connected to another one of the semiconductor devices 102 in the one of the chips 72 or in another one of the chips 72 through one of the metal interconnects 2, such as 2a or 2b, and can be connected to a contact point, at a bottom of one of the through vias 164v (such as the through via 164a, 164b, or 164e), of the conduction layer 56 of one of the metal interconnects 1, such as 1a or 1b, through the one of the metal interconnects 2. Each of the metal interconnects 2 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 72 not only can indicate a chip, but also can indicate a wafer. When the element 72 is a wafer, the element 68 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 53, after forming the structure illustrated in FIG. 52, an insulating or dielectric layer 120 can be formed on the ground or polished surface 92s of the adhesion/barrier layer 92, on the ground or polished surface 94s of the seed layer 94, on the ground or polished surface 86s of the conduction layer 86, and on the exposed top surface 88s of the dielectric layer 88. The insulating or dielectric layer 120 may have a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers.


The insulating or dielectric layer 120, for example, may include or can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC) with a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers, formed by a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process.


Alternatively, the insulating or dielectric layer 120 may include or can be a polymer layer with a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers, formed by, e.g., a process including a spin coating process and a curing process. The polymer layer can be a layer of polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or epoxy.


Next, referring to FIG. 54, a dummy substrate 158 can be attached onto the insulating or dielectric layer 120, e.g., by the following steps. First, a glue layer 140 having a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers, can be formed on a top surface of the insulating or dielectric layer 120 or on a bottom surface of the dummy substrate 158 by using, e.g., a spin coating process, a lamination process, a spraying process, a dispensing process, or a screen printing process. Next, the glue layer 140 can be optionally pre-cured or baked. Next, the dummy substrate 158 can be placed over the insulating or dielectric layer 120 with the glue layer 140 between the insulating or dielectric layer 120 and the dummy substrate 158. Next, the glue layer 140 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 140. Accordingly, the dummy substrate 158 can be joined with the insulating or dielectric layer 120 using the glue layer 140. The glue layer 140 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or silosane, with a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers.


Alternatively, the glue layer 140 can be replaced with an inorganic insulating layer, such as silicon oxide, that can be formed on the insulating or dielectric layer 120. In this case, the dummy substrate 158 can be joined with the insulating or dielectric layer 120, e.g., by bonding an inorganic insulating layer, such as silicon oxide, of the dummy substrate 158 onto the inorganic insulating layer 140, such as silicon oxide. The silicon-oxide layer of the dummy substrate 158 contacts the silicon-oxide layer 140.


The dummy substrate 158 can be a round wafer, a dummy silicon wafer, a rectangular panel, or a substrate of polysilicon, glass, silicon or ceramic. The dummy substrate 158, before being ground or polished as mentioned in the following processes, may have a thickness, e.g., greater than 100 micrometers, such as between 100 and 1,500 micrometers, and preferably between 200 and 500 micrometers or between 100 and 300 micrometers.


In one embodiment, there are no circuits preformed in the dummy substrate 158 or on a top or bottom surface of the dummy substrate 158 before the dummy substrate 158 is joined with the insulating or dielectric layer 120. The dummy substrate 158 may have the top surface with a profile that is substantially same as that of the top surface of the carrier 11.


Next, referring to FIG. 55, multiple openings 158a are formed in the dummy substrate 158, exposing the glue layer 140, by a process, e.g., including a photolithography process and an etching process, which can be referred to as the previous illustration of FIGS. 29 and 31. Alternatively, when the glue layer 140 is replaced with the silicon-oxide layer and the dummy substrate 158 has the silicon-oxide layer bonded with the silicon-oxide layer 140, the openings 158a are formed in the dummy substrate 158, exposing the silicon-oxide layer of the dummy substrate 158, by a process, e.g., including a photolithography process and an etching process, which can be referred to as the previous illustration of FIGS. 29 and 31. FIG. 56 shows a schematic top view of the dummy substrate 158 with the openings 158a as shown in FIG. 55, and FIG. 55 can be a cross-sectional view cut along the line I-I shown in FIG. 56.


Alternatively, a hard mask (not shown), such as silicon oxide or silicon nitride, may be formed on the dummy substrate 158 shown in FIG. 55, e.g., by the following steps. First, the hard mask of silicon oxide or silicon nitride can be formed on the dummy substrate 158 shown in FIG. 54. Next, a photoresist layer can be formed on the hard mask by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings, exposing multiple regions of the hard mask, in the photoresist layer. Next, multiple openings are formed in the hard mask and under the openings in the photoresist layer, exposing multiple regions of the dummy substrate 158, by using, e.g., a wet etching process or a plasma etching process. Next, the photoresist layer is removed by using, e.g., an organic chemical. Next, multiple openings 158a are formed in the dummy substrate 158 and under the openings in the hard mask, exposing the glue layer 140, by using, e.g., a chemical etching process or a plasma etching process. Alternatively, when the glue layer 140 is replaced with the silicon-oxide layer and the dummy substrate 158 has the silicon-oxide layer bonded with the silicon-oxide layer 140, the openings 158a are formed in the dummy substrate 158 and under the openings in the hard mask, exposing the silicon-oxide layer of the dummy substrate 158, by using, e.g., a chemical etching process or a plasma etching process. The hard mask will be removed by the following grinding or polishing process.


Next, referring to FIG. 57, multiple chips 118 can be mounted over the insulating or dielectric layer 120 and in the openings 158a in the dummy substrate 158, and the chips 118 have active sides at bottoms of the chips 118 and backsides at tops of the chips 118. In one case, one of the chips 118 may have different circuit designs from those of another one of the chips 118. Also, in another case, one of the chips 118 may have same circuit designs as those of another one of the chips 118. Alternatively, one of the chips 118 may have a different area (top surface) or size from that of another one of the chips 118. Also, in another case, one of the chips 118 may have a same area (top surface) or size as that of another one of the chips 118. FIG. 58 is an example of a schematical top view showing the chips 118 mounted in the openings 158a in the dummy substrate 158, and FIG. 57 is a cross-sectional view cut along the line J-J shown in the schematical top view of FIG. 58.


Mounting the chips 118 over the insulating or dielectric layer 120 and in the openings 158a can be performed, e.g., by first forming a glue material (not shown) on the active sides of the chips 118 or on the glue layer 140, next placing the chips 118 in the openings 158a and over the glue layer 140 with the glue material contacting the glue layer 140, and then curing the glue material in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue material. Accordingly, the chips 118 can be joined with the glue layer 140 using the glue material.


Each of the chips 118 can include a semiconductor substrate 124, multiple semiconductor devices 13 in and/or on the semiconductor substrate 124, a passivation layer 21 under the semiconductor substrate 124, multiple dielectric layers 78, 28, 38 and 40 between the semiconductor substrate 124 and the passivation layer 21, a patterned metal layer 19 between the semiconductor substrate 124 and the passivation layer 21, an interconnection layer 17 between the semiconductor substrate 124 and the passivation layer 21, multiple via plugs 19a in the dielectric layer 28, and multiple via plugs 17a in the dielectric layer 40. The semiconductor substrate 124 is at the backside of each chip 118, and the semiconductor devices 13, the passivation layer 21, the patterned metal layer 19, the interconnection layer 17, the dielectric layers 78, 28, 38 and 40, and the via plugs 17a and 19a are at the active side of each chip 118.


The semiconductor substrate 124 can be a suitable substrate, such as silicon substrate, silicon-germanium (SiGe) substrate, or gallium-arsenide (GaAs) substrate. The semiconductor substrate 124 before being thinned as mentioned in the following processes may have a thickness, e.g., greater than 100 micrometers, such as between 100 and 500 micrometers, and preferably between 150 and 250 micrometers or between 100 and 300 micrometers.


Each of the semiconductor devices 13 can be a P-channel metal-oxide-semiconductor (PMOS) transistor, an N-channel metal-oxide-semiconductor (NMOS) transistor, a double-diffused metal-oxide-semiconductor (DMOS) transistor, or a bipolar transistor. Each of the semiconductor devices 13 can be provided for a NOR gate, a NAND gate, an AND gate, an OR gate, a static-random-access-memory (SRAM) cell, a dynamic-random-access-memory (DRAM) cell, a flash memory cell, a non-volatile memory cell, an erasable programmable read-only memory (EPROM) cell, a read-only memory (ROM) cell, a magnetic-random-access-memory (MRAM) cell, a sense amplifier, an inverter, an operational amplifier, an adder, a multiplexer, a diplexer, a multiplier, an analog-to-digital (A/D) converter, a digital-to-analog (D/A) converter, an analog circuit, a complementary-metal-oxide-semiconductor (CMOS) sensor, or a charge coupled device (CCD).


The passivation layer 21 may include or can be an inorganic dielectric layer having a bottom surface attached to the glue layer 140, and the inorganic dielectric layer can be a layer of silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN) or silicon oxynitride (such as SiON) with a thickness, e.g., between 0.3 and 1.5 micrometers. Alternatively, each of the chips 118 may further contain an organic polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), epoxy, or silosane, with a thickness, e.g., greater than 3 micrometers, such as between 3 and 20 micrometers, and preferably between 5 and 12 micrometers, under and on the bottom surface of the inorganic dielectric layer of the passivation layer 21. In this case, the organic polymer layer has a bottom surface attached to the glue layer 140. The organic polymer layer has a top surface contacting the bottom surface of the inorganic dielectric layer of the passivation layer 21.


Alternatively, multiple openings (not shown) each having a width, e.g., between 0.5 and 100 micrometers, and preferably between 20 and 60 micrometers, may be formed in the passivation layer 21 and expose multiple contact points of the patterned metal layer 19.


The dielectric layer 78 can be between the passivation layer 21 and the dielectric layer 28. The dielectric layer 28 can be between the dielectric layers 78 and 38 and between the layers 17 and 19. The dielectric layer 38 can be between the dielectric layers 40 and 28. Each of the dielectric layers 78, 28 and 38 may include silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), silicon oxycarbide (such as SiOC), or a low-k material having a dielectric constant between 1.8 and 3 (such as fluorinated silicate glass (FSG) or Black-diamond). Each of the dielectric layers 78, 28 and 38 may have a thickness, e.g., between 10 nanometers and 2 micrometers, and preferably between 50 nanometers and 1 micrometer.


The dielectric layer 40 between the dielectric layer 38 and the semiconductor substrate 124 and between the interconnection layer 17 and the semiconductor substrate 124 may include or can be a layer of phosphorous silicate glass (PSG), borophospho-silicate glass (BPSG), silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or a low-k material having a dielectric constant between 1.8 and 3 (such as fluorinated silicate glass (FSG) or Black-diamond). The dielectric layer 40 may have a thickness, e.g., between 10 nanometers and 1 micrometer.


The patterned metal layer 19, for example, may include an aluminum-copper-alloy layer having a thickness, e.g., between 0.3 and 3 micrometers and a titanium-containing layer having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers. The titanium-containing layer can be between the dielectric layer 28 and the aluminum-copper-alloy layer and on the aluminum-copper-alloy layer, and the aluminum-copper-alloy layer can be between the passivation layer 21 and the titanium-containing layer. The titanium-containing layer can be a single layer of titanium, titanium nitride, or a titanium-tungsten alloy having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers.


Alternatively, the patterned metal layer 19 may include a nickel layer having a thickness, e.g., between 0.5 and 3 micrometers, and a gold layer having a thickness, e.g., between 0.01 and 1 micrometers under and on the nickel layer, in the view from the side of the dielectric layer 28 to the side of the passivation layer 21. The nickel layer is between the dielectric layer 28 and the gold layer, and the gold layer is between the nickel layer and the passivation layer 21.


Alternatively, the patterned metal layer 19 can be formed by a damascene or double-damascene process including an electroplating process and a chemical mechanical polishing (CMP) process and can be composed of an electroplated copper layer having a bottom contacting the passivation layer 21, an adhesion/barrier metal layer at a top and sidewalls of the electroplated copper layer, and a seed layer between the electroplated copper layer and the adhesion/barrier metal layer and on the top and sidewalls of the electroplated copper layer. The adhesion/barrier metal layer has a first portion between the top of the electroplated copper layer and the dielectric layer 28 and a second portion at the sidewalls of the electroplated copper layer. The electroplated copper layer may have a thickness, e.g., smaller than 1.5 micrometers, such as between 0.15 and 1.2 micrometers, or smaller than 3 micrometers, such as between 0.3 and 3 micrometers. The electroplated copper layer may have a width, e.g., smaller than 1 micrometer, such as between 0.05 and 1 micrometers. The seed layer may include or can be a layer of copper or a titanium-copper alloy formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, or tantalum nitride formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may have a thickness, e.g., smaller than 0.1 micrometers, such as between 0.005 and 0.1 micrometers. The sidewalls of the electroplated copper layer are covered by the adhesion/barrier metal layer and the seed layer.


The interconnection layer 17, for example, may include carbon nanotube. Alternatively, the interconnection layer 17 can be composed of a patterned metal layer in the dielectric layer 38. In a first alternative, the patterned metal layer 17 may include an aluminum-copper-alloy layer having a thickness, e.g., between 10 nanometers and 2 micrometers and a titanium-containing layer, such as a single layer of titanium nitride, titanium-tungsten alloy or titanium, having a thickness, e.g., smaller than 0.2 micrometers, such as between 0.02 and 0.15 micrometers. The titanium-containing layer can be on the aluminum-copper-alloy layer and between the dielectric layer 40 and the aluminum-copper-alloy layer, and the aluminum-copper-alloy layer can be in the dielectric layer 38. In a second alternative, the patterned metal layer 17 can be formed by a damascene or double-damascene process including an electroplating process and a chemical mechanical polishing (CMP) process and can be composed of an electroplated copper layer having a bottom contacting the dielectric layer 28, an adhesion/barrier metal layer at a top and sidewalls of the electroplated copper layer, and a seed layer between the electroplated copper layer and the adhesion/barrier metal layer and on the top and sidewalls of the electroplated copper layer. The adhesion/barrier metal layer has a first portion between the top of the electroplated copper layer and the dielectric layer 40 and a second portion at the sidewalls of the electroplated copper layer. The electroplated copper layer may have a thickness, e.g., smaller than 2 micrometers, such as between 0.15 and 1 micrometers or between 10 nanometers and 2 micrometers. The electroplated copper layer may have a width, e.g., smaller than 1 micrometer, such as between 0.05 and 1 micrometers. The seed layer may include or can be a layer of copper or a titanium-copper alloy formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may include or can be a layer of titanium, titanium nitride, a titanium-tungsten alloy, chromium, tantalum or tantalum nitride formed by a suitable process, such as sputtering process. The adhesion/barrier metal layer may have a thickness, e.g., smaller than 0.1 micrometers, such as between 0.005 and 0.1 micrometers. The sidewalls of the electroplated copper layer are covered by the adhesion/barrier metal layer and the seed layer.


The patterned metal layer 19 in the dielectric layer 78 can be connected to the interconnection layer 17 in the dielectric layer 38 through the via plugs 19a in the dielectric layer 28. The interconnection layer 17 in the dielectric layer 38 can be connected to the semiconductor devices 13 through the via plugs 17a in the dielectric layer 40. The via plugs 19a may include electroplated copper, tungsten, or carbon nanotube in the dielectric layer 28. The via plugs 17a may include electroplated copper, tungsten, or carbon nanotube in the dielectric layer 40.


Each of the chips 118 may include multiple interconnects or metal traces 75a, 75b, 75c and 75d provided by the interconnection layer 17, the patterned metal layer 19 and the via plugs 17a and 19a. Each of the interconnects or metal traces 75a, 75b, 75c and 75d can be connected to one or more of the semiconductor devices 13 and can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, each of the chips 118 may further include a patterned metal layer (not shown), having a thickness greater than that of the patterned metal layer 19 and greater than that of the interconnection layer 17, between the glue layer 140 and the passivation layer 21. The patterned metal layer under the passivation layer 21 may include an electroplated metal layer under the passivation layer 21, an adhesion/barrier metal layer between the electroplated metal layer and the passivation layer 21, and a seed layer between the electroplated metal layer and the adhesion/barrier metal layer. In the view from the side of the passivation layer 21 to the side of the glue layer 140, the adhesion/barrier metal layer can be on the seed layer, and the seed layer can be on the electroplated metal layer. Sidewalls of the electroplated metal layer are not covered by the adhesion/barrier metal layer and the seed layer. The adhesion/barrier metal layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or nickel with a thickness, e.g., smaller than 0.6 micrometers, such as between 1 nanometer and 0.5 micrometers or between 0.005 and 0.1 micrometers. The seed layer may include or can be a layer of copper, a titanium-copper alloy, silver, gold, or nickel with a thickness, e.g., smaller than 0.8 micrometers, such as between 5 nanometers and 0.1 micrometers or between 10 nanometers and 0.8 micrometers. Each of the adhesion/barrier metal layer and the seed layer can be formed by a suitable process, such as sputtering process. The electroplated metal layer may include or can be a layer of electroplated copper, electroplated silver, or electroplated gold with a thickness, e.g., greater than 2 micrometers, such as between 2 and 30 micrometers, and preferably between 3 and 10 micrometers or between 5 and 25 micrometers.


Alternatively, when the silicon-oxide layer of the dummy substrate 158 remains on the silicon-oxide layer 140, after forming the openings 158a, and is exposed by the openings 158a in the dummy substrate 158, mounting the chips 118 over the insulating or dielectric layer 120 and in the openings 158a can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 21, at the active side of each chip 118, with the remaining silicon-oxide layer of the dummy substrate 158 under the passivation layer 21. The silicon-oxide layer of the passivation layer 21 contacts the silicon-oxide layer of the dummy substrate 158. Accordingly, the chips 118 can be joined with the insulating or dielectric layer 120 using these silicon-oxide layers.


Alternatively, another technique to form the structure illustrated in FIGS. 57 and 58 is performed by first providing a patterned dummy substrate 158, such as patterned dummy wafer, patterned panel, patterned silicon frame, or patterned substrate of polysilicon, glass, silicon, ceramic, or polymer, with multiple openings 158a passing through the patterned dummy substrate 158, next joining the patterned dummy substrate 158 with the insulating or dielectric layer 120 using the layer 140, which can be referred to as the steps illustrated in FIG. 54, and then mounting the chips 118 over the insulating or dielectric layer 120 and in the openings 158a in the patterned dummy substrate 158, which can be referred to as the steps illustrated in FIG. 57.


As shown in FIGS. 57 and 58, there are multiple gaps 4b each between the dummy substrate 158 and one of the chips 118, and there are multiple gaps 8b (one of them is shown) each between neighboring two chips 118. Each of the gaps 4b may have a transverse distance or spacing D7, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8b may have a transverse distance or spacing D8, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers.



FIG. 59 shows another technique to form the structure with the same cross-sectional view as shown in FIG. 57. FIG. 57 is a cross-sectional view cut along the line J-J shown in a schematical top view of FIG. 59. The structure shown in FIGS. 57 and 59 can be formed, e.g., by the following steps. First, the previously described glue layer 140 can be formed on the insulating or dielectric layer 120 shown in FIG. 53 by using, e.g., a spin coating process, a laminating process, a spraying process, a dispensing process, or a screen printing process. Next, the glue layer 140 can be optionally pre-cured or baked. Next, the previously described chips 118 and multiple separate dummy substrates 158 can be placed on the glue layer 140. When a gap between neighboring two chips 118 is too great, such as greater than 500 or 1,000 micrometers, one or more of the separate dummy substrates 158 can be placed in the gap. Alternatively, when a gap between neighboring two chips 118 is small enough, such as smaller than 500 or 1,000 micrometers, there can be no separate dummy substrates 158 placed in the gap. Next, the glue layer 140 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 140. Accordingly, the separate dummy substrates 158 and the chips 118 can be joined with the insulating or dielectric layer 120 using the glue layer 140. The separate dummy substrates 158, for example, can be separate silicon bars, separate dummy chips, separate dummy silicon dies, or separate substrates of polysilicon, glass, silicon, or ceramic.


Alternatively, referring to FIGS. 57 and 59, the glue layer 140 can be replaced with a silicon-oxide layer that is formed on the insulating or dielectric layer 120. In this case, joining the chips 118 with the layer 120 and joining the separate dummy substrates 158 with the layer 120 can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 21, at the active side of each chip 118, with the silicon-oxide layer 140 and by bonding another silicon-oxide layer of each of the separate dummy substrates 158 with the silicon-oxide layer 140. The silicon-oxide layer of the passivation layer 21 of each chip 118 contacts the silicon-oxide layer 140, and the silicon-oxide layer of each of the separate dummy substrates 158 contacts the silicon-oxide layer 140. Accordingly, the chips 118 and the separate dummy substrates 158 can be joined with the insulating or dielectric layer 120 using these silicon-oxide layers.


As shown in FIGS. 57 and 59, there are multiple gaps 4b each between one of the chips 118 and one of the separate dummy substrates 158, and there are multiple gaps 8b (one of them is shown) each between neighboring two chips 118. Each of the gaps 4b may have a transverse distance or spacing D7, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8b may have a transverse distance or spacing D8, e.g., smaller than 500 micrometers, such as between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. In one embodiment, there are no circuits preformed in each separate dummy substrate 158 or on a top or bottom surface of each separate dummy substrate 158 before the separate dummy substrates 158 are joined with the insulating or dielectric layer 120.


Referring to FIG. 60, after the steps illustrated in FIGS. 57 and 58 or in FIGS. 57 and 59, an encapsulation/gap filling material 138, such as polysilicon, silicon oxide, or a polymer, is formed on a backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158, and in the gaps 4b and 8b. If the encapsulation/gap filling material 138 is polysilicon, the polysilicon can be formed by a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. If the encapsulation/gap filling material 138 is silicon oxide, the silicon oxide can be formed by a chemical vapor deposition (CVD) process, a plasma-enhanced chemical vapor deposition (PECVD) process, or an atmospheric pressure chemical vapor deposition (APCVD) process. If the encapsulation/gap filling material 138 is a polymer, such as polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), the polymer can be formed by a process including a spin coating process, a dispensing process, a molding process, or a screen printing process.


Next, referring to FIG. 61, the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 are ground or polished by a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until the semiconductor substrate 124 of one of the chips 118 is thinned to a thickness T15, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Preferably, each of the chips 118, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. After the grinding or polishing process, the dummy substrate(s) 158 can be thinned to a thickness T16, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 138 remaining in the gaps 4b and 8b may have a vertical thickness T17, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 124s of the semiconductor substrate 124, at the backside of each chip 118, and the ground or polished surface(s) 158s of the dummy substrate(s) 158 can be substantially flat and not covered by the encapsulation/gap filling material 138. The ground or polished surface(s) 158s may be substantially coplanar with the ground or polished surface 124s of each chip 118 and with the ground or polished surface 138s of the encapsulation/gap filling material 138 in the gaps 4b and 8b.


Alternatively, FIGS. 62 and 63 show another technique to form the structure illustrated in FIG. 61. Referring to FIG. 62, after the steps illustrated in FIGS. 57 and 58 or in FIGS. 57 and 59, an encapsulation/gap filling material 138, such as polysilicon or silicon oxide, can be formed on the backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158 and in the gaps 4b and 8b, and then a polymer 137, such as molding compound, polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), can be formed on the encapsulation/gap filling material 138 and in the gaps 4b and 8b. The encapsulation/gap filling material 138 in the gaps 4b and 8b may have a vertical thickness T18, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers.


Next, referring to FIG. 63, a mechanical grinding process can be performed, e.g., by using an abrasive or grinding pad with water to grind the polymer 137, the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118 and the dummy substrate(s) 158 until all of the polymer 137 is removed and until a predetermined vertical thickness T19 of the encapsulation/gap filling material 138 in the gaps 4b and 8b is reached. The predetermined vertical thickness T19 can be, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers. The abrasive or grinding pad can be provided with rough grit having an average grain size, e.g., between 0.5 and 15 micrometers for performing the mechanical grinding process. Thereafter, a chemical-mechanical-polishing (CMP) process can be performed, e.g., by using a polish pad with a slurry containing chemicals and a fine abrasive like silica with an average grain size, e.g., between 0.02 and 0.05 micrometers to polish the dummy substrate(s) 158, the backside of the semiconductor substrate 124 of each chip 118 and the encapsulation/gap filling material 138 in the gaps 4b and 8b until the semiconductor substrate 124 of one of the chips 118 is thinned to the thickness T15 between 1 and 30 micrometers, and preferably between 2 and 5 micrometers, between 2 and 10 micrometers, between 2 and 20 micrometers, or between 3 and 30 micrometers, as shown in FIG. 61.


After the chemical-mechanical-polishing (CMP) process, the polished surface 124s of the semiconductor substrate 124, at the backside of each chip 118, and the polished surface(s) 158s of the dummy substrate(s) 158 can be substantially flat and not covered by the encapsulation/gap filling material 138. The polished surface(s) 158s may be substantially coplanar with the polished surface 124s of each chip 118 and with the polished surface 138s of the encapsulation/gap filling material 138 in the gaps 4b and 8b. The polished surfaces 124s, 158s and 138s have a micro-roughness, e.g., less than 20 nanometers. The chemical-mechanical-polishing (CMP) process, using a very fine abrasive like silica and a relatively weak chemical attack, will create the surfaces 124s, 158s and 138s almost without deformation and scratches, and this means that the chemical-mechanical-polishing (CMP) process is very well suited for the final polishing step, creating the clean surfaces 124s, 158s and 138s. Using the mechanical grinding process and the chemical-mechanical-polishing (CMP) process can be performed to create a very thin semiconductor substrate 124 of each chip 118. Accordingly, after the chemical-mechanical-polishing (CMP) process, each of the chips 118 can be thinned to a thickness, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, the dummy substrate(s) 158 can be thinned to the thickness T16, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 138 in the gaps 4b and 8b can be thinned to the thickness T17, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers.


Referring to FIG. 64, after forming the structure illustrated in FIG. 61, a dielectric layer 139 is formed on the surfaces 124s, 158s and 138s. The dielectric layer 139 may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


The dielectric layer 139, for example, can be an inorganic layer formed by, e.g., a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. The inorganic layer can be, e.g., a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC), or a layer including silicon oxide, silicon nitride, silicon carbon nitride and silicon oxynitride. The inorganic layer may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


Alternatively, the dielectric layer 139 can be a polymer layer, such as a layer of polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), formed by, e.g., a process including a spin coating process, a dispensing process, a molding process, or a screen printing process. The polymer layer may have a thickness, e.g., between 0.5 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 1 and 3 micrometers.


Alternatively, the dielectric layer 139 can be composed of multiple inorganic layers which include an etch stop layer, such as etch stop layer of silicon oxynitride. The etch stop layer will later be used to stop etching when etching patterns into the dielectric layer 139. In this case, the dielectric layer 139, for example, can be composed of a first silicon-oxide layer on the surfaces 124s, 158s and 138s, a silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and a second silicon-oxide layer having a thickness, e.g., between 0.1 and 5 micrometers or between 0.3 and 1.5 micrometers on the silicon-oxynitride layer.


Next, referring to FIG. 65, multiple through vias 156v, including through vias 156a, 156b, 156c, 156d, 156e and 156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118, by the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, is formed on the dielectric layer 139 by using a suitable process, such as spin coating process or lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 139, in the photoresist layer. The photoresist layer may have a thickness, e.g., between 3 and 50 micrometers. Next, the dielectric layer 139 under the openings in the photoresist layer is removed by using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 158 under the openings in the photoresist layer and the chips 118 under the openings in the photoresist layer are etched away until predetermined regions of the layers 17 and 19 in the chips 118 and predetermined regions of the conduction layer 86 of the metal interconnects 2 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 156v, including the vias 156a-156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the predetermined regions of the conduction layer 86 of the metal interconnects 2 and exposing the predetermined regions of the layers 17 and 19 of the chips 118. The through via 156a is formed in the dummy substrate 158, the through vias 156b, 156c and 156d are formed in one of the chips 118, and the through vias 156e and 156f are formed in another one of the chips 118.


Alternatively, another technique to form the through vias 156v in the chips 118 and in the dummy substrate(s) 158 can be performed by the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 139 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 139, in the photoresist layer. Next, multiple openings are formed in the dielectric layer 139 and under the openings in the photoresist layer, exposing the dummy substrate(s) 158 and the semiconductor substrates 124 of the chips 118, by removing the dielectric layer 139 under the openings in the photoresist layer using, e.g., an anisotropic plasma etching process. Next, the photoresist layer is removed by using, e.g., an organic chemical. Next, the dummy substrate(s) 158 under the openings in the dielectric layer 139 and the chips 118 under the openings in the dielectric layer 139 can be etched away until the predetermined regions of the layers 17 and 19 in the chips 118 and the predetermined regions of the conduction layer 86 of the metal interconnects 2 are exposed by the openings in the dielectric layer 139. Accordingly, the through vias 156v, including the through vias 156a, 156b, 156c, 156d, 156e and 156f, can be formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118. The through via 156a is formed in the dummy substrate 158, the through vias 156b, 156c and 156d are formed in one of the chips 118, and the through vias 156e and 156f are formed in another one of the chips 118. Each of the through vias 156v, such as the through via 156a, 156b, 156c, 156d, 156e, or 156f, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers.


One of the through vias 156v, such as the through via 156a, passes through the dielectric layer 139, the dummy substrate 158, the layer 140, and the insulating or dielectric layer 120, exposing the conduction layer 86 of one of the metal interconnects 2. Another one of the through vias 156v, such as the through via 156b, passes through the dielectric layer 139, through the semiconductor substrate 124, dielectric layers 78, 28, 38 and 40, and passivation layer 21 of one of the chips 118, through the layer 140, and through the insulating or dielectric layer 120, exposing the conduction layer 86 of one of the metal interconnects 2. Another one of the through vias 156v, such as the through via 156c, passes through the dielectric layer 139 and through the semiconductor substrate 124 and dielectric layer 40 of one of the chips 118, exposing the interconnect or metal trace 75d in the interconnection layer 17 of the one of the chips 118. Another one of the through vias 156v, such as the through via 156d, passes through the dielectric layer 139 and through the semiconductor substrate 124 and dielectric layers 40, 38 and 28 of one of the chips 118, exposing the interconnect or metal trace 75c in the patterned metal layer 19 of the one of the chips 118. Another one of the through vias 156v, such as the through via 156f, passes through the dielectric layer 139 and through the semiconductor substrate 124 and dielectric layers 40, 38 and 28 of one of the chips 118, exposing the interconnect or metal trace 75b in the patterned metal layer 19 of the one of the chips 118. Another one of the through vias 156v, such as the through via 156e, passes through the dielectric layer 139, through the semiconductor substrate 124, dielectric layers 78, 28, 38 and 40, and passivation layer 21 of one of the chips 118, through the layer 140, and through the insulating or dielectric layer 120, exposing the interconnect or metal trace 75a in the interconnection layer 17 of the one of the chips 118 and exposing the conduction layer 86 of one of the metal interconnects 2. A supporter 803 provided by the layers 120, 140, 21, 78 and 28 is between the conduction layer 86 of the metal interconnect 2b and the interconnect or metal trace 75a in the interconnection layer 17 exposed by the through via 156e for the purpose of supporting the exposed interconnect or metal trace 75a. The supporter 803 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. FIGS. 66-68 are three examples of schematic top perspective views showing the through via 156e and the interconnect or metal trace 75a illustrated in FIG. 65.


As shown in FIGS. 65 and 66, the through via 156e in one of the chips 118 exposes the interconnect or metal trace 75a in the one of the chips 118 and exposes two regions of the conduction layer 86 of the metal interconnect 2b that is under the one of the chips 118. The interconnect or metal trace 75a has a line-shaped region, exposed by the through via 156e, extending in a horizontal direction from a side of the through via 156e to the opposite side of the through via 156e through a center of the through via 156e. The previously described supporter 803, between the conduction layer 86 of the metal interconnect 2b and the exposed line-shaped region of the interconnect or metal trace 75a in the interconnection layer 17, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 75a. Preferably, the through via 156e can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 65 and 67, the through via 156e in one of the chips 118 exposes the interconnect or metal trace 75a in the one of the chips 118 and exposes a region of the conduction layer 86 of the metal interconnect 2b that is under the one of the chips 118. The interconnect or metal trace 75a has a peninsula region, exposed by the through via 156e, extending in a horizontal direction from one side of the through via 156e at least to a center of the through via 156e, but does not reach to the opposite side of the through via 156e; the interconnect or metal trace 75a has an end exposed by the through via 156e. The previously described supporter 803, between the conduction layer 86 of the metal interconnect 2b and the exposed peninsula region of the interconnect or metal trace 75a in the interconnection layer 17, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 75a. Preferably, the through via 156e can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 65 and 68, the through via 156e in one of the chips 118 exposes the interconnect or metal trace 75a in the one of the chips 118 and exposes a region of the conduction layer 86 of the metal interconnect 2b that is under the one of the chips 118. The interconnect or metal trace 75a has a peninsula region, exposed by the through via 156e, extending in a horizontal direction from one side of the through via 156e at least to a center of the through via 156e, but does not reach to the opposite side of the through via 156e; the interconnect or metal trace 75a has a circular end exposed by the through via 156e. The previously described supporter 803, between the conduction layer 86 of the metal interconnect 2b and the exposed peninsula region of the interconnect or metal trace 75a in the interconnection layer 17, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 75a. Preferably, the through via 156e can be, but is not limited to, a circular shape from a top perspective view.



FIG. 66A is an example of a schematic top perspective view showing the through via 156e and the interconnect or metal trace 75a illustrated in FIG. 65. In this case, the through via 156e can be, but is not limited to, oval-shaped and has a width W5, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers. The oval-shaped through via 156e in one of the chips 118 exposes the interconnect or metal trace 75a in the one of the chips 118 and exposes two regions of the conduction layer 86 of the metal interconnect 2b that is under the one of the chips 118. The interconnect or metal trace 75a has a line-shaped region, exposed by the oval-shaped through via 156e, extending in a horizontal direction from a side of the oval-shaped through via 156e to the opposite side of the oval-shaped through via 156e through a center of the oval-shaped through via 156e. The previously described supporter 803, between the conduction layer 86 of the metal interconnect 2b and the exposed line-shaped region of the interconnect or metal trace 75a in the interconnection layer 17, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 75a. The interconnect or metal trace 75a exposed by the oval-shaped through via 156e has a width W6, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 20 micrometers, between 0.3 and 10 micrometers, between 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. A horizontal distance S3 between an endpoint of the long axis of the oval-shaped through via 156e and an edge, which is closer to the endpoint than the other opposite edge, of the interconnect or metal trace 75a exposed by the oval-shaped through via 156e can be, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers.


Next, referring to FIG. 69, a dielectric layer 127 can be formed on a top surface of the dielectric layer 139, on the conduction layer 86, exposed by the through vias 156v (such as the through vias 156a, 156b and 156e), of the metal interconnects 2, on the layers 17 and 19, exposed by the through vias 156v (such as the through vias 156c, 156d, 156e and 156f), of the chips 118, and on sidewalls of the through vias 156v.


The dielectric layer 127 can be composed of an insulating material. For example, the dielectric layer 127 can be an inorganic layer having a thickness, e.g., between 20 nanometers and 1 micrometer, and the inorganic layer can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC). Alternatively, the dielectric layer 127 can be a polymer layer having a thickness, e.g., between 1 and 10 micrometers, and preferably between 1 and 5 micrometers, and the polymer layer can be a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO).


Next, referring to FIG. 70, a photoresist layer 154, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 127 by using, e.g., a spin coating process or a lamination process, and then a photo exposure process using a 1X stepper and a development process using a wet chemical can be employed to form multiple openings 154a, exposing the dielectric layer 127, in the photoresist layer 154. The photoresist layer 154 may have a thickness, e.g., between 0.5 and 30 micrometers.


Next, referring to FIG. 71, the dielectric layer 127 formed on the layers 17, 19 and 86 and on the top surface of the dielectric layer 139 under the openings 154a can be removed by, e.g., etching the dielectric layer 127 under the openings 154a using an anisotropic plasma etching process. The dielectric layer 127 at bottoms of the through vias 156v, on the top surface of the dielectric layer 139 under the openings 154a, and on a top surface of the interconnect or metal trace 75a over the supporter 803 can be etched away. Accordingly, the layers 17, 19 and 86 at the bottoms of the through vias 156v, the top surface of the dielectric layer 139 under of the openings 154a, and the interconnect or metal trace 75a over the supporter 803 are exposed by the openings 154a, and the dielectric layer 127 remains on the sidewalls of the through vias 156v, so called as sidewall dielectric layers in the through vias 156v. The sidewall dielectric layers 127 are formed on the sidewalls of the through vias 156v in the chips 118 or in the dummy substrate(s) 158 and are enclosed by the semiconductor substrates 124 of the chips 118 or by the dummy substrate(s) 158.


Next, referring to FIG. 72, multiple trenches 139t, damascene openings, can be formed in the dielectric layer 139 by etching the dielectric layer 139 and the sidewall dielectric layers 127 under the openings 154a to a depth D9, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers, using, e.g., an anisotropic plasma etching process. Preferably, the dielectric layer 139 and the sidewall dielectric layers 127 have a same material, such as silicon nitride, silicon oxide, or silicon oxynitride. After the etching process, the dielectric layer 139 under the trenches 139t has a remaining thickness T20, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Alternatively, an etching-stop technique may be applied to the process of forming the trenches 139t in the dielectric layer 139. In this case, the dielectric layer 139 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 124s, 138s and 158s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. The trenches 139t can be formed in the dielectric layer 139 by etching the second silicon-oxide layer of the dielectric layer 139 under the openings 154a and the sidewall dielectric layers 127 under the openings 154a until the silicon-oxynitride layer of the dielectric layer 139 is exposed by the openings 154a. Accordingly, the trenches 139t are formed in the second silicon-oxide layer of the dielectric layer 139, and the remaining dielectric layer 139, composed of the silicon-oxynitride layer and the first silicon-oxide layer, under the trenches 139t has a thickness T20, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Next, referring to FIG. 73, the photoresist layer 154 is removed by using, e.g., an organic chemical. The trenches 139t formed in the dielectric layer 139 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The sidewall dielectric layers 127 formed on the sidewalls of the through vias 156v (such as the through vias 156b, 156c, 156d, 156e and 156f) in the chips 118 can prevent transition metals, such as copper, sodium or moisture from penetrating into IC devices of the chips 118. FIG. 74 is a schematic top perspective view showing the through vias 156v, the trenches 139t and the sidewall dielectric layers 127 illustrated in FIG. 73 according an embodiment of the present invention, and FIG. 73 is a cross-sectional view cut along the line K-K shown in FIG. 74.


Next, referring to FIG. 75, an adhesion/barrier layer 125a having a thickness, e.g., smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, is formed on the layers 17, 19 and 86 exposed by the through vias 156v, on sidewalls and bottoms of the trenches 139t, on the dielectric layer 127, and on the interconnect or metal trace 75a that is on the supporter 803. The adhesion/barrier layer 125a can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 125b having a thickness, e.g., smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 125a by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a conduction layer 125c having a thickness, e.g., between 0.5 and 20 micrometers or between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, can be formed on the seed layer 125b by using, e.g., an electroplating process.


The adhesion/barrier layer 125a may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness, e.g., smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 125b may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness, e.g., smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers. The conduction layer 125c may include or can be an electroplated metal layer of copper, gold, or silver having a thickness, e.g., between 0.5 and 20 micrometers or between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers.


Next, referring to FIG. 76, by using a grinding or polishing process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, the layers 125a, 125b and 125c outside the trenches 139t can be removed, and the dielectric layer 127 on the top surface of the dielectric layer 139 can be removed. Accordingly, the dielectric layer 139 has an exposed top surface 139s that can be substantially coplanar with the ground or polished surface 227 of the conduction layer 125c in the trenches 139t, and the surfaces 139s and 227 can be substantially flat. The dielectric layer 139 has a thickness T21, between the exposed top surface 139s and the surface 124s or 158s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers or between 2 and 5 micrometers. The adhesion/barrier layer 125a and the seed layer 125b are at sidewalls and a bottom of the conduction layer 125c in the trenches 139t, and the sidewalls and the bottom of the conduction layer 125c in the trenches 139t are covered by the adhesion/barrier layer 125a and the seed layer 125b.


In a first alternative, after the steps of removing the layers 125a, 125b and 125c outside the trenches 139t and removing the dielectric layer 127 on the top surface of the dielectric layer 139, the adhesion/barrier layer 125a can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t, on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a second alternative, after the steps of removing the layers 125a, 125b and 125c outside the trenches 139t and removing the dielectric layer 127 on the top surface of the dielectric layer 139, the adhesion/barrier layer 125a can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t, on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a third alternative, after the steps of removing the layers 125a, 125b and 125c outside the trenches 139t and removing the dielectric layer 127 on the top surface of the dielectric layer 139, the adhesion/barrier layer 125a can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t, on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


After the steps of removing the layers 125a, 125b and 125c outside the trenches 139t and removing the dielectric layer 127 on the top surface of the dielectric layer 139, the layers 125a, 125b and 125c in the trenches 139t compose multiple metal interconnects (or damascene metal traces) 3, including metal interconnects (or damascene metal traces) 3a, 3b and 3c, in the trenches 139t. The layers 125a, 125b and 125c in the through vias 156v compose multiple metal plugs (or metal vias) 7p in the through vias 156v, including metal plugs (or metal vias) 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f as shown in FIG. 73, respectively. Each of the metal plugs 7p in the chips 118 and in the dummy substrate(s) 158 is enclosed by one of the sidewall dielectric layers 127 in the through vias 156v. The metal plug 7a is formed in the dummy substrate 158, the metal plugs 7b, 7c and 7d are formed in one of the chips 118, and the metal plugs 7f and 7e are formed in another one of the chips 118. The supporter 803 and the interconnect or metal trace 75a, in the interconnection layer 17, on the supporter 803 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 17 is positioned, of the metal plug 7e. These metal plugs 7p formed in the chips 118 and in the dummy substrate(s) 158 can connect the metal interconnects 3 and the semiconductor devices 13 in the chips 118 and connect the metal interconnects 2 and 3. The metal interconnects 3, such as 3a, 3b and 3c, in the trenches 139t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers.


One of the metal plugs 7p, such as the metal plug 7a, can be formed in the dummy substrate 158 and formed on a contact point, at a bottom of one of the through vias 156v (such as the through via 156a), of the conduction layer 86 of one of the metal interconnects 2. Another one of the metal plugs 7p, such as the metal plug 7b, can be formed in one of the chips 118 and formed on another contact point, at a bottom of another one of the through vias 156v (such as the through via 156b), of the conduction layer 86 in another one of the metal interconnects 2, such as the metal interconnect 2a. Another one of the metal plugs 7p, such as the metal plug 7c, can be formed in the one of the chips 118 and formed on a contact point, at a bottom of another one of the through vias 156v (such as the through via 156c), of the interconnect or metal trace 75d in the one of the chips 118. Another one of the metal plugs 7p, such as the metal plug 7d, can be formed in the one of the chips 118 and formed on a contact point, at a bottom of another one of the through vias 156v (such as the through via 156d), of the interconnect or metal trace 75c in the one of the chips 118. Another one of the metal plugs 7p, such as the metal plug 7f, can be formed in another one of the chips 118 and formed on a contact point, at a bottom of another one of the through vias 156v (such as the through via 156f), of the interconnect or metal trace 75b in the another one of the chips 118. Another one of the metal plugs 7p, such as the metal plug 7e, can be formed in the another one of the chips 118, formed on a contact point of the interconnect or metal trace 75a over a supporter (such as the supporter 803) that is between two lower left and right portions of the another one of the metal plugs 7p (such as the metal plug 7e), and formed on another contact point, at a bottom of another one of the through vias 156v (such as the through via 156e), of the conduction layer 86 in another one of the metal interconnects 2, such as the metal interconnect 2b.


The metal interconnect 3a can be formed over one or more of the chips 118. The metal interconnect 3b can be formed over multiple of the chips 118 and across multiple edges of the multiple of the chips 118. The metal interconnect 3c can be formed over one or more of the chips 118 and over the dummy substrate(s) 158.


The metal interconnect 3a can be connected to a contact point, at a bottom of the through via 156b, of the metal interconnect 2a through the metal plug 7b in one of the chips 118 and can be connected to a contact point, at a bottom of the through via 156c, of the interconnect or metal trace 75d in the one of the chips 118 through the metal plug 7c in the one of the chips 118. The metal interconnect 3b can be connected to a contact point, at a bottom of the through via 156d, of the interconnect or metal trace 75c in the one of the chips 118 through the metal plug 7d in the one of the chips 118 and can be connected to a contact point, at a bottom of the through via 156f, of the interconnect or metal trace 75b in another one of the chips 118 through the metal plug 7f in the another one of the chips 118. The metal interconnect 3c can be connected to a contact point, at a bottom of the through via 156e, of the metal interconnect 2b through the metal plug 7e in the another one of the chips 118, can be connected to one or more of the semiconductor devices 13 in the another one of the chips 118 through the metal plug 7e and the interconnect or metal trace 75a in the another one of the chips 118, and can be connected to a contact point, at a bottom of the through via 156a, of another one of the metal interconnects 1 through the metal plug 7a in the dummy substrate 158. Accordingly, the contact points at the bottoms of the through vias 156b and 156c can be connected to each other through the metal interconnect 3a, the contact points at the bottoms of the through vias 156d and 156f can be connected to each other through the metal interconnect 3b, and the contact points at the bottoms of the through vias 156a and 156e can be connected to each other through the metal interconnect 3c.


According, one of the semiconductor devices 13 in one of the chips 118 can be connected to another one of the semiconductor devices 13 in the one of the chips 118 or in another one of the chips 118 through one of the metal interconnects 3, such as 3a or 3b, and can be connected to a contact point, at a bottom of one of the through vias 156v (such as the through via 156a, 156b, or 156e), of the conduction layer 86 of one of the metal interconnects 2, such as 2a or 2b, through the one of the metal interconnects 3. Each of the metal interconnects 3 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 118 not only can indicate a chip, but also can indicate a wafer. When the element 118 is a wafer, the element 72 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 77, after forming the structure illustrated in FIG. 76, an insulating or dielectric layer 122 can be formed on the ground or polished surface 223 of the adhesion/barrier layer 125a, on the ground or polished surface 225 of the seed layer 125b, on the ground or polished surface 227 of the conduction layer 125c, and on the exposed top surface 139s of the dielectric layer 139. Next, a polymer layer 136, such as photosensitive polymer layer, can be formed on the insulating or dielectric layer 122 by using, e.g., a spin coating process. Next, a photo exposure process and a chemical development process can be employed to form multiple openings 136a, exposing multiple regions of the insulating or dielectric layer 122, in the polymer layer 136. Next, the polymer layer 136 can be cured in a temperature between 180 degrees centigrade and 300 degrees centigrade or between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers. The polymer layer 136 can be a polyimide layer, a benzocyclobutene (BCB) layer, a polybenzoxazole (PBO) layer, a poly-phenylene oxide (PPO) layer, an epoxy layer, or a layer of SU-8.


The insulating or dielectric layer 122 may have a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers. The insulating or dielectric layer 122, for example, may include or can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC) with a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers, formed by a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. Alternatively, the insulating or dielectric layer 122 may include or can be a polymer layer with a thickness, e.g., between 0.05 and 20 micrometers, and preferably between 0.05 and 5 micrometers, between 0.05 and 3 micrometers, between 0.05 and 1 micrometers, or between 0.05 and 0.5 micrometers, formed by, e.g., a process including a spin coating process and a curing process, and the polymer layer can be a layer of polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or epoxy.


Next, referring to FIG. 78, the insulating or dielectric layer 122 under the openings 136a in the polymer layer 136 can be removed by an etching process. Accordingly, multiple openings can be formed in the insulating or dielectric layer 122 and under the openings 136a and expose multiple contact points, serving as power pads, ground pads, or signal input/output (I/O) pads, of the conduction layer 125c of the metal interconnects 3.


Next, referring to FIG. 79, an adhesion/barrier layer 134 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, can be formed on the polymer layer 136 and on the contact points, exposed by the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 132 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, can be formed on the adhesion/barrier layer 134 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 152, such as positive-type photoresist layer or negative-type photoresist layer, having a thickness, e.g., between 20 and 200 micrometers, between 20 and 150 micrometers, between 20 and 130 micrometers, between 20 and 100 micrometers or between 20 and 50 micrometers can be formed on the seed layer 132 by, e.g., a spin-on coating process or a lamination process. Next, the photoresist layer 152 is patterned with the processes of photo exposure and chemical development to form multiple openings 152a, exposing multiple regions of the seed layer 132, in the photoresist layer 152. A 1X stepper or 1X contact aligner can be used to expose the photoresist layer 152 during the process of photo exposure.


The adhesion/barrier layer 134 may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 132 may include or can be a layer of copper, a titanium-copper alloy, nickel, gold or silver having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers.


For example, when the adhesion/barrier layer 134 is formed by a suitable process or processes, e.g., by sputtering a titanium-containing layer, such as a single layer of titanium, a titanium-tungsten alloy or titanium nitride, having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the polymer layer 136 and on the contact points, exposed by the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3, the seed layer 132 can be formed by a suitable process or processes, e.g., by sputtering a layer of copper, a titanium-copper alloy, nickel, gold or silver with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer.


Alternatively, when the adhesion/barrier layer 134 is formed by a suitable process or processes, e.g., by sputtering a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the polymer layer 136 and on the contact points, exposed by the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3, the seed layer 132 can be formed by a suitable process or processes, e.g., by sputtering a layer of copper, a titanium-copper alloy, nickel, gold or silver with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer.


Next, referring to FIG. 80, a conduction layer 130 having a thickness greater than 1 micrometer, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 20 micrometers or between 1 and 10 micrometers, can be formed in the openings 152a and on the regions, exposed by the openings 152a, of the seed layer 132 by using, e.g., an electroplating process. Next, a barrier layer 128 having a thickness, e.g., between 0.5 and 10 micrometers, between 0.5 and 5 micrometers or between 0.5 and 3 micrometers can be formed in the openings 152a and on the conduction layer 130 by using, e.g., an electroplating process or an electroless plating process. Next, a solder wetting layer, such as gold layer, can be optionally formed in the openings 152a and on the barrier layer 128 by using, e.g., an electroplating process or an electroless plating process. Next, a solder layer 126 having a thickness, e.g., greater than 5 micrometers can be formed in the openings 152a and on the barrier layer 128 or solder wetting layer by using, e.g., an electroplating process.


The conduction layer 130 can be a metal layer that may include or can be a layer of copper, gold or silver with a thickness greater than 1 micrometer, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 20 micrometers or between 1 and 10 micrometers, formed by an electroplating process. The barrier layer 128 can be a metal layer that may include or can be a layer of nickel, nickel vanadium or a nickel alloy with a thickness, e.g., between 0.5 and 10 micrometers, between 0.5 and 5 micrometers or between 0.5 and 3 micrometers formed by an electroplating process. The solder layer 126 can be a bismuth-containing layer, an indium-containing layer or a tin-containing layer of a tin-lead alloy, a tin-silver alloy, a tin-silver-copper alloy or a tin-gold alloy with a thickness greater than 5 micrometers.


Referring to FIG. 81, after forming the solder layer 126 illustrated in FIG. 80, the photoresist layer 152 is removed using, e.g., an organic chemical solution. Next, the seed layer 132 not under the conduction layer 130 is removed by using, e.g., a wet chemical etching process or dry plasma etching process. Next, the adhesion/barrier layer 134 not under the conduction layer 130 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Next, the solder layer 126 can be formed with multiple solid solder bumps or balls 126 on the barrier layer 128 or on the solder wetting layer by, e.g., a flux coating process, a re-flow process and a flux cleaning process, subsequently. The solder bumps or balls 126 are used for external connection.


Accordingly, the layers 128, 130, 132 and 134 compose an under bump metallurgic (UBM) layer 666 on the polymer layer 136 and on the contact points, at bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3, and the solder bumps or balls 126 can be formed on the UBM layer 666. Alternatively, the UBM layer 666 may further include the solder wetting layer illustrated in FIG. 80 on the barrier layer 128, and the solder bumps or balls 126 can be formed on the solder wetting layer of the UBM layer 666.


The solder bumps or balls 126 may have a bump height, e.g., greater than 5 micrometers, such as between 5 and 200 micrometers, and preferably between 10 and 100 micrometers or between 10 and 30 micrometers, and a width or diameter, e.g., between 10 and 200 micrometers, and preferably between 50 and 100 micrometers or between 10 and 30 micrometers. The solder bumps or balls 126 may include bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-silver-copper alloy, or a tin-gold alloy. Each of the interconnects 3, such as the interconnect 3a, 3b or 3c as shown in FIG. 76, can be connected to one or more of the solder bumps or balls 126 through the UBM layer 666.


Next, referring to FIG. 82, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555 and 555a.


Alternatively, before the singulation process, multiple metal plugs or vias can be formed in multiple openings in the substrate 10 and the dielectric layer 12 of the carrier 11, passing through the substrate 10 and the dielectric layer 12, and connected to the conductive layer 18 of the carrier 11. The metal plugs or vias may include or can be copper, aluminum, gold, or nickel. Alternatively, the metal plugs or vias may further include titanium, a titanium-tungsten alloy, titanium nitride, tantalum, tantalum nitride, a titanium-copper alloy, or chromium. Next, multiple metal traces can be formed at a bottom side of the substrate 10 and connected to the conductive layer 18 of the carrier 11 through the metal plugs or vias. Each of the metal traces may include a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or a titanium-copper alloy under the bottom side of the substrate 10, and an electroplated metal layer under the layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or a titanium-copper alloy. The electroplated metal layer may include or can be a layer of copper, gold, aluminum, or nickel. Next, multiple passive components, such as capacitors, inductors or resistors, can be attached to the bottom side of the substrate 10 and boned with the metal traces using solders. The solders may include bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-silver-copper alloy, a tin-gold alloy, or a tin-copper alloy. After the passive components are boned with the metal traces, the singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as the system-in packages or multichip modules 555 and 555a.


Accordingly, the system-in package or multichip module 555 can have one of the passive components that has a first terminal connected to the metal plug 5a or 5b as shown in FIG. 26 through, in sequence, one of the solders, one of the metal traces at the bottom side of the substrate 10, one of the metal plugs or vias in the substrate 10, and a metal interconnect of the conductive layer 18 at the top side of the substrate 10, and has a second terminal connected to the metal plug 5e as shown in FIG. 26 through, in sequence, another one of the solders, another one of the metal traces at the bottom side of the substrate 10, another one of the metal plugs or vias in the substrate 10, and another metal interconnect of the conductive layer 18 at the top side of the substrate 10.


The system-in package or multichip module 555 can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 83, the system-in package or multichip module 555 can be bonded with a top side of a carrier 176 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, an under fill 174 can be formed between the polymer layer 136 of the system-in package or multichip module 555 and the top side of the carrier 176 and encloses the solder bumps or balls 126. The under fill 174 may include epoxy, glass filler or carbon filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, multiple solder balls 178 can be formed on a bottom side of the carrier 176. Each of the solder balls 178 can be a ball of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a diameter between 0.25 and 1.2 millimeters. The carrier 176 may have a thickness, e.g., between 0.1 and 2 millimeters and can be a ball-grid-array (BGA) substrate or a print circuit board (PCB). The carrier 176 may include a core containing BT, FR4, epoxy and glass fiber, and multiple metal layers at both sides of the core.



FIG. 84 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After the steps illustrated in FIG. 79, a metal layer 142, such as a layer of copper, gold or silver, having a thickness, e.g., between 10 and 100 micrometers, and preferably between 20 and 60 micrometers, can be formed on the regions, exposed by the openings 152a in the photoresist layer 152, of the seed layer 132 and in the openings 152a by using, e.g., an electroplating process. Next, a barrier layer 144, such as a layer of nickel or a nickel-vanadium alloy, having a thickness, e.g., between 0.2 and 10 micrometers, and preferably between 1 and 5 micrometers, can be formed in the openings 152a and on the metal layer 142 by using, e.g., an electroplating process or an electroless plating process. Next, a solder wetting layer 146, such as a layer of gold, silver, copper or tin, having a thickness, e.g., between 0.02 and 5 micrometers, and preferably between 0.1 and 1 micrometers, can be formed in the openings 152a and on the barrier layer 144 by using, e.g., an electroplating process or an electroless plating process. Next, the photoresist layer 152 is removed using, e.g., an organic chemical solution. Next, the seed layer 132 not under the metal layer 142 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Next, the adhesion/barrier layer 134 not under the metal layer 142 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Accordingly, the layers 132, 134, 142, 144 and 146 compose multiple metal bumps 668 on the polymer layer 136 and on the contact points, at the bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3. The metal bumps 668 may have a width, e.g., between 20 and 400 micrometers, and preferably between 50 and 100 micrometers, and a height, e.g., between 10 and 100 micrometers, and preferably between 20 and 60 micrometers. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 555b as shown in FIG. 84. In the system-in package or multichip module 555b, each of the interconnects 3, such as the interconnect 3a, 3b or 3c as shown in FIG. 76, can be connected to one or more of the metal bumps 668, and the metal bumps 668 can be used for external connection.


The system-in package or multichip module 555b can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 85, the system-in package or multichip module 555b can be bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Alternatively, the metal joints 180 can be a gold layer having a thickness between 0.1 and 10 micrometers. Next, the under fill 174 illustrated in FIG. 83 can be formed between the polymer layer 136 of the system-in package or multichip module 555b and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 77-85 can be omitted. In this case, the polymer layer 136 is formed on the surfaces 223, 225, 227 and 139s, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIGS. 86 and 87 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 86, after forming the structure illustrated in FIG. 76, the insulating or dielectric layer 122 illustrated in FIG. 77 can be formed on the ground or polished surfaces of the layers 125a and 125b, on the ground or polished surface 227 of the conduction layer 125c, and on the exposed top surface 139s of the dielectric layer 139. Next, multiple openings 122a are formed in the insulating or dielectric layer 122 using, e.g., a photolithography process and a dielectric etching process and expose multiple regions of the conduction layer 125c of the metal interconnects 3. Next, multiple metal interconnects or traces 300 can be formed on the insulating or dielectric layer 122 and on the regions, exposed by the openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3. Next, a polymer layer 136, such as photosensitive polymer layer, can be formed on the insulating or dielectric layer 122 and on the metal interconnects or traces 300 by using, e.g., a spin coating process. Next, a photo exposure process and a chemical development process can be employed to form multiple openings 136a, exposing multiple contact points of the metal interconnects or traces 300, in the polymer layer 136. Next, the polymer layer 136 can be cured in a temperature between 180 degrees centigrade and 300 degrees centigrade or between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers. The polymer layer 136 can be a polyimide layer, a benzocyclobutene (BCB) layer, a polybenzoxazole (PBO) layer, a poly-phenylene oxide (PPO) layer, an epoxy layer, or a layer of SU-8.


Each of the metal interconnects or traces 300 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace. In a first alternative, the metal interconnects or traces 300 can be formed by the following steps. First, a metal layer 148 can be formed on the insulating or dielectric layer 122 and on the regions, exposed by the openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3 by sputtering an adhesion/barrier layer with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, on the insulating or dielectric layer 122 and on the regions, exposed by the openings 122a in the layer 122, of the layer 125c of the metal interconnects 3, and then sputtering a seed layer with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, on the adhesion/barrier layer. The adhesion/barrier layer may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers. The seed layer may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers. Next, a patterned photoresist layer can be formed on the seed layer of the metal layer 148, and multiple openings in the patterned photoresist layer expose multiple regions of the seed layer. Next, a conduction layer 150 can be formed on the regions, exposed by the openings in the patterned photoresist layer, of the seed layer of the metal layer 148 by using an electroplating process. The conduction layer 150, for example, can be a gold layer, used for bonding with gold, copper, or aluminum wirebonded wires in the following process, with a thickness between 0.5 and 5 micrometers formed on the seed layer, preferably the previously described gold seed layer, of the metal layer 148 by an electroplating process. Alternatively, the conduction layer 150 can be a copper layer, used for bonding with gold, copper, or aluminum wirebonded wires in the following process, with a thickness between 2 and 10 micrometers formed on the seed layer, preferably the previously described copper or titanium-copper-alloy seed layer, of the metal layer 148 by an electroplating process. Alternatively, the conduction layer 150 may include a nickel layer having a thickness between 1 and 10 micrometers formed on or over the seed layer, preferably the previously described copper or titanium-copper-alloy seed layer, of the metal layer 148 by an electroplating process or an electroless plating process, and a gold layer, used for bonding with gold, copper, or aluminum wirebonded wires in the following process, having a thickness between 0.01 and 2 micrometers formed on the nickel layer by an electroplating process or an electroless plating process. Next, the patterned photoresist layer can be removed. Next, the metal layer 148 not under the conduction layer 150 can be removed by an etching process. Accordingly, the metal interconnects or traces 300 can be composed of the metal layer 148 and the conduction layer 150, and sidewalls of the conduction layer 150 are not covered by the metal layer 148.


In a second alternative, the metal interconnects or traces 300 can be formed by the following steps. First, an adhesion/barrier layer 148 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, can be formed on the insulating or dielectric layer 122 and on the regions, exposed by the openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3 by a sputtering process. The adhesion/barrier layer 148 can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers. Next, a wirebondable conduction layer 150 having a thickness between 0.5 and 5 micrometers can be formed on the adhesion/barrier layer 148 by a sputtering process. The wirebondable conduction layer 150 can be a layer of an aluminum-copper alloy, used for bonding with gold, copper, or aluminum wirebonded wires in the following process, having a thickness between 0.5 and 5 micrometers formed by a sputtering process. Next, a patterned photoresist layer can be formed on the wirebondable conduction layer 150. Next, by using an etching process, the wirebondable conduction layer 150 not under the patterned photoresist layer and the adhesion/barrier layer 148 not under the patterned photoresist layer can be removed. Next, the patterned photoresist layer can be removed. Accordingly, the metal interconnects or traces 300 can be composed of the adhesion/barrier layer 148 and the wirebondable conduction layer 150, and sidewalls of the wirebondable conduction layer 150 are not covered by the adhesion/barrier layer 148.


Next, referring to FIG. 87, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555c and 555d.



FIG. 88 shows a multichip package 566 including the system-in package or multichip module 555c connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps. First, a plurality of the system-in package or multichip module 555c can be joined with the carrier 176 shown in FIG. 83 by, e.g., forming a glue layer 182 with a thickness between 20 and 150 micrometers on the top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 555c to the top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, can be wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 555c can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 can be formed on the plurality of the system-in package or multichip module 555c, on the top side of the carrier 176 and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 555c, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176. Thereafter, a singulation process can be performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566. The multichip package 566 can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178.



FIGS. 89-103 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 89, after forming the structure illustrated in FIG. 19, by using an etching process (such as anisotropic etching process), the dielectric layer 50 formed on the layers 18, 26 and 34 and on the top surface of the dielectric layer 60 can be etched away, and a top portion of the dielectric layer 60 can be further etched away. After the etching process, the dielectric layer 60 may have a remaining thickness T22 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Alternatively, an etching-stop technique may be applied to the process of etching away the top portion of the dielectric layer 60. In this case, the dielectric layer 60 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 58s, 62s and 64s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. During the etching process, the top portion of the dielectric layer 60, that is, the second silicon-oxide layer, can be etched away until the etch stop layer, that is, the silicon-oxynitride layer, is exposed and all of the second silicon-oxide layer is removed. The remaining dielectric layer 60, composed of the silicon-oxynitride layer and the first silicon-oxide layer, may have a thickness T22 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Accordingly, the dielectric layer 50 at bottoms of the through vias 170v, on the top surface of the dielectric layer 60 and on a top surface of the interconnect or metal trace 35a on the supporter 801 can be etched away, and the dielectric layer 50 remains on the sidewalls of the through vias 170v, so called as sidewall dielectric layers in the through vias 170v. The sidewall dielectric layers 50 are formed on the sidewalls of the through vias 170v in the chips 68 or in the dummy substrate(s) 62 and are enclosed by the semiconductor substrates 58 of the chips 68 or by the dummy substrate(s) 62.


Next, referring to FIG. 90, an adhesion/barrier layer 52 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, can be formed on the layers 18, 26 and 34 exposed by the through vias 170v, on the etched surface of the dielectric layer 60, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The adhesion/barrier layer 52 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 54 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 52 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 194 can be formed on the seed layer 54 by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 194a, exposing multiple regions of the seed layer 54, in the photoresist layer 194. The patterned photoresist layer 194 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, a conduction layer 56 having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, can be formed on the regions, exposed by the openings 194a in the layer 194, of the seed layer 54 by using, e.g., an electroplating process.


The adhesion/barrier layer 52 may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 54 may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers. The conduction layer 56 may include or can be an electroplated metal layer of copper, gold, or silver having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers.


For example, the adhesion/barrier layer 52 can be a titanium-containing layer, such as a single layer of titanium-tungsten alloy, titanium, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 18, 26 and 34 exposed by the through vias 170v, on the etched surface of the dielectric layer 60, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 56 can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, on the single layer of copper or a titanium-copper alloy.


Alternatively, the adhesion/barrier layer 52 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 18, 26 and 34 exposed by the through vias 170v, on the etched surface of the dielectric layer 60, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 56 can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, on the single layer of copper or a titanium-copper alloy.


Alternatively, the adhesion/barrier layer 52 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 18, 26 and 34 exposed by the through vias 170v, on the etched surface of the dielectric layer 60, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 56 can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, on the single layer of copper or a titanium-copper alloy.


Next, referring to FIG. 91, the photoresist layer 194 is removed using, e.g., an organic chemical solution. Next, the seed layer 54 not under the conduction layer 56 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Next, the adhesion/barrier layer 52 not under the conduction layer 56 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Accordingly, the layers 52, 54 and 56 over the dielectric layer 60 and over the through vias 170v compose multiple metal interconnects 1, including metal interconnects 1a and 1b, over the dielectric layer 60 and over the through vias 170v. The adhesion/barrier layer 52 and the seed layer 54 of the metal interconnects 1 over the dielectric layer 60 are not at any sidewall 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60, but under a bottom of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60. The sidewalls 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60 are not covered by the layers 52 and 54. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f as shown in FIG. 89, respectively. Each of the metal plugs 5p in the chips 68 and in the dummy substrate(s) 62 is enclosed by one of the sidewall dielectric layers 50 in the through vias 170v. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11.


For example, one of the metal plugs 5p, such as the metal plug 5a, can be formed in the dummy substrate 62 and formed on a first contact point of the conductive layer 18 at a bottom of one of the through vias 170v, such as the through via 170a. Another one of the metal plugs 5p, such as the metal plug 5b, can be formed in one of the chips 68 and formed on a second contact point of the conductive layer 18 at a bottom of another one of the through vias 170v, such as the through via 170b. Another one of the metal plugs 5p, such as the metal plug 5c, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170c), of the interconnect or metal trace 35d in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5d, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170d), of the interconnect or metal trace 35c in the patterned metal layer 26 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5f, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170f), of the interconnect or metal trace 35b in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5e, can be formed in one of the chips 68, formed on a contact point of the interconnect or metal trace 35a over a supporter (such as the supporter 801) that is between two lower left and right portions of the another one of the metal plugs 5p (such as the metal plug 5e), and formed on a third contact point of the conductive layer 18 at a bottom of one of the through vias 170v (such as the through via 170e). The previously described first, second and third contact points of the conductive layer 18 can be separated from one another by the dielectric or insulating layer 20 of the carrier 11.


One of the metal interconnects 1, such as 1a or 1b, can be formed over the dummy substrate(s) 62, over multiple of the chips 68, and across multiple edges of the multiple of the chips 68. The metal interconnect 1a can be connected to the previously described first contact point of the conductive layer 18 at the bottom of the through via 170a through the metal plug 5a in the dummy substrate 62, can be connected to the previously described second contact point of the conductive layer 18 at the bottom of the through via 170b through the metal plug 5b in one of the chips 68, can be connected to the contact point, at the bottom of the through via 170c, of the interconnect or metal trace 35d in the one of the chips 68 through the metal plug 5c in the one of the chips 68, and can be connected to the contact point, at the bottom of the through via 170d, of the interconnect or metal trace 35c in the one of the chips 68 through the metal plug 5d in the one of the chips 68. The metal interconnect 1b can be connected to the contact point, at the bottom of the through via 170f, of the interconnect or metal trace 35b in the one of the chips 68 through the metal plug 5f in the one of the chips 68, can be connected to the previously described third contact point of the conductive layer 18 at the bottom of the through via 170e through the metal plug 5e in the one of the chips 68, and can be connected to the interconnect or metal trace 35a on the supporter 801 through the metal plug 5e in the one of the chips 68. The metal interconnect 1a can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68. The metal interconnect 1b can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68.


Accordingly, one of the semiconductor devices 36 in one of the chips 68 can be connected to another one of the semiconductor devices 36 in the one of the chips 68 or in another one of the chips 68 through one of the metal interconnects 1, such as 1a or 1b, and can be connected to a contact point, at a bottom of one of the through vias 170v (such as the through via 170a, 170b or 170e), of the conductive layer 18 in the carrier 11 through the one of the metal interconnects 1. Each of the metal interconnects 1 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Next, referring to FIG. 92, an insulating or dielectric layer 66 having a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers, can be formed on the conduction layer 56 of the metal interconnects 1, on the etched surface of the dielectric layer 60, and in gaps between the metal interconnects 1.


The insulating or dielectric layer 66, for example, may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), on the conduction layer 56 of the metal interconnects 1, on the etched surface of the dielectric layer 60, and in the gaps between the metal interconnects 1. The polymer layer on the conduction layer 56 may have a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers.


Alternatively, the insulating or dielectric layer 66 may include or can be an inorganic layer, such as a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC), on the conduction layer 56 of the metal interconnects 1, on the etched surface of the dielectric layer 60, and in the gaps between the metal interconnects 1. The inorganic layer on the conduction layer 56 may have a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers.


Alternatively, referring to FIG. 93, the insulating or dielectric layer 66 as shown in FIG. 92 can be formed by the following steps. First, a polymer layer 66a, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), is formed on the conduction layer 56 of the metal interconnects 1, on the etched surface of the dielectric layer 60, and in the gaps between the metal interconnects 1. Next, the polymer layer 66a is ground or polished by, e.g., a mechanical grinding process, a mechanical polishing process, a chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching until the conduction layer 56 of the metal interconnects 1 has a top surface 56u not covered by the polymer layer 66a. Accordingly, the polymer layer 66a remains on the etched surface of the dielectric layer 60 and in the gaps between the metal interconnects 1 and has a thickness, e.g., greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers. The ground or polished surface 66s of the polymer layer 66a can be substantially flat and substantially coplanar with the top surface 56u of the conduction layer 56. Next, an inorganic layer 66b, such as a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide, having a thickness, e.g., between 0.1 and 3 micrometers, and preferably between 0.2 and 1.5 micrometers, is formed on the top surface 56u of the conduction layer 56 and on the ground or polished surface 66s of the polymer layer 66a. Accordingly, the insulating or dielectric layer 66 as shown in FIG. 92 also can be provided with the polymer layer 66a and the inorganic layer 66b as shown in FIG. 93.


Referring to FIG. 94, after forming the insulating or dielectric layer 66, the following steps can be subsequently performed as illustrated in FIGS. 28-45 to place the chips 72 and the dummy substrate(s) 165 over the layer 116 formed on the layer 66, to form the encapsulation/gap filling material 98 on the backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165, and in the gaps 4a and 8a, to grind or polish the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165, to form the dielectric layer 88 on the ground or polished surfaces 96s, 165s and 98s, to form the through vias 164v in the chips 72 and in the dummy substrate(s) 165, and to form the dielectric layer 90 on the top surface of the dielectric layer 88, on the layers 56, 106 and 114 exposed by the through vias 164v, and on the sidewalls of the through vias 164v. Next, by using an etching process (such as anisotropic etching process), the dielectric layer 90 formed on the layers 56, 106 and 114 and on the top surface of the dielectric layer 88 is etched away, and a top portion of the dielectric layer 88 is further etched away. After the etching process, the dielectric layer 88 may have a remaining thickness T23 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Alternatively, an etching-stop technique may be applied to the process of etching away the top portion of the dielectric layer 88. In this case, the dielectric layer 88 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 96s, 98s and 165s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. During the etching process, the top portion of the dielectric layer 88, that is, the second silicon-oxide layer, can be etched away until the etch stop layer, that is, the silicon-oxynitride layer, is exposed and all of the second silicon-oxide layer is removed. The remaining dielectric layer 88, composed of the silicon-oxynitride layer and the first silicon-oxide layer, may have a thickness T23 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Accordingly, the dielectric layer 90 at bottoms of the through vias 164v, on the top surface of the dielectric layer 88 and on a top surface of the interconnect or metal trace 55a on the supporter 802 is etched away, and the dielectric layer 90 remains on the sidewalls of the through vias 164v, so called as sidewall dielectric layers in the through vias 164v. The sidewall dielectric layers 90 are formed on the sidewalls of the through vias 164v in the chips 72 or in the dummy substrate(s) 165 and are enclosed by the semiconductor substrates 96 of the chips 72 or by the dummy substrate(s) 165.


Next, referring to FIG. 95, an adhesion/barrier layer 92 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, can be formed on the layers 56, 106 and 114 exposed by the through vias 164v, on the etched surface of the dielectric layer 88, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The adhesion/barrier layer 92 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 94 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 92 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 294 can be formed on the seed layer 94 by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 294a, exposing multiple regions of the seed layer 94, in the photoresist layer 294. The patterned photoresist layer 294 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, a conduction layer 86 having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, can be formed on the regions, exposed by the openings 294a in the layer 294, of the seed layer 94 by using a suitable process, such as electroplating process.


The adhesion/barrier layer 92 may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 94 may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers. The conduction layer 86 may include or can be an electroplated metal layer of copper, gold, or silver having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers.


For example, the adhesion/barrier layer 92 can be a titanium-containing layer, such as a single layer of titanium-tungsten alloy, titanium, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 56, 106 and 114 exposed by the through vias 164v, on the etched surface of the dielectric layer 88, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 86 can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, on the single layer of copper or a titanium-copper alloy.


Alternatively, the adhesion/barrier layer 92 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 56, 106 and 114 exposed by the through vias 164v, on the etched surface of the dielectric layer 88, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 86 can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, on the single layer of copper or a titanium-copper alloy.


Alternatively, the adhesion/barrier layer 92 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 56, 106 and 114 exposed by the through vias 164v, on the etched surface of the dielectric layer 88, on the sidewall dielectric layers 90, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 86 can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, on the single layer of copper or a titanium-copper alloy.


Next, referring to FIG. 96, the photoresist layer 294 is removed using, e.g., an organic chemical solution. Next, the seed layer 94 not under the conduction layer 86 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Next, the adhesion/barrier layer 92 not under the conduction layer 86 is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Accordingly, the layers 92, 94 and 86 over the dielectric layer 88 and over the through vias 164v compose multiple metal interconnects 2, including two metal interconnects 2a and 2b, over the dielectric layer 88 and over the through vias 164v. The adhesion/barrier layer 92 and the seed layer 94 of the metal interconnects 2 over the dielectric layer 88 are not at any sidewall 2w of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88, but under a bottom of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88. The sidewalls 2w of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88 are not covered by the layers 92 and 94. The layers 92, 94 and 86 in the through vias 164v compose multiple metal plugs (or metal vias) 6p in the through vias 164v, including metal plugs (or metal vias) 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e as shown in FIG. 94, respectively. Each of the metal plugs 6p in the chips 72 and in the dummy substrate(s) 165 is enclosed by one of the sidewall dielectric layers 90 in the through vias 164v. The metal plug 6a is formed in the dummy substrate 165, the metal plugs 6b and 6c are formed in one of the chips 72, and the metal plugs 6d and 6e are formed in another one of the chips 72. The supporter 802 and the interconnect or metal trace 55a, in the interconnection layer 106, on the supporter 802 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 106 is positioned, of the metal plug 6e. These metal plugs 6p formed in the chips 72 and in the dummy substrate(s) 165 can connect the metal interconnects 2 and the semiconductor devices 102 in the chips 72 and connect the metal interconnects 1 and 2.


For example, one of the metal plugs 6p, such as the metal plug 6a, can be formed in the dummy substrate 165 and formed on a contact point, at a bottom of one of the through vias 164v (such as the through via 164a), of the conduction layer 56 of one of the metal interconnects 1, such as the metal interconnect 1b. Another one of the metal plugs 6p, such as the metal plug 6e, can be formed in one of the chips 72, formed on a contact point of the interconnect or metal trace 55a over a supporter (such as the supporter 802) that is between two lower left and right portions of the another one of the metal plugs 6p (such as the metal plug 6e), and formed on another contact point, at a bottom of another one of the through vias 164v (such as the through via 164e), of the conduction layer 56 in the one of the metal interconnects 1, such as the metal interconnect 1b. Another one of the metal plugs 6p, such as the metal plug 6d, can be formed in the one of the chips 72 and formed on a contact point, at a bottom of another one of the through vias 164v (such as the through via 164d), of the interconnect or metal trace 55b in the one of the chips 72. Another one of the metal plugs 6p, such as the metal plug 6b, can be formed in another one of the chips 72 and formed on another contact point, at a bottom of another one of the through vias 164v (such as the through via 164b), of the conduction layer 56 in another one of the metal interconnects 1, such as the metal interconnect 1a. Another one of the metal plugs 6p, such as the metal plug 6c, can be formed in the another one of the chips 72 and formed on a contact point, at a bottom of another one of the through vias 164v (such as the through via 164c), of the interconnect or metal trace 55c in the another one of the chips 72.


The metal interconnect 2a can be formed over the dummy substrate(s) 165, over multiple of the chips 72, and across multiple edges of the multiple of the chips 72. The metal interconnect 2a can be connected to a contact point, at a bottom of the through via 164b, of the metal interconnect 1a through the metal plug 6b in one of the chips 72, can be connected to a contact point, at a bottom of the through via 164c, of the interconnect or metal trace 55c in the one of the chips 72 through the metal plug 6c in the one of the chips 72, and can be connected to a contact point, at a bottom of the through via 164d, of the interconnect or metal trace 55b in another one of the chips 72 through the metal plug 6d in the another one of the chips 72. These contact points at the bottoms of the through vias 164b, 164c and 164d can be connected to each other through the metal interconnect 2a.


The metal interconnect 2b can be formed over multiple of the chips 72 to connect multiple of the semiconductor devices 102 in the multiple of the chips 72. The metal interconnect 2b can be connected to a contact point, at a bottom of the through via 164e, of the metal interconnect 1b through the metal plug 6e in one of the chips 72, can be connected to one or more of the semiconductor devices 102 in the one of the chips 72 through the metal plug 6e and the interconnect or metal trace 55a in the one of the chips 72, and can be connected to a contact point, at a bottom of another one of the through vias 164v, of the interconnect or metal trace 55a, 55b or 55c in another one of the chips 72 through another one of the metal plugs 6p in the another one of the chips 72.


Accordingly, one of the semiconductor devices 102 in one of the chips 72 can be connected to another one of the semiconductor devices 102 in the one of the chips 72 or in another one of the chips 72 through one of the metal interconnects 2, such as 2a or 2b, and can be connected to a contact point, at a bottom of one of the through vias 164v (such as the through via 164a, 164b, or 164e), of the conduction layer 56 of one of the metal interconnects 1, such as 1a or 1b, through the one of the metal interconnects 2. Each of the metal interconnects 2 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 72 not only can indicate a chip, but also can indicate a wafer. When the element 72 is a wafer, the element 68 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Next, referring to FIG. 97, an insulating or dielectric layer 120 having a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers, is formed on the conduction layer 86 of the metal interconnects 2, on the etched surface of the dielectric layer 88, and in gaps between the metal interconnects 2.


The insulating or dielectric layer 120, for example, may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), on the conduction layer 86 of the metal interconnects 2, on the etched surface of the dielectric layer 88, and in the gaps between the metal interconnects 2. The polymer layer on the conduction layer 86 may have a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers.


Alternatively, the insulating or dielectric layer 120 may include or can be an inorganic layer, such as a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC), on the conduction layer 86 of the metal interconnects 2, on the etched surface of the dielectric layer 88, and in the gaps between the metal interconnects 2. The inorganic layer on the conduction layer 86 may have a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers.


Alternatively, referring to FIG. 98, the insulating or dielectric layer 120 as shown in FIG. 97 can be formed by the following steps. First, a polymer layer 120a, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), is formed on the conduction layer 86 of the metal interconnects 2, on the etched surface of the dielectric layer 88, and in the gaps between the metal interconnects 2. Next, the polymer layer 120a is ground or polished by, e.g., a mechanical grinding process, a mechanical polishing process, a chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching until the conduction layer 86 of the metal interconnects 2 has a top surface 86u not covered by the polymer layer 120a. Accordingly, the polymer layer 120a remains on the dielectric layer 88 and in the gaps between the metal interconnects 2 and has a thickness, e.g., greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers. The ground or polished surface 120s of the polymer layer 120a can be substantially flat and substantially coplanar with the top surface 86u of the conduction layer 86. Next, an inorganic layer 120b, such as a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide, having a thickness, e.g., between 0.1 and 3 micrometers, and preferably between 0.2 and 1.5 micrometers, is formed on the top surface 86u of the conduction layer 86 and on the ground or polished surface 120s of the polymer layer 120a. Accordingly, the insulating or dielectric layer 120 as shown in FIG. 97 can be composed of the polymer layer 120a and the inorganic layer 120b as shown in FIG. 98.


Referring to FIG. 99, after forming the insulating or dielectric layer 120, the following steps can be subsequently performed as illustrated in FIGS. 54-69 to place the chips 118 and the dummy substrate(s) 158 over the layer 140 formed on the layer 120, to form the encapsulation/gap filling material 138 on the backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158, and in the gaps 4b and 8b, to grind or polish the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158, to form the dielectric layer 139 on the ground or polished surfaces 124s, 138s and 158s, to form the through vias 156v in the chips 118 and in the dummy substrate(s) 158, and to form the dielectric layer 127 on the top surface of the dielectric layer 139, on the layers 17, 19 and 86 exposed by the through vias 156v, and on the sidewalls of the through vias 156v. Next, by using an etching process (such as anisotropic etching process), the dielectric layer 127 formed on the layers 17, 19 and 86 and on the top surface of the dielectric layer 139 is etched away, and a top portion of the dielectric layer 139 is further etched away. After the etching process, the dielectric layer 139 may have a remaining thickness T24 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Alternatively, an etching-stop technique may be applied to the process of etching away the top portion of the dielectric layer 139. In this case, the dielectric layer 139 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 124s, 138s and 158s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. During the etching process, the top portion of the dielectric layer 139, that is, the second silicon-oxide layer, can be etched away until the etch stop layer, that is, the silicon-oxynitride layer, is exposed and all of the second silicon-oxide layer is removed. The remaining dielectric layer 139, composed of the silicon-oxynitride layer and the first silicon-oxide layer, may have a thickness T24 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Accordingly, the dielectric layer 127 at bottoms of the through vias 156v, on the top surface of the dielectric layer 139 and on a top surface of the interconnect or metal trace 75a on the supporter 803 is etched away, and the dielectric layer 127 remains on the sidewalls of the through vias 156v, so called as sidewall dielectric layers in the through vias 156v. The sidewall dielectric layers 127 are formed on the sidewalls of the through vias 156v in the chips 118 or in the dummy substrate(s) 158 and are enclosed by the semiconductor substrates 124 of the chips 118 or by the dummy substrate(s) 158.


Next, referring to FIG. 100, an adhesion/barrier layer 125a having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, can be formed on the layers 17, 19 and 86 exposed by the through vias 156v, on the etched surface of the dielectric layer 139, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The adhesion/barrier layer 125a can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 125b having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 125a by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 394 can be formed on the seed layer 125b by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 394a, exposing multiple regions of the seed layer 125b, in the photoresist layer 394. The patterned photoresist layer 394 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, a conduction layer 125c having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers or between 1 and 5 micrometers, can be formed on the regions, exposed by the openings 394a in the layer 394, of the seed layer 125b by using, e.g., an electroplating process.


The adhesion/barrier layer 125a may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 125b may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers. The conduction layer 125c may include or can be an electroplated metal layer of copper, gold, or silver having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers or between 1 and 5 micrometers.


For example, the adhesion/barrier layer 125a can be a titanium-containing layer, such as a single layer of titanium-tungsten alloy, titanium, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 17, 19 and 86 exposed by the through vias 156v, on the etched surface of the dielectric layer 139, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 125c can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers or between 1 and 5 micrometers, on the single layer of copper or a titanium-copper alloy.


Alternatively, the adhesion/barrier layer 125a can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 17, 19 and 86 exposed by the through vias 156v, on the etched surface of the dielectric layer 139, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 125c can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers or between 1 and 5 micrometers, on the single layer of copper or a titanium-copper alloy.


Alternatively, the adhesion/barrier layer 125a can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the layers 17, 19 and 86 exposed by the through vias 156v, on the etched surface of the dielectric layer 139, on the sidewall dielectric layers 127, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 125c can be an electroplated copper layer having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers or between 1 and 5 micrometers, on the single layer of copper or a titanium-copper alloy.


Next, referring to FIG. 101, the patterned photoresist layer 394 is removed using, e.g., an organic chemical solution. Next, the seed layer 125b not under the conduction layer 125c is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Next, the adhesion/barrier layer 125a not under the conduction layer 125c is removed by using, e.g., a wet chemical etching process or a dry plasma etching process. Accordingly, the layers 125a, 125b and 125c over the dielectric layer 139 and over the through vias 156v compose multiple metal interconnects 3, including metal interconnects 3a, 3b and 3c, over the dielectric layer 139 and over the through vias 156v. The adhesion/barrier layer 125a and the seed layer 125b of the metal interconnects 3 over the dielectric layer 139 are not at any sidewall 3w of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139, but under a bottom of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139. The sidewalls 3w of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139 are not covered by the layers 125a and 125b. The layers 125a, 125b and 125c in the through vias 156v compose multiple metal plugs (or metal vias) 7p in the through vias 156v, including metal plugs (or metal vias) 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f as shown in FIGS. 73 and 99, respectively. Each of the metal plugs 7p in the chips 118 and in the dummy substrate(s) 158 is enclosed by one of the sidewall dielectric layers 127 in the through vias 156v. The metal plug 7a is formed in the dummy substrate 158, the metal plugs 7b, 7c and 7d are formed in one of the chips 118, and the metal plugs 7f and 7e are formed in another one of the chips 118. The supporter 803 and the interconnect or metal trace 75a, in the interconnection layer 17, on the supporter 803 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 17 is positioned, of the metal plug 7e. These metal plugs 7p formed in the chips 118 and in the dummy substrate(s) 158 can connect the metal interconnects 3 and the semiconductor devices 13 in the chips 118 and connect the metal interconnects 2 and 3.


One of the metal plugs 7p, such as the metal plug 7a, can be formed in the dummy substrate 158 and formed on a contact point, at a bottom of one of the through vias 156v (such as the through via 156a), of the conduction layer 86 of one of the metal interconnects 2. Another one of the metal plugs 7p, such as the metal plug 7b, can be formed in one of the chips 118 and formed on another contact point, at a bottom of another one of the through vias 156v (such as the through via 156b), of the conduction layer 86 in another one of the metal interconnects 2, such as the metal interconnect 2a. Another one of the metal plugs 7p, such as the metal plug 7c, can be formed in the one of the chips 118 and formed on a contact point, at a bottom of another one of the through vias 156v (such as the through via 156c), of the interconnect or metal trace 75d in the one of the chips 118. Another one of the metal plugs 7p, such as the metal plug 7d, can be formed in the one of the chips 118 and formed on a contact point, at a bottom of another one of the through vias 156v (such as the through via 156d), of the interconnect or metal trace 75c in the one of the chips 118. Another one of the metal plugs 7p, such as the metal plug 7f, can be formed in another one of the chips 118 and formed on a contact point, at a bottom of another one of the through vias 156v (such as the through via 156f), of the interconnect or metal trace 75b in the another one of the chips 118. Another one of the metal plugs 7p, such as the metal plug 7e, can be formed in the another one of the chips 118, formed on a contact point of the interconnect or metal trace 75a over a supporter (such as the supporter 803) that is between two lower left and right portions of the another one of the metal plugs 7p (such as the metal plug 7e), and formed on another contact point, at a bottom of another one of the through vias 156v (such as the through via 156e), of the conduction layer 86 in another one of the metal interconnects 2, such as the metal interconnect 2b.


The metal interconnect 3a can be formed over one or more of the chips 118. The metal interconnect 3b can be formed over multiple of the chips 118 and across multiple edges of the multiple of the chips 118. The metal interconnect 3c can be formed over one or more of the chips 118 and over the dummy substrate(s) 158.


The metal interconnect 3a can be connected to a contact point, at a bottom of the through via 156b, of the metal interconnect 2a through the metal plug 7b in one of the chips 118 and can be connected to a contact point, at a bottom of the through via 156c, of the interconnect or metal trace 75d in the one of the chips 118 through the metal plug 7c in the one of the chips 118. The metal interconnect 3b can be connected to a contact point, at a bottom of the through via 156d, of the interconnect or metal trace 75c in the one of the chips 118 through the metal plug 7d in the one of the chips 118 and can be connected to a contact point, at a bottom of the through via 156f, of the interconnect or metal trace 75b in another one of the chips 118 through the metal plug 7f in the another one of the chips 118. The metal interconnect 3c can be connected to a contact point, at a bottom of the through via 156e, of the metal interconnect 2b through the metal plug 7e in the another one of the chips 118, can be connected to one or more of the semiconductor devices 13 in the another one of the chips 118 through the metal plug 7e and the interconnect or metal trace 75a in the another one of the chips 118, and can be connected to a contact point, at a bottom of the through via 156a, of another one of the metal interconnects 1 through the metal plug 7a in the dummy substrate 158. Accordingly, the contact points at the bottoms of the through vias 156b and 156c can be connected to each other through the metal interconnect 3a, the contact points at the bottoms of the through vias 156d and 156f can be connected to each other through the metal interconnect 3b, and the contact points at the bottoms of the through vias 156a and 156e can be connected to each other through the metal interconnect 3c.


According, one of the semiconductor devices 13 in one of the chips 118 can be connected to another one of the semiconductor devices 13 in the one of the chips 118 or in another one of the chips 118 through one of the metal interconnects 3, such as 3a or 3b, and can be connected to a contact point, at a bottom of one of the through vias 156v (such as the through via 156a, 156b, or 156e), of the conduction layer 86 of one of the metal interconnects 2, such as 2a or 2b, through the one of the metal interconnects 3. Each of the metal interconnects 3 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 118 not only can indicate a chip, but also can indicate a wafer. When the element 118 is a wafer, the element 72 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Next, referring to FIG. 102, an insulating or dielectric layer 122 having a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers, is formed on the conduction layer 125c of the metal interconnects 3, on the etched surface of the dielectric layer 139, and in gaps between the metal interconnects 3. Next, a polymer layer 136, such as photosensitive polymer layer, is formed on the insulating or dielectric layer 122 by using, e.g., a spin coating process. Next, a photo exposure process and a chemical development process can be employed to form multiple openings 136a, exposing multiple regions of the insulating or dielectric layer 122, in the polymer layer 136. Next, the polymer layer 136 can be cured in a temperature between 180 degrees centigrade and 300 degrees centigrade or between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers. The polymer layer 136 can be a polyimide layer, a benzocyclobutene (BCB) layer, a polybenzoxazole (PBO) layer, a poly-phenylene oxide (PPO) layer, an epoxy layer, or a layer of SU-8.


The insulating or dielectric layer 122, for example, may include or can be an inorganic layer, such as a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC), with a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers, formed by a process, e.g., including a chemical vapor deposition (CVD) process or a plasma-enhanced chemical vapor deposition (PECVD) process. Alternatively, the insulating or dielectric layer 122 may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), with a thickness, e.g., between 0.3 and 10 micrometers, and preferably between 0.3 and 5 micrometers, between 0.3 and 3 micrometers, between 0.3 and 2 micrometers, or between 0.3 and 1 micrometers, formed by, e.g., using a spin coating process and then using a thermal curing process in a temperature between 150 degrees centigrade and 300 degrees centigrade.


Referring to FIG. 103, after forming the structure illustrated in FIG. 102, forming an under bump metallurgic (UBM) layer 666 on the polymer layer 136 and on multiple contact points, at bottoms of multiple openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3, forming multiple solder bumps or balls 126 on the UBM layer 666, and singularizing multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555e and 555f, can be referred to as the steps illustrated in FIGS. 78-82.


In some cases, the system-in package or multichip module 555e may further include multiple metal plugs or vias in the carrier 11, multiple metal traces under the carrier 11, and multiple passive components under the carrier 11. The metal plugs or vias can be formed in multiple openings in the substrate 10 and the dielectric layer 12 of the carrier 11, passing through the substrate 10 and the dielectric layer 12, and connected to the conductive layer 18 of the carrier 11. The metal plugs or vias may include or can be copper, aluminum, gold, or nickel. Alternatively, the metal plugs or vias may further include titanium, a titanium-tungsten alloy, titanium nitride, tantalum, tantalum nitride, a titanium-copper alloy, or chromium. The metal traces can be formed at a bottom side of the substrate 10 of the carrier 11 and connected to the conductive layer 18 of the carrier 11 through the metal plugs or vias. Each of the metal traces may include an electroplated metal layer and a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or a titanium-copper alloy, and the electroplated metal layer may include or can be a layer of copper, gold, aluminum, or nickel. The passive components, such as capacitors, inductors, or resistors, can be boned with the metal traces using solders. One of the passive components can be connected to one of the metal plugs 5p, such as the metal plug 5a, 5b, 5c, 5d, 5e or 5f, through, in sequence, one of the solders, one of the metal traces at a bottom side of the substrate 10, one of the metal plugs or vias in the substrate 10, and a metal interconnect of the conductive layer 18 at the top side of the substrate 10. The solders may include bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-silver-copper alloy, a tin-gold alloy, or a tin-copper alloy.


The system-in package or multichip module 555e can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 104, the system-in package or multichip module 555e can be bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, the under fill 174 illustrated in FIG. 83 can be formed between the polymer layer 136 of the system-in package or multichip module 555e and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176.



FIG. 105 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure illustrated in FIG. 102, forming multiple openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, forming an adhesion/barrier layer 134 on the polymer layer 136 and on multiple contact points, exposed by the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3, forming a seed layer 132 on the adhesion/barrier layer 134, forming a photoresist layer 152 on the seed layer 132, and forming multiple openings 152a in the photoresist layer 152 can be referred to as the steps illustrated in FIGS. 78 and 79. Next, forming a metal layer 142 on multiple regions, exposed by the openings 152a in the photoresist layer 152, of the seed layer 132 and in the openings 152a, forming a barrier layer 144 in the openings 152a and on the metal layer 142, forming a solder wetting layer 146 in the openings 152a and on the barrier layer 144, removing the photoresist layer 152, removing the seed layer 132 not under the metal layer 142, and removing the adhesion/barrier layer 134 not under the metal layer 142 can be referred to as the steps illustrated in FIG. 84. Accordingly, the layers 132, 134, 142, 144 and 146 compose multiple metal bumps 668 on the polymer layer 136 and on the contact points, at the bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3. The metal bumps 668 may have a width, e.g., between 20 and 400 micrometers, and preferably between 50 and 100 micrometers, and a height, e.g., between 10 and 100 micrometers, and preferably between 20 and 60 micrometers. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 555g as shown in FIG. 105. In the system-in package or multichip module 555g, each of the interconnects 3 can be connected to one or more of the metal bumps 668, and the metal bumps 668 can be used for external connection.


The system-in package or multichip module 555g can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 106, the system-in package or multichip module 555g can be bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Next, the under fill 174 illustrated in FIG. 83 can be formed between the polymer layer 136 of the system-in package or multichip module 555g and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 102-106 can be omitted. In this case, the polymer layer 136 is formed on the conduction layer 125c of the metal interconnects 3, on the etched surface of the dielectric layer 139, and in the gaps between the metal interconnects 3, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIGS. 107 and 108 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 107, after forming the structure illustrated in FIG. 101, an insulating or dielectric layer 122 can be formed on the conduction layer 125c of the metal interconnects 3, on the etched surface of the dielectric layer 139, and in gaps between the metal interconnects 3. The specifications of the layer 122 shown in FIG. 107 can be referred to as the specifications of the layer 122 as illustrated in FIG. 102. Next, multiple openings 122a can be formed in the insulating or dielectric layer 122 and expose multiple regions of the conduction layer 125c of the metal interconnects 3. Next, the metal interconnects or traces 300 illustrated in FIG. 86 can be formed on the insulating or dielectric layer 122 and on the regions, exposed by the openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3. The metal interconnects or traces 300 can be composed of the layers 148 and 150 illustrated in FIG. 86, and the steps of forming the metal interconnects or traces 300 shown in FIG. 107 can be referred to as the steps of forming the metal interconnects or traces 300 as illustrated in FIG. 86. Next, a polymer layer 136, such as photosensitive polymer layer, can be formed on the insulating or dielectric layer 122 and on the metal interconnects or traces 300 by using, e.g., a spin coating process. Next, a photo exposure process and a chemical development process can be employed to form multiple openings 136a, exposing multiple contact points of the metal interconnects or traces 300, in the polymer layer 136. Next, the polymer layer 136 can be cured in a temperature between 180 degrees centigrade and 300 degrees centigrade or between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers. The polymer layer 136 can be a polyimide layer, a benzocyclobutene (BCB) layer, a polybenzoxazole (PBO) layer, a poly-phenylene oxide (PPO) layer, an epoxy layer, or a layer of SU-8.


Next, referring to FIG. 108, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555h and 555i.



FIG. 109 shows a multichip package 566a including the system-in package or multichip module 555h connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184. The multichip package 566a is similar to the multichip package 566 shown in FIG. 88 except that the system-in package or multichip module 555c shown in FIG. 88 is replaced with the system-in package or multichip module 555h. The steps of forming the multichip package 566a packaged with the system-in package or multichip module 555h can be referred to as the steps of forming the multichip package 566 packaged with the system-in package or multichip module 555c as illustrated in FIG. 88. The specifications of the glue layer 182, the wirebonded wires 184, and the molding compound 186 shown in FIG. 109 can be referred to as the specifications of the glue layer 182, the wirebonded wires 184, and the molding compound 186 as illustrated in FIG. 88, respectively. The specifications of the solder balls 178 shown in FIG. 109 can be referred to as the specifications of the solder balls 178 as illustrated in FIG. 83. The multichip package 566a can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178.



FIGS. 110-128 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 110, multiple chips 68 are provided before bonding with a carrier 11. The chips 68 shown in FIG. 110 are similar to the chips 68 shown in FIG. 7 except that each of the chips 68 shown in FIG. 110 further includes multiple metal bumps 891 under and on multiple contact points, exposed by and at ends of multiple openings 24a in the passivation layer 24, of the patterned metal layer 26 and further includes an interconnect or metal trace 35e provided by the patterned metal layer 26. The interconnect or metal trace 35e can be connected to one or more of the semiconductor devices 36, but can be disconnected from the interconnect or metal trace 35a, 35b, 35c or 35d. The interconnect or metal trace 35e can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace. The element of the chips 68 in FIG. 110 indicated by a same reference number as indicates the element of the chips 68 in FIG. 7 has a same material and spec as the element of the chips 68 illustrated in FIG. 7. In one case, one of the chips 68 may have different circuit designs from those of another one of the chips 68. Also, in another case, one of the chips 68 may have same circuit designs as those of another one of the chips 68. Alternatively, one of the chips 68 may have a different area (top surface) or size from that of another one of the chips 68. Also, in another case, one of the chips 68 may have a same area (top surface) or size as that of another one of the chips 68. The carrier 11 shown in FIG. 110 is similar to that shown in FIG. 1 except that the carrier 11 shown in FIG. 110 further includes multiple metal pads 892 on multiple contact points, at bottoms of multiple openings 20a in the dielectric or insulating layer 20, of the conductive layer 18. The contact points, at the bottoms of the openings 20a, of the conductive layer 18 can be separated from one another by the dielectric or insulating layer 20 of the carrier 11.


The metal pads 892 can be composed of two metal layers 84a and 85. The metal layer 85, such as nickel layer, may have a thickness, e.g., between 2 and 10 micrometers and can be formed on the contact points, at the bottoms of the openings 20a, of the conductive layer 18 of the carrier 11 by, e.g., an electroplating or electroless plating process. The metal layer 84a, such as a layer of solder or gold, may have a thickness, e.g., between 2 and 15 micrometers and can be formed on the metal layer 85, such as nickel layer, by, e.g., an electroplating or electroless plating process.


The metal bumps 891 can be composed of one or more metal layers, such as metal layers 83 and 84b. The metal layer 83 may include an adhesion/barrier layer, such as a layer of titanium, titanium nitride, a titanium-tungsten alloy, tantalum, tantalum nitride, or chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, formed under and on the contact points, at the tops of the openings 24a, of the patterned metal layer 26 of each chip 68 by, e.g., a sputtering process. The metal layer 83 may further include a seed layer, such as a layer of a titanium-copper alloy, copper, gold, or nickel, with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, formed under and on the adhesion/barrier layer by, e.g., a sputtering process. The metal layer 84b, for example, may include a copper layer with a thickness, e.g., between 0.5 and 20 micrometers, and preferably between 2 and 10 micrometers, formed under and on the seed layer, preferably the copper or titanium-copper-alloy seed layer, of the metal layer 83 by, e.g., an electroplating process, a nickel layer with a thickness, e.g., between 0.1 and 10 micrometers, and preferably between 0.2 and 5 micrometers, formed under and on the copper layer by, e.g., an electroplating or electroless plating process, and a solder layer of bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-copper alloy, or a tin-silver-copper alloy, used for bonding with the metal layer 84a (such as a layer of solder or gold) of the metal pads 892, formed under and on the nickel layer by, e.g., an electroplating process. Alternatively, the metal layer 84b may include a copper layer with a thickness, e.g., between 2 and 100 micrometers, and preferably between 5 and 50 micrometers, formed under and on the seed layer, preferably the copper or titanium-copper-alloy seed layer, of the metal layer 83 by an electroplating process, a nickel layer with a thickness, e.g., between 2 and 10 micrometers, and preferably between 2 and 5 micrometers, formed under and on the copper layer by an electroplating or electroless plating process, and a gold layer, used for bonding with the metal layer 84a (such as a layer of solder or gold) of the metal pads 892, formed under and on the nickel layer by an electroplating or electroless plating process. Alternatively, the metal layer 84b may include a nickel layer with a thickness, e.g., between 2 and 50 micrometers, and preferably between 5 and 25 micrometers, formed under and on the seed layer, preferably the copper or titanium-copper-alloy seed layer, of the metal layer 83 by, e.g., an electroplating process, and a solder layer of bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-copper alloy, or a tin-silver-copper alloy, used for bonding with the metal layer 84a (such as a layer of solder or gold) of the metal pads 892, formed under and on the nickel layer by, e.g., an electroplating or electroless plating process.


Referring to FIG. 111, the chips 68 can be bonded with the carrier 11 using, e.g., a flip chip technology of joining the metal bumps 891 of the chips 68 with the metal pads 892 of the carrier 11. In this process, the metal bumps 891 can be placed over the metal pads 892, and then the bottommost layer, the previously described solder or gold layer, of the metal layer 84b of the metal bumps 891 and the topmost layer, the previously described solder or gold layer, of the metal layer 84a of the metal pads 892 can be melted or integrated into multiple metal joints 89 using a suitable process, such as heating or reflow process. Accordingly, the metal joints 89 can be formed between active sides of the chips 68 and a top side of the carrier 11. Each of the metal joints 89 may be a layer of bismuth, indium, a tin-lead alloy, a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-gold alloy, or gold having a thickness, e.g., between 5 and 50 micrometers between the metal layer 85 and the previously described nickel layer in the remaining metal layer 84b, not shown in FIG. 111 but illustrated in FIG. 110, under and on the metal layer 83. The metal joints 89 can connect the interconnects or metal traces 35b, 35c, 35d and 35e of the chips 68 to multiple metal interconnects or traces of the conductive layer 18 of the carrier 11. Next, an under fill 91 can be formed between the passivation layer 24 of each chip 68 and the top side of the carrier 11 and encloses the metal joints 89. The under fill 91 may include epoxy, glass filler or carbon filler, and the glass filler or carbon filler can be distributed in the epoxy.


Next, referring to FIG. 112, multiple separate dummy substrates 62 can be joined with the top side of the carrier 11 using a glue layer 22. The glue layer 22 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or silosane, with a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers. When a gap between neighboring two chips 68 is too great, such as greater than 500 or 1,000 micrometers, one or more of the separate dummy substrates 62 can be placed in the gap. Alternatively, when a gap between neighboring two chips 68 is small enough, such as smaller than 500 or 1,000 micrometers, there can be no separate dummy substrates 62 placed in the gap. The separate dummy substrates 62, for example, can be separate silicon bars, separate dummy chips, separate dummy silicon dies, or separate substrates of polysilicon, glass, silicon, or ceramic. In one embodiment, there are no circuits preformed in each separate dummy substrate 62 or on a top or bottom surface of each separate dummy substrate 62 before the separate dummy substrates 62 are joined with the carrier 11.


Alternatively, the glue layer 22 can be replaced with a silicon-oxide layer that is preformed on a bottom side of each of the separate dummy substrates 62. In this case, joining the separate dummy substrates 62 with the top side of the carrier 11 can be performed by bonding the silicon-oxide layer 22 preformed on each of the separate dummy substrates 62 with another silicon-oxide layer of the dielectric or insulating layer 20 of the carrier 11. Accordingly, the separate dummy substrates 62 can be joined with the carrier 11 using these silicon-oxide layers.



FIG. 113 is a schematical top view showing the separate dummy substrates 62 and the chips 68 shown in FIG. 112 according to an embodiment, and FIG. 112 is the cross-sectional view cut along the line C-C shown in FIG. 113. As shown in FIGS. 112 and 113, there are multiple gaps 4 each between one of the chips 68 and one of the separate dummy substrates 62, and there are multiple gaps 8 (one of them is shown) each between neighboring two chips 68. Each of the gaps 4 may have a transverse distance or spacing D1, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8 may have a transverse distance or spacing D2, e.g., smaller than 500 micrometers, such as between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers.


After the separate dummy substrates 62 are joined with the carrier 11, the structure shown in FIG. 114 can be formed by the following steps. After forming the structure illustrated in FIG. 112, the encapsulation/gap filling material 64 illustrated in FIG. 10 can be formed on a backside of the semiconductor substrate 58 of each chip 68, on top sides of the separate dummy substrates 62, and in the gaps 4 and 8. Next, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the separate dummy substrates 62 are ground or polished by, e.g., a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the semiconductor substrate 58 of one of the chips 68 is thinned to a thickness T1, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Preferably, each of the chips 68, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. After the grinding or polishing process, one of the separate dummy substrates 62 can be thinned to a thickness T2, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 remaining in the gaps 4 and 8 may have a vertical thickness T3, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the ground or polished surfaces 62s of the separate dummy substrates 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The ground or polished surfaces 62s may be substantially coplanar with the ground or polished surface 58s of each chip 68 and with the ground or polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8. After the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the separate dummy substrates 62 are ground or polished by the above mentioned process, the dielectric layer 60 illustrated in FIG. 14 can be formed on the ground or polished surface 58s of the semiconductor substrate 58 of each chip 68, on the ground or polished surfaces 62s of the separate dummy substrates 62, and on the ground or polished surface 64s of the encapsulation/gap filling material 64.


Alternatively, the structure shown in FIG. 114 can be formed by the following steps. After the separate dummy substrates 62 are joined with the carrier 11, the encapsulation/gap filling material 64 illustrated in FIG. 12 can be formed on backsides of the semiconductor substrates 58 of the chips 68, on top sides of the separate dummy substrates 62, and in the gaps 4 and 8. Next, the polymer 65 illustrated in FIG. 12 can be formed on the encapsulation/gap filling material 64 and in the gaps 4 and 8. Next, the steps illustrated in FIG. 13 can be performed to remove the polymer layer 65, to remove the encapsulation/gap filling material 64 not in the gaps 4 and 8, to thin the semiconductor substrates 58 of the chips 68, and to thin the separate dummy substrates 62. Accordingly, the polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the polished surfaces 62s of the separate dummy substrates 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The polished surfaces 62s may be substantially coplanar with the polished surface 58s of each chip 68 and with the polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8. The polished surfaces 58s, 62s and 64s may have a micro-roughness, e.g., less than 20 nanometers. Each of the chips 68 can be thinned to a thickness, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers. The semiconductor substrate 58 of one of the chips 68 can be thinned to the thickness T1 between 1 and 30 micrometers, and preferably between 2 and 5 micrometers, between 2 and 10 micrometers, between 2 and 20 micrometers, or between 3 and 30 micrometers. Each of the separate dummy substrates 62 can be thinned to the thickness T2, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers. The encapsulation/gap filling material 64 in the gaps 4 and 8 can be thinned to the thickness T3, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers. Thereafter, the dielectric layer 60 illustrated in FIG. 14 can be formed on the polished surface 58s of the semiconductor substrate 58 of each chip 68, on the polished surfaces 62s of the separate dummy substrates 62, and on the polished surface 64s of the encapsulation/gap filling material 64.


Referring to FIG. 115, after forming the structure illustrated in FIG. 114, multiple through vias 170v, including through vias 170a, 170c, 170d, 170f and 170g, can be formed in the chips 68 and in the separate dummy substrates 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68, by a suitable process or processes, e.g., by the following steps. First, a photoresist layer, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 60 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a chemical solution can be employed to form multiple openings, exposing the dielectric layer 60, in the photoresist layer. The photoresist layer may have a thickness, e.g., between 3 and 50 micrometers. Next, the dielectric layer 60 under the openings in the photoresist layer can be removed by using, e.g., an anisotropic plasma etching process. Next, the separate dummy substrates 62 under the openings in the photoresist layer and the chips 68 under the openings in the photoresist layer can be etched away until predetermined regions of the layers 26 and 34 in the chips 68 and predetermined regions of the conductive layer 18 in the carrier 11 are exposed by the openings in the photoresist layer. Next, the photoresist layer can be removed by using, e.g., an organic chemical. Accordingly, the through vias 170v, including the through vias 170a, 170c, 170d, 170f and 170g, can be formed in the chips 68 and in the separate dummy substrates 62, exposing multiple regions of the conductive layer 18 of the carrier 11 and exposing multiple regions of the layers 26 and 34 of the chips 68. The through via 170a is formed in one of the separate dummy substrates 62, and the through vias 170c, 170d, 170f and 170g are formed in the same chip 68. Each of the through vias 170v, such as the through via 170a, 170c, 170d, 170f, or 170g, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers.


One of the through vias 170v, such as the through via 170a, passes through the dielectric layer 60, one of the separate dummy substrates 62, the glue layer or silicon-oxide layer 22, and the dielectric or insulating layer 20 of the carrier 11, exposing a region of the conductive layer 18 of the carrier 11. Another one of the through vias 170v, such as the through via 170c, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layer 48 of one of the chips 68, exposing the interconnect or metal trace 35d in the interconnection layer 34 of the one of the chips 68. Another one of the through vias 170v, such as the through via 170d, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layers 44, 46 and 48 of one of the chips 68, exposing the interconnect or metal trace 35c in the patterned metal layer 26 of the one of the chips 68. Another one of the through vias 170v, such as the through via 170f, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layer 48 of one of the chips 68, exposing the interconnect or metal trace 35b in the interconnection layer 34 of the one of the chips 68. Another one of the through vias 170v, such as the through via 170g, passes through the dielectric layer 60 and through the semiconductor substrate 58 and dielectric layers 44, 46 and 48 of one of the chips 68, exposing the interconnect or metal trace 35a in the interconnection layer 34 of the one of the chips 68 and exposing the interconnect or metal trace 35e in the patterned metal layer 26 of the one of the chips 68. A supporter 804 provided by the dielectric layer 44 is between the interconnect or metal trace 35a exposed by the through via 170g and the interconnect or metal trace 35e under the through via 170g for the purpose of supporting the exposed interconnect or metal trace 35a. The supporter 804 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. FIGS. 116-119 are three examples of schematic top perspective views showing the through via 170g and the interconnects or metal traces 35a and 35e illustrated in FIG. 115.


As shown in FIGS. 115 and 116, the through via 170g in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes two regions of the interconnect or metal trace 35e in the one of the chips 68. The interconnect or metal trace 35a has a line-shaped region, exposed by the through via 170g, extending in a horizontal direction from a side of the through via 170g to the opposite side of the through via 170g through a center of the through via 170g. The supporter 804, between the interconnect or metal trace 35e under the through via 170g and the exposed line-shaped region of the interconnect or metal trace 35a in the interconnection layer 34, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 35a. Preferably, the through via 170g can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 115 and 117, the through via 170g in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes a region of the interconnect or metal trace 35e in the one of the chips 68. The interconnect or metal trace 35a has a peninsula region, exposed by the through via 170g, extending in a horizontal direction from one side of the through via 170g at least to a center of the through via 170g, but does not reach to the opposite side of the through via 170g; the interconnect or metal trace 35a has an end exposed by the through via 170g. The supporter 804, between the interconnect or metal trace 35e under the through via 170g and the exposed peninsula region of the interconnect or metal trace 35a in the interconnection layer 34, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 35a. Preferably, the through via 170g can be, but is not limited to, a circular shape from a top perspective view.


As shown in FIGS. 115 and 118, the through via 170g in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes a region of the interconnect or metal trace 35e in the one of the chips 68. The interconnect or metal trace 35a has a peninsula region, exposed by the through via 170g, extending in a horizontal direction from one side of the through via 170g at least to a center of the through via 170g, but does not reach to the opposite side of the through via 170g; the interconnect or metal trace 35a has a circular end exposed by the through via 170g. The supporter 804, between the interconnect or metal trace 35e under the through via 170g and the exposed peninsula region of the interconnect or metal trace 35a in the interconnection layer 34, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 35a. Preferably, the through via 170g can be, but is not limited to, a circular shape from a top perspective view.



FIG. 119 is an example of a schematic top perspective view showing the through via 170g and the interconnects or metal traces 35a and 35e illustrated in FIG. 115. In this case, the through via 170g can be, but is not limited to, oval-shaped and has a width W7, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers. The oval-shaped through via 170g in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes two regions of the interconnect or metal trace 35e in the one of the chips 68. The interconnect or metal trace 35a has a line-shaped region, exposed by the oval-shaped through via 170g, extending in a horizontal direction from a side of the oval-shaped through via 170g to the opposite side of the oval-shaped through via 170g through a center of the oval-shaped through via 170g. The supporter 804, between the interconnect or metal trace 35e under the through via 170g and the exposed line-shaped region of the interconnect or metal trace 35a in the interconnection layer 34, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 35a. The interconnect or metal trace 35a exposed by the oval-shaped through via 170g has a width W8, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 20 micrometers, between 0.3 and 10 micrometers, between 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. A horizontal distance S4 between an endpoint of the long axis of the oval-shaped through via 170g and an edge, which is closer to the endpoint than the other opposite edge, of the interconnect or metal trace 35a exposed by the oval-shaped through via 170g can be, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers.


Next, referring to FIG. 120, a dielectric layer 50 can be formed on a top surface of the dielectric layer 60, on the conductive layer 18, exposed by the through vias 170v (such as the through via 170a), of the carrier 11, on the layers 26 and 34, exposed by the through vias 170v (such as the through vias 170c, 170d, 170f and 170g), of the chips 68, and on sidewalls of the through vias 170v. The specifications of the dielectric layer 50 shown in FIG. 120 can be referred to as the specifications of the dielectric layer 50 as illustrated in FIG. 19.


Next, referring to FIG. 121, a photoresist layer 168, such as positive-type photo-sensitive resist layer or negative-type photo-sensitive resist layer, can be formed on the dielectric layer 50 by using, e.g., a spin coating process or a lamination process. Next, a photo exposure process using a 1X stepper and a development process using a wet chemical can be employed to form multiple openings 168a, exposing the dielectric layer 50, in the photoresist layer 168. The photoresist layer 168 may have a thickness, e.g., between 0.5 and 30 micrometers.


Next, referring to FIG. 122, the dielectric layer 50 formed on the layers 18, 26 and 34 and on the top surface of the dielectric layer 60 under the openings 168a can be removed by, e.g., etching the dielectric layer 50 under the openings 168a using an anisotropic plasma etching process. The dielectric layer 50 at bottoms of the through vias 170v, on the top surface of the dielectric layer 60 under the openings 168a, and on a top surface of the interconnect or metal trace 35a over the supporter 804 can be etched away. Accordingly, the layers 18, 26 and 34 at the bottoms of the through vias 170v, the top surface of the dielectric layer 60 under the openings 168a, and the interconnect or metal trace 35a over the supporter 804 are exposed by the openings 168a, and the dielectric layer 50 remains on the sidewalls of the through vias 170v, so called as sidewall dielectric layers in the through vias 170v. The sidewall dielectric layers 50 are formed on the sidewalls of the through vias 170v in the chips 68 or in the dummy substrate(s) 62 and are enclosed by the semiconductor substrates 58 of the chips 68 or by the dummy substrate(s) 62.


Next, referring to FIG. 123, multiple trenches 60t, damascene openings, can be formed in the dielectric layer 60 by etching the dielectric layer 60 and the sidewall dielectric layers 50 under the openings 168a to a depth D3, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers, using, e.g., an anisotropic plasma etching process. Preferably, the dielectric layer 60 and the sidewall dielectric layers 50 have a same material, such as silicon nitride, silicon oxide, or silicon oxynitride. After the etching process, the dielectric layer 60 under the trenches 60t has a remaining thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Alternatively, an etching-stop technique may be applied to the process of forming the trenches 60t in the dielectric layer 60. In this case, the dielectric layer 60 is composed of the previously described inorganic layers, e.g., including the first silicon-oxide layer on the surfaces 58s, 62s and 64s, the silicon-oxynitride layer, used as the etch stop layer, on the first silicon-oxide layer, and the second silicon-oxide layer on the silicon-oxynitride layer. The trenches 60t can be formed in the dielectric layer 60 by etching the second silicon-oxide layer of the dielectric layer 60 under the openings 168a and the sidewall dielectric layers 50 under the openings 168a until the silicon-oxynitride layer of the dielectric layer 60 is exposed by the openings 168a. Accordingly, the trenches 60t are formed in the second silicon-oxide layer of the dielectric layer 60, and the remaining dielectric layer 60, composed of the silicon-oxynitride layer and the first silicon-oxide layer, under the trenches 60t has a thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Next, referring to FIG. 124, the photoresist layer 168 is removed by using, e.g., an organic chemical. The trenches 60t formed in the dielectric layer 60 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The sidewall dielectric layers 50 formed on the sidewalls of the through vias 170v (such as the through vias 170c, 170d, 170f and 170g) in the chips 68 can prevent transition metals, such as copper, sodium or moisture from penetrating into IC devices of the chips 68. FIG. 125 is a schematic top perspective view showing the trenches 60t, the through vias 170v and the sidewall dielectric layers 50 shown in FIG. 124 according an embodiment of the present invention, and FIG. 124 is a cross-sectional view cut along the line D-D shown in FIG. 125.


Next, referring to FIG. 126, forming an adhesion/barrier layer 52 on the layers 18, 26 and 34 exposed by the through vias 170v, on sidewalls and bottoms of the trenches 60t, on the dielectric layer 50, and on the interconnect or metal trace 35a that is on the supporter 804, forming a seed layer 54 on the adhesion/barrier layer 52, and forming a conduction layer 56 on the seed layer 54 can be referred to as the steps illustrated in FIG. 25. The specifications of the layers 52, 54 and 56 shown in FIG. 126 can be referred to as the specifications of the layers 52, 54 and 56 as illustrated in FIG. 25, respectively.


Next, referring to FIG. 127, by using a grinding or polishing process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, the layers 52, 54 and 56 outside the trenches 60t can be removed, and the dielectric layer 50 on the top surface of the dielectric layer 60 can be removed. Accordingly, the dielectric layer 60 has an exposed top surface 60s that can be substantially coplanar with the ground or polished surface 56s of the conduction layer 56 in the trenches 60t, and the surfaces 56s and 60s can be substantially flat. The dielectric layer 60 has a thickness T7, between the exposed top surface 60s and the surface 58s or 62s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers or between 2 and 5 micrometers. The adhesion/barrier layer 52 and the seed layer 54 are at sidewalls and a bottom of the conduction layer 56 in the trenches 60t, and the sidewalls and the bottom of the conduction layer 56 in the trenches 60t are covered by the adhesion/barrier layer 52 and the seed layer 54.


In a first alternative, after the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the adhesion/barrier layer 52 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 804. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a second alternative, after the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the adhesion/barrier layer 52 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 804. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


In a third alternative, after the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the adhesion/barrier layer 52 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 804. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers.


After the steps of removing the layers 52, 54 and 56 outside the trenches 60t and removing the dielectric layer 50 on the top surface of the dielectric layer 60, the layers 52, 54 and 56 in the trenches 60t compose multiple metal interconnects (or damascene metal traces) 1, including metal interconnects (or damascene metal traces) 1a and 1b, in the trenches 60t. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5c, 5d, 5f and 5g in the through vias 170a, 170c, 170d, 170f and 170g as shown in FIG. 124, respectively. Each of the metal plugs 5p in the chips 68 and in the separate dummy substrates 62 is enclosed by one of the sidewall dielectric layers 50 in the through vias 170v. The metal plug 5a is formed in one of the separate dummy substrates 62, and the metal plugs 5c, 5d, 5f and 5g are formed in the same chip 68. The supporter 804 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 804 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5g. These metal plugs 5p formed in the chips 68 and in the separate dummy substrates 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The metal interconnects 1, such as 1a and 1b, in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers.


For example, one of the metal plugs 5p, such as the metal plug 5a, can be formed in one of the separate dummy substrates 62 and formed on a contact point of the conductive layer 18 at a bottom of one of the through vias 170v, such as the through via 170a. Another one of the metal plugs 5p, such as the metal plug 5c, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170c), of the interconnect or metal trace 35d in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5d, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170d), of the interconnect or metal trace 35c in the patterned metal layer 26 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5f, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170f), of the interconnect or metal trace 35b in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5g, can be formed in one of the chips 68, formed on a contact point of the interconnect or metal trace 35a over a supporter (such as the supporter 804) that is between two lower left and right portions of the another one of the metal plugs 5p (such as the metal plug 5g), and formed on one or more contact points of the interconnect or metal trace 35e under one of the through vias 170v (such as the through via 170g).


One of the metal interconnects 1, such as 1a or 1b, can be formed over multiple of the separate dummy substrates 62, over multiple of the chips 68, across multiple edges of the multiple of the chips 68, and across multiple edges of the multiple of the separate dummy substrates 62. The metal interconnect 1a can be connected to the contact point, at the bottom of the through via 170a, of the conductive layer 18 through the metal plug 5a in one of the separate dummy substrates 62, can be connected to the contact point, at the bottom of the through via 170c, of the interconnect or metal trace 35d in one of the chips 68 through the metal plug 5c in the one of the chips 68, and can be connected to the contact point, at the bottom of the through via 170d, of the interconnect or metal trace 35c in the one of the chips 68 through the metal plug 5d in the one of the chips 68. The metal interconnect 1b can be connected to the contact point, at the bottom of the through via 170f, of the interconnect or metal trace 35b in the one of the chips 68 through the metal plug 5f in the one of the chips 68, can be connected to the contact point(s), at the bottom of the through via 170g, of the interconnect or metal trace 35e in the one of the chips 68 through the metal plug 5g in the one of the chips 68, and can be connected to the interconnect or metal trace 35a on the supporter 804 through the metal plug 5g. The metal interconnect 1a can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68. The metal interconnect 1b can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68.


Accordingly, one of the semiconductor devices 36 in one of the chips 68 can be connected to another one of the semiconductor devices 36 in the one of the chips 68 or in another one of the chips 68 through one of the metal interconnects 1, such as 1a or 1b, and can be connected to a contact point, at a bottom of one of the through vias 170v (such as the through via 170a), of the conductive layer 18 in the carrier 11 through the one of the metal interconnects 1. Each of the metal interconnects 1 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 128, after forming the structure shown in FIG. 127, the following steps can be subsequently performed as illustrated in FIGS. 27-81, and then a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555j and 555k.


Alternatively, before the singulation process, multiple metal plugs or vias can be formed in multiple openings in the substrate 10 and the dielectric layer 12 of the carrier 11, passing through the substrate 10 and the dielectric layer 12, and connected to the conductive layer 18 of the carrier 11. The metal plugs or vias may include or can be copper, aluminum, gold, or nickel. Alternatively, the metal plugs or vias may further include titanium, a titanium-tungsten alloy, titanium nitride, tantalum, tantalum nitride, a titanium-copper alloy, or chromium. Next, multiple metal traces can be formed at a bottom side of the substrate 10 and connected to the conductive layer 18 of the carrier 11 through the metal plugs or vias. Each of the metal traces may include a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or a titanium-copper alloy under the bottom side of the substrate 10, and an electroplated metal layer under the layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, or a titanium-copper alloy. The electroplated metal layer may include or can be a layer of copper, gold, aluminum, or nickel. Next, multiple passive components, such as capacitors, inductors or resistors, can be attached to the bottom side of the substrate 10 and boned with the metal traces using solders. The solders may include bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-silver-copper alloy, a tin-gold alloy, or a tin-copper alloy. After the passive components are boned with the metal traces, the singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as the system-in packages or multichip modules 555j and 555k.


Accordingly, the system-in package or multichip module 555j may have one of the passive components that has a first terminal connected to the metal plug 5a as shown in FIG. 127 through, in sequence, one of the solders, one of the metal traces at the bottom side of the substrate 10, one of the metal plugs or vias in the substrate 10, and a metal interconnect of the conductive layer 18 at the top side of the substrate 10, and has a second terminal connected to one of the metal joints 89, which can be connected to the metal plug 5f or 5g as shown in FIG. 127, through, in sequence, another one of the solders, another one of the metal traces at the bottom side of the substrate 10, another one of the metal plugs or vias in the substrate 10, and another metal interconnect of the conductive layer 18 at the top side of the substrate 10.


Alternatively, the system-in package or multichip module 555j may have one of the passive components that has a first terminal connected to one of the metal joints 89, which can be connected to the metal plug 5c or 5d as shown in FIG. 127, through, in sequence, one of the solders, one of the metal traces at the bottom side of the substrate 10, one of the metal plugs or vias in the substrate 10, and a metal interconnect of the conductive layer 18 at the top side of the substrate 10, and has a second terminal connected to another one of the metal joints 89, which can be connected to the metal plug 5f or 5g as shown in FIG. 127, through, in sequence, another one of the solders, another one of the metal traces at the bottom side of the substrate 10, another one of the metal plugs or vias in the substrate 10, and another metal interconnect of the conductive layer 18 at the top side of the substrate 10.


The system-in package or multichip module 555j can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 129, the system-in package or multichip module 555j can be bonded with a top side of a carrier 176 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, an under fill 174 can be formed between the polymer layer 136 of the system-in package or multichip module 555j and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, multiple solder balls 178 can be formed on a bottom side of the carrier 176. The specifications of the carrier 176, the under fill 174, and the solder balls 178 shown in FIG. 129 can be referred to as the specifications of the carrier 176, the under fill 174, and the solder balls 178 as illustrated in FIG. 83, respectively.



FIG. 130 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure shown in FIG. 127, the steps as illustrated in FIGS. 27-79 can be subsequently performed. Next, forming metal bumps 668 on the polymer layer 136 and on the contact points, at the bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 can be referred to as the steps illustrated in FIG. 84. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 555m. In the system-in package or multichip module 555m, each of the interconnects 3 can be connected to one or more of the metal bumps 668.


The system-in package or multichip module 555m can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 131, the system-in package or multichip module 555m can be bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Alternatively, the metal joints 180 can be a gold layer having a thickness between 0.1 and 10 micrometers. Next, the under fill 174 illustrated in FIG. 83 can be formed between the polymer layer 136 of the system-in package or multichip module 555m and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 128-131 can be omitted. In this case, the polymer layer 136 is formed on the surfaces 223, 225, 227 and 139s, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIG. 132 shows a multichip package 566b including a system-in package or multichip module 555n connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps. After forming the structure shown in FIG. 127, the steps as illustrated in FIGS. 27-76 can be subsequently performed. Next, forming an insulating or dielectric layer 122 on the ground or polished surfaces of the layers 125a and 125b, on the ground or polished surface 227 of the conduction layer 125c, and on the exposed top surface 139s of the dielectric layer 139, forming multiple metal interconnects or traces 300 on the insulating or dielectric layer 122 and on multiple regions, exposed by multiple openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3, and forming a polymer layer 136 on the insulating or dielectric layer 122 and on the metal interconnects or traces 300 can be referred to as the steps illustrated in FIG. 86. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers, and multiple openings 136a in the polymer layer 136 expose multiple contact points of the metal interconnects or traces 300. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as the system-in package or multichip module 555n.


Next, a plurality of the system-in package or multichip module 555n can be joined with the carrier 176 shown in FIG. 83 by, e.g., forming a glue layer 182 with a thickness between 20 and 150 micrometers on the top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 555n to the top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, can be wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 555n can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 can be formed on the plurality of the system-in package or multichip module 555n, on the top side of the carrier 176 and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 555n, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176. Thereafter, a singulation process can be performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566b. The multichip package 566b can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178.



FIGS. 133-136 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 133, after forming the structure illustrated in FIG. 120, the dielectric layer 50 formed on the layers 18, 26 and 34 and on the top surface of the dielectric layer 60 is etched away, and a top portion of the dielectric layer 60 is etched away, which can be referred to as the steps illustrated in FIG. 89. Accordingly, the dielectric layer 50 at bottoms of the through vias 170v, on the top surface of the dielectric layer 60 and on a top surface of the interconnect or metal trace 35a over the supporter 804 is etched away, and the dielectric layer 50 remains on the sidewalls of the through vias 170v, so called as sidewall dielectric layers in the through vias 170v. The sidewall dielectric layers 50 are formed on the sidewalls of the through vias 170v in the chips 68 or in the dummy substrate(s) 62 and are enclosed by the semiconductor substrates 58 of the chips 68 or by the dummy substrate(s) 62. The dielectric layer 60 may have a remaining thickness T22 between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.05 and 2 micrometers, between 0.05 and 1 micrometers, between 0.05 and 0.5 micrometers, or between 0.05 and 0.3 micrometers.


Next, referring to FIG. 134, forming an adhesion/barrier layer 52 on the layers 18, 26 and 34 exposed by the through vias 170v, on the etched surface of the dielectric layer 60, on the sidewall dielectric layers 50, and on the interconnect or metal trace 35a that is on the supporter 804, forming a seed layer 54 on the adhesion/barrier layer 52, forming a photoresist layer 194 on the seed layer 54, forming multiple openings 194a in the photoresist layer 194, and forming a conduction layer 56 on multiple regions, exposed by the openings 194a in the layer 194, of the seed layer 54 can be referred to as the steps illustrated in FIG. 90.


Next, referring to FIG. 135, the photoresist layer 194 is removed using, e.g., an organic chemical solution. Next, the seed layer 54 not under the conduction layer 56 is removed by a suitable process, such as wet chemical etching process or dry plasma etching process. Next, the adhesion/barrier layer 52 not under the conduction layer 56 is removed by a suitable process, such as wet chemical etching process or dry plasma etching process. Accordingly, the layers 52, 54 and 56 over the dielectric layer 60 and over the through vias 170v compose multiple metal interconnects 1, including metal interconnects 1a and 1b, over the dielectric layer 60 and over the through vias 170v. The adhesion/barrier layer 52 and the seed layer 54 of the metal interconnects 1 over the dielectric layer 60 are not at any sidewall 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60, but under a bottom of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60. The sidewalls 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60 are not covered by the layers 52 and 54. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5c, 5d, 5f and 5g in the through vias 170a, 170c, 170d, 170f and 170g as shown in FIG. 133, respectively. Each of the metal plugs 5p in the chips 68 and in the separate dummy substrates 62 is enclosed by one of the sidewall dielectric layers 50 in the through vias 170v. The metal plug 5a is formed in one of the separate dummy substrates 62, and the metal plugs 5c, 5d, 5f and 5g are formed in the same chip 68. The supporter 804 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 804 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5g. These metal plugs 5p formed in the chips 68 and in the separate dummy substrates 62 can connect the metal interconnects 1 and the semiconductor devices 36 of the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11.


For example, one of the metal plugs 5p, such as the metal plug 5a, can be formed in one of the separate dummy substrates 62 and formed on a contact point of the conductive layer 18 at a bottom of one of the through vias 170v, such as the through via 170a. Another one of the metal plugs 5p, such as the metal plug 5c, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170c), of the interconnect or metal trace 35d in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5d, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170d), of the interconnect or metal trace 35c in the patterned metal layer 26 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5f, can be formed in one of the chips 68 and formed on a contact point, at a bottom of another one of the through vias 170v (such as the through via 170f), of the interconnect or metal trace 35b in the interconnection layer 34 of the one of the chips 68. Another one of the metal plugs 5p, such as the metal plug 5g, can be formed in one of the chips 68, formed on a contact point of the interconnect or metal trace 35a over a supporter (such as the supporter 804) that is between two lower left and right portions of the another one of the metal plugs 5p (such as the metal plug 5g), and formed on one or more contact points of the interconnect or metal trace 35e under one of the through vias 170v (such as the through via 170g).


One of the metal interconnects 1, such as 1a or 1b, can be formed over multiple of the separate dummy substrates 62, over multiple of the chips 68, across multiple edges of the multiple of the chips 68, and across multiple edges of the multiple of the separate dummy substrates 62. The metal interconnect 1a can be connected to the contact point, at the bottom of the through via 170a, of the conductive layer 18 through the metal plug 5a in one of the separate dummy substrates 62, can be connected to the contact point, at the bottom of the through via 170c, of the interconnect or metal trace 35d in one of the chips 68 through the metal plug 5c in the one of the chips 68, and can be connected to the contact point, at the bottom of the through via 170d, of the interconnect or metal trace 35c in the one of the chips 68 through the metal plug 5d in the one of the chips 68. The metal interconnect 1b can be connected to the contact point, at the bottom of the through via 170f, of the interconnect or metal trace 35b in the one of the chips 68 through the metal plug 5f in the one of the chips 68, can be connected to the contact point(s), at the bottom of the through via 170g, of the interconnect or metal trace 35e in the one of the chips 68 through the metal plug 5g in the one of the chips 68, and can be connected to the interconnect or metal trace 35a on the supporter 804 through the metal plug 5g. The metal interconnect 1a can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68. The metal interconnect 1b can be further connected to one or more of the semiconductor devices 36 in another one of chips 68 through one or more of the metal plugs 5p in the another one of chips 68.


Accordingly, one of the semiconductor devices 36 in one of the chips 68 can be connected to another one of the semiconductor devices 36 in the one of the chips 68 or in another one of the chips 68 through one of the metal interconnects 1, such as 1a or 1b, and can be connected to a contact point, at a bottom of one of the through vias 170v (such as the through via 170a), of the conductive layer 18 in the carrier 11 through the one of the metal interconnects 1. Each of the metal interconnects 1 can be a signal trace, a bit line, a clock bus, a power plane, a power bus, a power trace, a ground plane, a ground bus, or a ground trace.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 136, after forming the structure illustrated in FIG. 135, the steps as illustrated in FIGS. 92-103 can be subsequently performed to form multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555o and 555p.


In some cases, the system-in package or multichip module 555o may further include multiple metal plugs or vias in the carrier 11, multiple metal traces under the carrier 11, and multiple passive components under the carrier 11. The detailed description about the metal plugs or vias in the carrier 11 and about the metal traces under the carrier 11 can be referred to as those illustrated in FIG. 103. The passive components, such as capacitors, inductors, or resistors, can be boned with the metal traces using solders. One of the passive components can be connected to one of the metal plugs 5p, such as the metal plug 5a, 5c, 5d, 5f, or 5g, through, in sequence, one of the solders, one of the metal traces at a bottom side of the substrate 10, one of the metal plugs or vias in the substrate 10, and a metal interconnect of the conductive layer 18 at the top side of the substrate 10. The solders may include bismuth, indium, tin, a tin-lead alloy, a tin-silver alloy, a tin-silver-copper alloy, a tin-gold alloy, or a tin-copper alloy.


The system-in package or multichip module 555o can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 137, the system-in package or multichip module 555o is bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, the under fill 174 illustrated in FIG. 83 is formed between the polymer layer 136 of the system-in package or multichip module 555o and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, the solder balls 178 illustrated in FIG. 83 is formed on the bottom side of the carrier 176.



FIG. 138 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure illustrated in FIG. 135, the steps as illustrated in FIGS. 92-102 can be subsequently performed, and then the steps illustrated in FIGS. 78 and 79 can be subsequently performed. Next, forming metal bumps 668 on the polymer layer 136 and on the contact points, at the bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 can be referred to as the steps illustrated in FIG. 84. Next, a singulation process is performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 555q. In the system-in package or multichip module 555q, each of the interconnects 3 can be connected to one or more of the metal bumps 668.


The system-in package or multichip module 555q can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 139, the system-in package or multichip module 555q is bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Alternatively, the metal joints 180 can be a gold layer having a thickness between 0.1 and 10 micrometers. Next, the under fill 174 illustrated in FIG. 83 is formed between the polymer layer 136 of the system-in package or multichip module 555q and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 is formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 136-139 can be omitted. In this case, the polymer layer 136 is formed on the conduction layer 125c of the metal interconnects 3, on the etched surface of the dielectric layer 139, and in the gaps between the metal interconnects 3, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIG. 140 shows a multichip package 566c including a system-in package or multichip module 555r connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps. After forming the structure shown in FIG. 135, the steps as illustrated in FIGS. 92-101 can be subsequently performed. Next, forming an insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the etched surface of the dielectric layer 139, and in gaps between the metal interconnects 3, forming multiple metal interconnects or traces 300 on the insulating or dielectric layer 122 and on multiple regions, exposed by multiple openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3, and forming a polymer layer 136 on the insulating or dielectric layer 122 and on the metal interconnects or traces 300 can be referred to as the steps illustrated in FIG. 107. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers, and multiple openings 136a in the polymer layer 136 expose multiple contact points of the metal interconnects or traces 300. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as the system-in package or multichip module 555r.


Next, a plurality of the system-in package or multichip module 555r can be joined with the carrier 176 shown in FIG. 83 by, e.g., forming a glue layer 182 with a thickness between 20 and 150 micrometers on the top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 555r to the top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, can be wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 555r can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 can be formed on the plurality of the system-in package or multichip module 555r, on the top side of the carrier 176 and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 555r, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176. Thereafter, a singulation process can be performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566c. The multichip package 566c can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178.


Alternatively, the chips 68 illustrated in FIGS. 7-109 can be replaced with another type of chips 68 shown in FIG. 141J that further include insulating rings 500a thicker than shallow trench isolation (STI) 500b. FIGS. 141A-141J show a process for forming the another type of chips 68 according to an embodiment of the present disclosure. Referring to FIG. 141A, an insulating layer 301 having a thickness, e.g., between 10 and 250 nanometers can be formed on a semiconductor substrate 58 of a wafer 680. The semiconductor substrate 58 can be a silicon-germanium (SiGe) substrate, a gallium-arsenide (GaAs) substrate, or a silicon substrate with a thickness, e.g., greater than 100 micrometers, such as between 100 and 500 micrometers, and preferably between 150 and 250 micrometers or between 100 and 300 micrometers. The insulating layer 301, for example, can be composed of a pad oxide having a thickness between 1 and 20 nanometers on a top surface of the semiconductor substrate 58, and a silicon-nitride layer having a thickness between 10 and 200 nanometers on the pad oxide. After forming the insulating layer 301 on the top surface of the semiconductor substrate 58, a patterned photoresist layer 302 can be formed on the silicon-nitride layer of the insulating layer 301. Multiple openings 302a in the patterned photoresist layer 302 expose multiple regions of the silicon-nitride layer of the insulating layer 301.


Next, referring to FIG. 141B, multiple shallow trenches 303 can be formed in the semiconductor substrate 58 by removing the insulating layer 301 under the openings 302a and etching the semiconductor substrate 58 under the openings 302a, leading the shallow trenches 303 with a depth D10 in the semiconductor substrate 58, e.g., between 0.1 and 0.5 micrometers, and preferably between 0.15 and 0.4 micrometers.


Next, referring to FIG. 141C, the patterned photoresist layer 302 is removed using a chemical solution, and then a patterned photoresist layer 304 can be formed on the silicon-nitride layer of the insulating layer 301. Multiple ring-shaped openings 304a in the patterned photoresist layer 304 expose multiple ring-shaped regions of the silicon-nitride layer of the insulating layer 301.


Next, referring to FIG. 141D, multiple ring-shaped trenches 305 are formed in the semiconductor substrate 58 by removing the insulating layer 301 under the ring-shaped openings 304a and etching the semiconductor substrate 58 under the ring-shaped openings 304a, leading the ring-shaped trenches 305 with a depth D11 in the semiconductor substrate 58, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers. The ring-shaped trenches 305 can be like circular rings, oval rings, square rings, rectangle-shaped rings, or polygon-shaped rings.


Next, referring to FIGS. 141E and 141F, the patterned photoresist layer 304 is removed using a chemical solution. FIG. 141E shows a schematic top view of the trenches 303 and 305 as shown in FIG. 141F, and FIG. 141F can be a cross-sectional view cut along the line L-L shown in FIG. 141E. The shallow trenches 303 formed in the semiconductor substrate 58 are used to accommodate a shallow trench isolation (STI). The ring-shaped trenches 305 formed in the semiconductor substrate 58 are used to accommodate insulating rings. Each of the ring-shaped trenches 305 may have a transverse width W9 between an outer point on the outer periphery and an inner point, closest to the outer point, on the inner periphery, and the transverse width W9 can be between 0.1 and 20 micrometers, between 0.1 and 10 micrometers, between 0.1 and 5 micrometers, between 0.1 and 2 micrometers, or between 0.1 and 1 micrometers. A horizontal distance D12 between two opposite points on the outer periphery of each of the ring-shaped trenches 305 can be between 2 and 100 micrometers, between 2 and 50 micrometers, between 2 and 20 micrometers, between 2 and 10 micrometers, or between 2 and 5 micrometers. If the outer periphery is circle-shaped, the horizontal distance D12 is the diameter (width) of the circle-shaped outer periphery. Alternatively, if the outer periphery is oval-shaped, the horizontal distance D12 is the longest diameter (width) of the oval-shaped outer periphery.


Next, referring to FIG. 141G, an inorganic material 500, insulating material, can be formed on the silicon-nitride layer of the insulating layer 301 and in the trenches 303 and 305 by using a suitable process, such as chemical vapor deposition (CVD) process. The inorganic material 500 may include or can be silicon oxide or silicon nitride.


Next, referring to FIG. 141H, the inorganic material 500 outside the trenches 303 and 305 can be removed by a suitable process, such as chemical mechanical polishing (CMP) process, and all of the insulating layer 301 can be further etched away by using a chemical solution. Accordingly, the inorganic material 500 remains in the ring-shaped trenches 305, so called as insulating rings 500a, enclosing walls, and remains in the shallow trenches 303, so called as shallow trench isolation (STI) 500b. Each of the insulating rings 500a may include or can be silicon oxide or silicon nitride and may have a thickness T26, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers. The shallow trench isolation (STI) 500b may include or can be silicon oxide or silicon nitride and may have a thickness T25, e.g., between 0.1 and 0.5 micrometers, and preferably between 0.15 and 0.4 micrometers. A vertical distance D13 between a bottom of one of the insulating rings 500a and a bottom of the shallow trench isolation 500b can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Next, referring to FIG. 141I, multiple semiconductor devices 36 can be formed in and/or on the semiconductor substrate 58, and then multiple dielectric layers 42, 44, 46 and 48, multiple via plugs 26a and 34a, an interconnection layer 34, a patterned metal layer 26 and a passivation layer 24 can be formed over the top surface of the semiconductor substrate 58.


Next, referring to FIG. 141J, a singulation process can be performed to cut the semiconductor substrate 58 and the layers 24, 42, 44, 46 and 48 of the wafer 680 and to singularize multiple chips 68 (one of them is shown). Each of the chips 68 includes the previously described interconnects or metal traces 35a, 35b, 35c and 35d. The element of the chips 68 in FIG. 141J indicated by a same reference number as indicates the element of the chips 68 in FIG. 7 has a same material and spec as the element of the chips 68 illustrated in FIG. 7. The chips 68 shown in FIG. 141J are reverse arrangement of the chips 68 shown in FIG. 7.


Alternatively, each of the chips 72 illustrated in FIGS. 33-109 can be replaced with another type of chip 72a or 72b shown in FIG. 141K that further includes insulating rings 500a thicker than shallow trench isolation (STI) 500b. FIG. 141K shows cross-sectional views of chips 72a and 72b according to an embodiment of the present disclosure. The element of the chips 72a and 72b in FIG. 141K indicated by a same reference number as indicates the element of the chips 72 in FIG. 33 has a same material and spec as the element of the chips 72 illustrated in FIG. 33. The chips 72a and 72b shown in FIG. 141K are reverse arrangement of the chips 72 shown in FIG. 33. Referring to FIG. 141K, each of the chips 72a and 72b is provided with the semiconductor substrate 96, the insulating rings 500a, the shallow trench isolation (STI) 500b, the semiconductor devices 102, the passivation layer 74, the dielectric layers 82, 108, 104 and 100, the patterned metal layer 114, the interconnection layer 106, and the via plugs 106a and 114a. The steps of forming the insulating rings 500a in the ring-shaped trenches 305 in the semiconductor substrate 96 and forming the shallow trench isolation (STI) 500b in the shallow trenches 303 in the semiconductor substrate 96 can be referred to as the steps of forming the insulating rings 500a in the ring-shaped trenches 305 in the semiconductor substrate 58 and forming the shallow trench isolation (STI) 500b in the shallow trenches 303 in the semiconductor substrate 58 as illustrated in FIGS. 141A-141H. The specifications of the shallow trenches 303, the ring-shaped trenches 305, the insulating rings 500a, and the shallow trench isolation (STI) 500b can be referred to as the specifications of the shallow trenches 303, the ring-shaped trenches 305, the insulating rings 500a, and the shallow trench isolation (STI) 500b, respectively, illustrated in FIGS. 141A-141H.


In one case, the chip 72a may have different circuit designs from those of the chip 72b. Also, in another case, the chip 72a may have same circuit designs as those of the chip 72b. Alternatively, the chip 72a may have a different area (top surface) or size from that of the chip 72b. Also, in another case, the chip 72a may have a same area (top surface) or size as that of the chip 72b.


Alternatively, each of the chips 118 illustrated in FIGS. 57-109 can be replaced with another type of chip 118a or 118b shown in FIG. 141L that further includes insulating rings 500a thicker than shallow trench isolation (STI) 500b. FIG. 141L shows cross-sectional views of chips 118a and 118b according to an embodiment of the present disclosure. The element of the chips 118a and 118b in FIG. 141L indicated by a same reference number as indicates the element of the chips 118 in FIG. 57 has a same material and spec as the element of the chips 118 illustrated in FIG. 57. The chips 118a and 118b shown in FIG. 141L are reverse arrangement of the chips 118 shown in FIG. 57. Referring to FIG. 141L, each of the chips 118a and 118b is provided with the semiconductor substrate 124, the insulating rings 500a, the shallow trench isolation (STI) 500b, the semiconductor devices 13, the passivation layer 21, the dielectric layers 78, 28, 38 and 40, the patterned metal layer 19, the interconnection layer 17, and the via plugs 17a and 19a. The steps of forming the insulating rings 500a in the ring-shaped trenches 305 in the semiconductor substrate 124 and forming the shallow trench isolation (STI) 500b in the shallow trenches 303 in the semiconductor substrate 124 can be referred to as the steps of forming the insulating rings 500a in the ring-shaped trenches 305 in the semiconductor substrate 58 and forming the shallow trench isolation (STI) 500b in the shallow trenches 303 in the semiconductor substrate 58 as illustrated in FIGS. 141A-141H. The specifications of the shallow trenches 303, the ring-shaped trenches 305, the insulating rings 500a, and the shallow trench isolation (STI) 500b can be referred to as the specifications of the shallow trenches 303, the ring-shaped trenches 305, the insulating rings 500a, and the shallow trench isolation (STI) 500b, respectively, illustrated in FIGS. 141A-141H.


In one case, the chip 118a may have different circuit designs from those of the chip 118b. Also, in another case, the chip 118a may have same circuit designs as those of the chip 118b. Alternatively, the chip 118a may have a different area (top surface) or size from that of the chip 118b. Also, in another case, the chip 118a may have a same area (top surface) or size as that of the chip 118b.



FIGS. 142-181 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 142, multiple of the chips 68 illustrated in FIG. 141J and the previously described dummy substrate(s) 62 are joined with the carrier 11 using the layer 22, which can be referred to as the steps illustrated in FIGS. 1-9.


Next, referring to FIG. 143, an encapsulation/gap filling material 64, such as polysilicon, silicon oxide, or a polymer, can be formed on a backside of the semiconductor substrate 58 of each chip 68, on the dummy substrate(s) 62, and in the gaps 4 and 8, which can be referred to as the step illustrated in FIG. 10.


Next, referring to FIG. 144, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 are ground or polished by a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until all of the insulating rings 500a in the chips 68 have exposed bottom surfaces 500s, over which there are no portions of the semiconductor substrates 58.


Accordingly, the semiconductor substrate 58 of each of the chips 68 can be thinned to a thickness T1, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 68, after the grinding or polishing process, the insulating rings 500a and the semiconductor substrate 58 may have the same thickness T1. Preferably, each of the chips 68, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. After the grinding or polishing process, the dummy substrate(s) 62 can be thinned to a thickness T2, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 remaining in the gaps 4 and 8 may have a vertical thickness T3, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the ground or polished surface(s) 62s of the dummy substrate(s) 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The ground or polished surface(s) 62s may be substantially coplanar with the ground or polished surface 58s of each chip 68, with the ground or polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8, and with the exposed bottom surfaces 500s of the insulating rings 500a. In each chip 68, a vertical distance D14 between the ground or polished surface 58s of the semiconductor substrate 58 and the bottom of the shallow trench isolation 500b can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Alternatively, FIGS. 145 and 146 show another technique to form the structure illustrated in FIG. 144. Referring to FIG. 145, after forming the structure illustrated in FIG. 142, an encapsulation/gap filling material 64, such as polysilicon or silicon oxide, can be formed on the backside of the semiconductor substrate 58 of each chip 68, on the dummy substrate(s) 62, and in the gaps 4 and 8, and then a polymer 65, such as polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or molding compound, can be formed on the encapsulation/gap filling material 64 and in the gaps 4 and 8. The encapsulation/gap filling material 64 in the gaps 4 and 8 may have a vertical thickness T4, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers.


Next, referring to FIG. 146, a mechanical grinding process can be performed, e.g., by using an abrasive or grinding pad with water to grind the polymer 65, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 until all of the polymer 65 is removed and until a predetermined vertical thickness T5 of the encapsulation/gap filling material 64 in the gaps 4 and 8 is reached. The predetermined vertical thickness T5 can be, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers. The abrasive or grinding pad can be provided with rough grit having an average grain size, e.g., between 0.5 and 15 micrometers for performing the mechanical grinding process. In the step, the semiconductor substrate 58 of each chip 68 has portions vertically over the insulating rings 500a. Thereafter, a chemical-mechanical-polishing (CMP) process can be performed, e.g., by using a polish pad with a slurry containing chemicals and a fine abrasive like silica with an average grain size, e.g., between 0.02 and 0.05 micrometers to polish the backside of the semiconductor substrate 58 of each chip 68, the dummy substrate(s) 62, and the encapsulation/gap filling material 64 in the gaps 4 and 8 until all of the insulating rings 500a in the chips 68 have the exposed bottom surfaces 500s, over which there are no portions of the semiconductor substrates 58, as shown in FIG. 144. Accordingly, after the grinding or polishing process, the semiconductor substrate 58 of each of the chips 68 can be thinned to the thickness T1 between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 68, after the grinding or polishing process, the insulating rings 500a and the semiconductor substrate 58 may have the same thickness T1.


After the chemical-mechanical-polishing (CMP) process, the polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the polished surface(s) 62s of the dummy substrate(s) 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The polished surface(s) 62s may be substantially coplanar with the polished surface 58s of each chip 68, with the polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8, and with the exposed bottom surfaces 500s of the insulating rings 500a. The polished surfaces 58s, 62s and 64s may have a micro-roughness, e.g., less than 20 nanometers. The chemical-mechanical-polishing (CMP) process, using a very fine abrasive like silica and a relatively weak chemical attack, will create the surfaces 58s, 62s and 64s almost without deformation and scratches, and this means that the chemical-mechanical-polishing (CMP) process is very well suited for the final polishing step, creating the clean surfaces 58s, 62s and 64s. Using the mechanical grinding process and the chemical-mechanical-polishing (CMP) process can be performed to create a very thin semiconductor substrate 10 of each chip 68. Accordingly, after the chemical-mechanical-polishing (CMP) process, each of the chips 68 can be thinned to a thickness, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, the dummy substrate(s) 62 can be thinned to the thickness T2, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 in the gaps 4 and 8 can be thinned to the thickness T3, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers.


Referring to FIG. 147, after forming the structure illustrated in FIG. 144, the dielectric layer 60 illustrated in FIG. 14 is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, on the exposed bottom surfaces 500s of the insulating rings 500a in the chips 68, and on the surface 64s of the encapsulation/gap filling material 64.


Next, referring to FIG. 148, multiple through vias 170v, including through vias 170a, 170b, 170c, 170d, 170e and 170f, can be formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68, which can be referred to as the steps illustrated in FIG. 15, but, in the embodiment, forming the through vias 170v (such as the vias 170b-170f) in the chips 68 includes etching through the semiconductor substrates 58 enclosed by the insulating rings 500a in the chips 68. Each of the through vias 170v in the chips 68 passes through one of the insulating rings 500a in the chips 68.


For example, the through vias 170b, 170c, 170d, 170e and 170f in one of the chips 68 pass through the insulating rings 500a in the one of the chips 68. Forming the through vias 170b, 170c, 170d, 170e and 170f includes a process of etching through the semiconductor substrate 58 enclosed by the insulating rings 500a in the one of the chips 68. Accordingly, each of the through vias 170b, 170c, 170d, 170e and 170f passes through the semiconductor substrate 58 of the one of the chips 68 and is enclosed by one of the insulating rings 500a in the one of the chips 68. The semiconductor substrate 58 of the one of the chips 68 has portions on inner surfaces of the insulating rings 500a enclosing the through vias 170b, 170c, 170d, 170e and 170f.


Each of the through vias 170v, such as the through via 170a, 170b, 170c, 170d, 170e, or 170f, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the through vias 170v, such as the through vias 170a-170f, please refer to the illustration in FIG. 15.


As shown in FIG. 148, a supporter 801 provided by the dielectric or insulating layer 20, the glue or silicon-oxide layer 22, and the layers 24, 42 and 44 of one of the chips 68 is between the conductive layer 18 of the carrier 11 and the interconnect or metal trace 35a in the interconnection layer 34 exposed by the through via 170e for the purpose of supporting the exposed interconnect or metal trace 35a. The supporter 801 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers.



FIG. 149 is a first example of a schematic top perspective view showing the through via 170e, the insulating ring 500a enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 148. The schematic top perspective view shown in FIG. 149 is similar to the schematic top perspective view shown in FIG. 16 except that the through via 170e shown in FIG. 149 is formed within one of the insulating rings 500a in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIGS. 148 and 149, please refer to the illustration in FIGS. 15 and 16.



FIG. 150 is a second example of a schematic top perspective view showing the through via 170e, the insulating ring 500a enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 148. The schematic top perspective view shown in FIG. 150 is similar to the schematic top perspective view shown in FIG. 17 except that the through via 170e shown in FIG. 150 is formed within one of the insulating rings 500a in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIGS. 148 and 150, please refer to the illustration in FIGS. 15 and 17.



FIG. 151 is a third example of a schematic top perspective view showing the through via 170e, the insulating ring 500a enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 148. The schematic top perspective view shown in FIG. 151 is similar to the schematic top perspective view shown in FIG. 18 except that the through via 170e shown in FIG. 151 is formed within one of the insulating rings 500a in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIGS. 148 and 151, please refer to the illustration in FIGS. 15 and 18.



FIG. 152 is a fourth example of a schematic top perspective view showing the through via 170e, the insulating ring 500a enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 148. The schematic top perspective view shown in FIG. 152 is similar to the schematic top perspective view shown in FIG. 16A except that the through via 170e shown in FIG. 152 is formed within one of the insulating rings 500a in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIG. 152, please refer to the illustration in FIG. 16A.


Referring to FIG. 153, after forming the structure illustrated in FIG. 148, a photoresist layer 168 is formed on the dielectric layer 60, and multiple openings 168a in the photoresist layer 168 expose the dielectric layer 60 and the through vias 170v. The photoresist layer 168 may have a thickness, e.g., between 0.5 and 30 micrometers.


Next, referring to FIG. 154, multiple trenches 60t are formed in the dielectric layer 60 by etching the dielectric layer 60 under the openings 168a to a depth D3, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers, using, e.g., an anisotropic plasma etching process. After the etching process, the dielectric layer 60 under the trenches 60t has a remaining thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Alternatively, an etching-stop technique may be applied to the process of forming the trenches 60t in the dielectric layer 60. In this case, the dielectric layer 60 may include a first silicon-oxide layer on the surfaces 58s, 62s, 64s and 500s shown in FIG. 144, a silicon-oxynitride layer, used as an etch stop layer, on the first silicon-oxide layer, and a second silicon-oxide layer having a thickness, e.g., between 0.1 and 5 micrometers or between 0.3 and 1.5 micrometers on the silicon-oxynitride layer. The trenches 60t can be formed in the dielectric layer 60 by etching the second silicon-oxide layer of the dielectric layer 60 under the openings 168a in the photoresist layer 168 until the silicon-oxynitride layer of the dielectric layer 60 is exposed by the openings 168a. Accordingly, the trenches 60t are formed in the second silicon-oxide layer of the dielectric layer 60, and the remaining dielectric layer 60, composed of the silicon-oxynitride layer and the first silicon-oxide layer, under the trenches 60t has a thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers.


Next, referring to FIG. 155, the photoresist layer 168 is removed by using, e.g., an organic chemical. The trenches 60t formed in the dielectric layer 60 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. FIG. 156 is an example of a schematic top perspective view showing the trenches 60t and the through vias 170v shown in FIG. 155, and FIG. 155 is a cross-sectional view cut along the line D-D shown in FIG. 156.


Alternatively, the trenches 60t illustrated in FIG. 155 can be formed in the dielectric layer 60 before the through vias 170v illustrated in FIG. 148 are formed in the chips 68 and in the dummy substrate(s) 62. Specifically, after the dielectric layer 60 is formed on the surfaces 58s, 62s, 64s and 500s as shown in FIG. 147, the trenches 60t illustrated in FIG. 155 are formed in the dielectric layer 60, and then the through vias 170v illustrated in FIG. 148 are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68.


Alternatively, referring to FIG. 155A, the dielectric layer 60, the trenches 60t, and the through vias 170v as shown in FIG. 155 can be formed by the following steps. After forming the structure illustrated in FIG. 144, an insulating layer 60a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C1, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, on the exposed bottom surfaces 500s of the insulating rings 500a in the chips 68, and on the surface 64s of the encapsulation/gap filling material 64 as shown in FIG. 144.


Next, a polymer layer 60b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 60a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form the trenches 60t, exposing the insulating layer 60a, in the polymer layer 60b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 60b during the exposure process. Next, the polymer layer 60b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 60b after being cured or heated has a thickness C2, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


Next, a photoresist layer is formed on the insulating layer 60a exposed by the trenches 60t and on the polymer layer 60b, and multiple openings in the photoresist layer expose the insulating layer 60a at bottoms of the trenches 60t. Next, the insulating layer 60a under the openings in the photoresist layer is removed using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 62 under the openings in the photoresist layer and the chips 68 under the openings in the photoresist layer are etched away until predetermined regions of the layers 26 and 34 in the chips 68 and predetermined regions of the conductive layer 18 in the carrier 11 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 170v, including the through vias 170a, 170b, 170c, 170d, 170e and 170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68. The specifications of the through vias 170v and the supporter 801 shown in FIG. 155A can be referred to as the specifications of the through vias 170v and the supporter 801, respectively, illustrated in FIGS. 148-152.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 60 also can be provided with the insulating layer 60a and the polymer layer 60b on the insulating layer 60a. The trenches 60t in the polymer layer 60b expose the insulating layer 60a and are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 170v are formed under the trenches 60t. Also, FIG. 156 can be an example of a schematic top perspective view showing the trenches 60t and the through vias 170v shown in FIG. 155A, and FIG. 155A also can be a cross-sectional view cut along the line D-D shown in FIG. 156.


Referring to FIG. 157, after forming the structure illustrated in FIG. 155 or in FIG. 155A, an adhesion/barrier layer 52 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, is formed on the layers 18, 26 and 34 exposed by the through vias 170v, on sidewalls of the through vias 170v, on sidewalls and bottoms of the trenches 60t (or on sidewalls of the trenches 60t in the polymer layer 60b and on a top surface of the insulating layer 60a at the bottoms of the trenches 60t), and on the interconnect or metal trace 35a that is on the supporter 801. The adhesion/barrier layer 52 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 54 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, is formed on the adhesion/barrier layer 52 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a conduction layer 56 is formed on the seed layer 54 using a suitable process, such as electroplating process. The specifications of the adhesion/barrier layer 52, the seed layer 54, and the conduction layer 56 shown in FIG. 157 can be referred to as the specifications of the adhesion/barrier layer 52, the seed layer 54, and the conduction layer 56 as illustrated in FIG. 25, respectively.


Next, referring to FIG. 158, the layers 52, 54 and 56 are ground or polished by using a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until the dielectric layer 60 has an exposed top surface 60s, over which there are no portions of the layers 52, 54 and 56, and the layers 52, 54 and 56 outside the trenches 60t are removed.


Accordingly, the exposed top surface 60s of the dielectric layer 60 can be substantially coplanar with the ground or polished surface 56s of the conduction layer 56 in the trenches 60t, and the surfaces 56s and 60s can be substantially flat. The adhesion/barrier layer 52 and the seed layer 54 are at sidewalls and a bottom of the conduction layer 56 in the trenches 60t, and the sidewalls and the bottom of the conduction layer 56 in the trenches 60t are covered by the adhesion/barrier layer 52 and the seed layer 54.


After the layers 52, 54 and 56 are ground or polished, the dielectric layer 60 has a thickness, between the exposed top surface 60s and the surface 58s or 62s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 147-155. Alternatively, after the layers 52, 54 and 56 are ground or polished, the polymer layer 60b of the dielectric layer 60 has a thickness, between the exposed top surface 60s of the polymer layer 60b and the top surface of the insulating layer 60a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layer 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 155A.


In a first alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t (or on the sidewalls of the trenches 60t in the polymer layer 60b and on the top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the sidewalls of the through vias 170v, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 147-155. Alternatively, the electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layers 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 155A.


In a second alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t (or on the sidewalls of the trenches 60t in the polymer layer 60b and on the top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the sidewalls of the through vias 170v, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 147-155. Alternatively, the electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layers 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 155A.


In a third alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t (or on the sidewalls of the trenches 60t in the polymer layer 60b and on the top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the sidewalls of the through vias 170v, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 147-155. Alternatively, the electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layers 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 155A.


After the layers 52, 54 and 56 are ground or polished, the layers 52, 54 and 56 in the trenches 60t compose multiple metal interconnects (or damascene metal traces) 1, including metal interconnects (or damascene metal traces) 1a and 1b, in the trenches 60t. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f as shown in FIG. 148, respectively. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The metal interconnects 1, such as 1a and 1b, in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e.


Each of the metal plugs 5p in the chips 68 passes through one of the insulating rings 500a in the chips 68. For example, the metal plugs 5b, 5c, 5d, 5e and 5f in one of the chips 68 pass through the insulating rings 500a in the one of the chips 68. Specifically, each of the metal plugs 5b, 5c, 5d, 5e and 5f passes through the semiconductor substrate 58 of the one of the chips 68 and is enclosed by one of the insulating rings 500a in the one of the chips 68. The semiconductor substrate 58 of the one of the chips 68 has portions on inner surfaces of the insulating rings 500a enclosing the metal plugs 5b, 5c, 5d, 5e and 5f. For more detailed description about the metal plugs 5p (including the metal plugs 5a-5f) and the metal interconnects 1 (including the metal interconnects 1a and 1b) shown in FIG. 158, please refer to the illustration in FIG. 26.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 159, after forming the structure illustrated in FIG. 158, the insulating or dielectric layer 66 illustrated in FIG. 27 is formed on the ground or polished surface 56s of the conduction layer 56 and on the exposed top surface 60s of the dielectric layer 60. Next, multiple chips 72, each of which is like the chip 72a or 72b illustrated in FIG. 141K, and the previously described dummy substrate(s) 165 are placed over the layer 116, which can be referred to as the steps illustrated in FIGS. 28-35. The arrangement of placing the chips 72 and the dummy substrate(s) 165 over the insulating or dielectric layer 66, in the embodiment, can be referred to as that of placing the chips 72 and the dummy substrate(s) 165 over the insulating or dielectric layer 66 as illustrated in FIG. 34 or 35.


Next, referring to FIG. 160, an encapsulation/gap filling material 98 is formed on a backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165, and in the gaps 4a and 8a. Next, the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 are ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching, until all of the insulating rings 500a in the chips 72 have exposed bottom surfaces 500t, over which there are no portions of the semiconductor substrates 96. The steps of forming the encapsulation/gap filling material 98 and grinding or polishing the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 illustrated in FIG. 160 can be referred to as the steps of forming the encapsulation/gap filling material 64 and grinding or polishing the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 as illustrated in FIGS. 143-146. The encapsulation/gap filling material 98 can be polysilicon, silicon oxide, or a polymer.


Accordingly, the semiconductor substrate 96 of each of the chips 72 can be thinned to a thickness T8, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 72, after the grinding or polishing process, the insulating rings 500a and the semiconductor substrate 96 may have the same thickness T8. Preferably, each of the chips 72, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers.


After the grinding or polishing process, the dummy substrate(s) 165 can be thinned to a thickness T9, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 98 remaining in the gaps 4a and 8a may have a vertical thickness T10, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 96s of the semiconductor substrate 96, at the backside of each chip 72, and the ground or polished surface(s) 165s of the dummy substrate(s) 165 can be substantially flat and not covered by the encapsulation/gap filling material 98. The ground or polished surface(s) 165s may be substantially coplanar with the ground or polished surface 96s of each chip 72, with the ground or polished surface 98s of the encapsulation/gap filling material 98 in the gaps 4a and 8a, and with the exposed bottom surfaces 500t of the insulating rings 500a in the chips 72. In each chip 72, a vertical distance D15 between the ground or polished surface 96s of the semiconductor substrate 96 and the bottom of the shallow trench isolation 500b can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Referring to FIG. 161, after forming the structure illustrated in FIG. 160, the dielectric layer 88 illustrated in FIG. 40 is formed on the surface 96s of the semiconductor substrate 96 of each chip 72, on the surface(s) 165s of the dummy substrate(s) 165, on the exposed bottom surfaces 500t of the insulating rings 500a in the chips 72, and on the surface 98s of the encapsulation/gap filling material 98.


Next, referring to FIG. 162, multiple through vias 164v, including through vias 164a, 164b, 164c, 164d and 164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72, which can be referred to as the steps illustrated in FIG. 41, but, in the embodiment, forming the through vias 164v (such as the vias 164b-164e) in the chips 72 includes etching through the semiconductor substrates 96 enclosed by the insulating rings 500a in the chips 72. Each of the through vias 164v in the chips 72 passes through one of the insulating rings 500a in the chips 72. For example, the through vias 164b and 164c in the left one of the chips 72 pass through the insulating rings 500a in the left one of the chips 72, and the through vias 164d and 164e in the middle one of the chips 72 pass through the insulating rings 500a in the middle one of the chips 72.


Forming the through vias 164b, 164c, 164d and 164e includes a process of etching through the semiconductor substrates 96 enclosed by the insulating rings 500a. Particularly, forming the through via 164c or 164e includes a process of etching away the whole portion, enclosed by one of the insulating rings 500a, of the semiconductor substrate 96. Accordingly, the through vias 164b and 164c pass through the semiconductor substrate 96 in the left one of the chips 72 and are enclosed by the insulating rings 500a in the left one of the chips 72, and the through vias 164d and 164e pass through the semiconductor substrate 96 in the middle one of the chips 72 and are enclosed by the insulating rings 500a in the middle one of the chips 72. The semiconductor substrate 96 of the left one of the chips 72 has a portion on an inner surface of the insulating ring 500a enclosing the through via 164b in the left one of the chips 72, and the semiconductor substrate 96 of the middle one of the chips 72 has a portion on an inner surface of the insulating ring 500a enclosing the through via 164d in the middle one of the chips 72. The insulating ring 500a enclosing the through via 164c is at the sidewall of the through via 164c and exposed by the through via 164c, and the insulating ring 500a enclosing the through via 164e is at the sidewall of the through via 164e and exposed by the through via 164e.


Each of the through vias 164v, such as the through via 164a, 164b, 164c, 164d, or 164e, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the through vias 164v, such as the through vias 164a-164e, please refer to the illustration in FIG. 41.


As shown in FIG. 162, a supporter 802 provided by the insulating or dielectric layer 66, the layer 116 and the layers 74, 82 and 108 of the middle one of the chips 72 is between the conduction layer 56 of the metal interconnect 1b and the interconnect or metal trace 55a in the interconnection layer 106 exposed by the through via 164e for the purpose of supporting the exposed interconnect or metal trace 55a. The supporter 802 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers.



FIG. 163 is a first example of a schematic top perspective view showing the through via 164e, the insulating ring 500a enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 162. The schematic top perspective view shown in FIG. 163 is similar to the schematic top perspective view shown in FIG. 42 except that the through via 164e shown in FIG. 163 is formed within one of the insulating rings 500a in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIGS. 162 and 163, please refer to the illustration in FIGS. 41 and 42.



FIG. 164 is a second example of a schematic top perspective view showing the through via 164e, the insulating ring 500a enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 162. The schematic top perspective view shown in FIG. 164 is similar to the schematic top perspective view shown in FIG. 43 except that the through via 164e shown in FIG. 164 is formed within one of the insulating rings 500a in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIGS. 162 and 164, please refer to the illustration in FIGS. 41 and 43.



FIG. 165 is a third example of a schematic top perspective view showing the through via 164e, the insulating ring 500a enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 162. The schematic top perspective view shown in FIG. 165 is similar to the schematic top perspective view shown in FIG. 44 except that the through via 164e shown in FIG. 165 is formed within one of the insulating rings 500a in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIGS. 162 and 165, please refer to the illustration in FIGS. 41 and 44.



FIG. 166 is a fourth example of a schematic top perspective view showing the through via 164e, the insulating ring 500a enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 162. The schematic top perspective view shown in FIG. 166 is similar to the schematic top perspective view shown in FIG. 42A except that the through via 164e shown in FIG. 166 is formed within one of the insulating rings 500a in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIG. 166, please refer to the illustration in FIG. 42A.


Referring to FIG. 167, after forming the structure illustrated in FIG. 162, multiple trenches 88t are formed in the dielectric layer 88. The trenches 88t in the dielectric layer 88 have a depth D6, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers. The dielectric layer 88 under the trenches 88t has a remaining thickness T13, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers. The steps of forming the trenches 88t in the dielectric layer 88 can be referred to as the steps of forming the trenches 60t in the dielectric layer 60 as illustrated in FIGS. 153-155. The trenches 88t formed in the dielectric layer 88 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. FIG. 168 is an example of a schematic top perspective view showing the trenches 88t and the through vias 164v shown in FIG. 162, and FIG. 162 is a cross-sectional view cut along the line H-H shown in FIG. 168.


Alternatively, the trenches 88t illustrated in FIG. 167 can be formed in the dielectric layer 88 before the through vias 164v illustrated in FIG. 162 are formed in the chips 72 and in the dummy substrate(s) 165. Specifically, after the dielectric layer 88 is formed on the surfaces 96s, 98s, 165s and 500t as shown in FIG. 161, the trenches 88t illustrated in FIG. 167 are formed in the dielectric layer 88, and then the through vias 164v illustrated in FIG. 162 are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72.


Alternatively, referring to FIG. 167A, the dielectric layer 88, the trenches 88t, and the through vias 164v as shown in FIG. 167 can be formed by the following steps. After forming the structure illustrated in FIG. 160, an insulating layer 88a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C3, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 96s of the semiconductor substrate 96 of each chip 72, on the surface(s) 165s of the dummy substrate(s) 165, on the exposed bottom surfaces 500t of the insulating rings 500a in the chips 72, and on the surface 98s of the encapsulation/gap filling material 98 as shown in FIG. 160.


Next, a polymer layer 88b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 88a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form the trenches 88t, exposing the insulating layer 88a, in the polymer layer 88b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 88b during the exposure process. Next, the polymer layer 88b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 88b after being cured or heated has a thickness C4, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


Next, a photoresist layer is formed on the insulating layer 88a exposed by the trenches 88t and on the polymer layer 88b, and multiple openings in the photoresist layer expose the insulating layer 88a at bottoms of the trenches 88t. Next, the insulating layer 88a under the openings in the photoresist layer is removed using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 165 under the openings in the photoresist layer and the chips 72 under the openings in the photoresist layer are etched away until predetermined regions of the layers 106 and 114 in the chips 72 and predetermined regions of the conduction layer 56 of the metal interconnects 1 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 164v, including the through vias 164a, 164b, 164c, 164d and 164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 106 and 114 of the chips 72. The specifications of the through vias 164v and the supporter 802 shown in FIG. 167A can be referred to as the specifications of the through vias 164v and the supporter 802, respectively, illustrated in FIGS. 162-166.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 88 also can be provided with the insulating layer 88a and the polymer layer 88b on the insulating layer 88a. The trenches 88t in the polymer layer 88b expose the insulating layer 88a and are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 164v are formed under the trenches 88t. Also, FIG. 168 can be an example of a schematic top perspective view showing the trenches 88t and the through vias 164v shown in FIG. 167A, and FIG. 167A also can be a cross-sectional view cut along the line H-H shown in FIG. 168.


Referring to FIG. 169, after forming the structure illustrated in FIG. 167 or in FIG. 167A, multiple metal interconnects (or damascene metal traces) 2, including metal interconnects (or damascene metal traces) 2a and 2b, are formed in the trenches 88t, and multiple metal plugs (or metal vias) 6p are formed in the through vias 164v. The metal plugs 6p include metal plugs (or metal vias) 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e, respectively. The metal plug 6a is formed in the dummy substrate 165, the metal plugs 6b and 6c are formed in the left one of the chips 72, and the metal plugs 6d and 6e are formed in the middle one of the chips 72. The supporter 802 and the interconnect or metal trace 55a, in the interconnection layer 106, on the supporter 802 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 106 is positioned, of the metal plug 6e.


The metal interconnects 2 in the trenches 88t and the metal plugs 6p in the through vias 164v can be formed by the following steps. First, the adhesion/barrier layer 92 illustrated in FIG. 51 is formed on the layers 56, 106 and 114 exposed by the through vias 164v, on sidewalls of the through vias 164v, on sidewalls and bottoms of the trenches 88t (or on sidewalls of the trenches 88t in the polymer layer 88b and on a top surface of the insulating layer 88a at the bottoms of the trenches 88t), and on the interconnect or metal trace 55a that is on the supporter 802 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the seed layer 94 illustrated in FIG. 51 is formed on the adhesion/barrier layer 92, in the through vias 164v, and in the trenches 88t by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the conduction layer 86 illustrated in FIG. 51 is formed on the seed layer 94, in the through vias 164v, and in the trenches 88t using a suitable process, such as electroplating process. Next, the layers 92, 94 and 86 are ground or polished by using a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until the dielectric layer 88 has an exposed top surface 88s, over which there are no portions of the layers 92, 94 and 86, and the layers 92, 94 and 86 outside the trenches 88t are removed. Accordingly, the layers 92, 94 and 86 in the trenches 88t compose the metal interconnects 2, including the metal interconnects 2a and 2b, in the trenches 88t. The layers 92, 94 and 86 in the through vias 164v compose the metal plugs 6p in the through vias 164v, including the metal plugs 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e, respectively. The adhesion/barrier layer 92 and the seed layer 94 are at sidewalls and a bottom of the conduction layer 86 in the trenches 88t, and the sidewalls and the bottom of the conduction layer 86 in the trenches 88t are covered by the adhesion/barrier layer 92 and the seed layer 94.


In a first alternative, after the layers 92, 94 and 86 are ground or polished, the adhesion/barrier layer 92 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t (or on the sidewalls of the trenches 88t in the polymer layer 88b and on the top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewalls of the through vias 164v, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 88t, and in the through vias 164v. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 161-167. Alternatively, the electroplated copper layer in the trenches 88t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 167A.


In a second alternative, after the layers 92, 94 and 86 are ground or polished, the adhesion/barrier layer 92 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t (or on the sidewalls of the trenches 88t in the polymer layer 88b and on the top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewalls of the through vias 164v, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 88t, and in the through vias 164v. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 161-167. Alternatively, the electroplated copper layer in the trenches 88t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 167A.


In a third alternative, after the layers 92, 94 and 86 are ground or polished, the adhesion/barrier layer 92 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t (or on the sidewalls of the trenches 88t in the polymer layer 88b and on the top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewalls of the through vias 164v, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 88t, and in the through vias 164v. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 161-167. Alternatively, the electroplated copper layer in the trenches 88t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 167A.


The exposed top surface 88s of the dielectric layer 88 can be substantially coplanar with the ground or polished surface 86s of the conduction layer 86 in the trenches 88t, and the surfaces 86s and 88s can be substantially flat. After the layers 92, 94 and 86 are ground or polished, the dielectric layer 88 may have a thickness, between the exposed top surface 88s and the surface 96s or 165s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 161-167. Alternatively, after the layers 92, 94 and 86 are ground or polished, the polymer layer 88b of the dielectric layer 88 may have a thickness, between the exposed top surface 88s of the polymer layer 88b and the top surface of the insulating layer 88a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 167A.


Each of the metal plugs 6p in the chips 72 passes through one of the insulating rings 500a in the chips 72. For example, the metal plugs 6b and 6c in the left one of the chips 72 pass through the insulating rings 500a in the left one of the chips 72, and the metal plugs 6d and 6e in the middle one of the chips 72 pass through the insulating rings 500a in the middle one of the chips 72. Specifically, each of the metal plugs 6b and 6c passes through the semiconductor substrate 96 of the left one of the chips 72 and is enclosed by one of the insulating rings 500a in the left one of the chips 72, and each of the metal plugs 6d and 6e passes through the semiconductor substrate 96 of the middle one of the chips 72 and is enclosed by one of the insulating rings 500a in the middle one of the chips 72. The semiconductor substrate 96 of the left one of the chips 72 has a portion on an inner surface of the insulating ring 500a enclosing the metal plug 6b, and the semiconductor substrate 96 of the middle one of the chips 72 has a portion on an inner surface of the insulating ring 500a enclosing the metal plug 6d. The insulating ring 500a enclosing the metal plug 6c is at the sidewall of the metal plug 6c and contacts the metal plug 6c, and the insulating ring 500a enclosing the metal plug 6e is at the sidewall of the metal plug 6e and contacts the metal plug 6e. For more detailed description about the metal plugs 6p (including the metal plugs 6a-6e) and the metal interconnects 2 (including the metal interconnects 2a and 2b) shown in FIG. 169, please refer to the illustration in FIG. 52.


Alternatively, the element 72 not only can indicate a chip, but also can indicate a wafer. When the element 72 is a wafer, the element 68 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 170, after forming the structure illustrated in FIG. 169, the insulating or dielectric layer 120 illustrated in FIG. 53 is formed on the ground or polished surface 86s of the conduction layer 86 and on the exposed top surface 88s of the dielectric layer 88. Next, multiple chips 118, each of which is like the chip 118a or 118b illustrated in FIG. 141L, and the previously described dummy substrate(s) 158 are placed over the layer 140, which can be referred to as the steps illustrated in FIGS. 54-59. The arrangement of placing the chips 118 and the dummy substrate(s) 158 over the insulating or dielectric layer 120, in the embodiment, can be referred to as that of placing the chips 118 and the dummy substrate(s) 158 over the insulating or dielectric layer 120 as illustrated in FIG. 58 or 59.


Next, referring to FIG. 171, an encapsulation/gap filling material 138 is formed on a backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158, and in the gaps 4b and 8b. Next, the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 are ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching, until all of the insulating rings 500a in the chips 118 have exposed bottom surfaces 500u, over which there are no portions of the semiconductor substrates 124. The steps of forming the encapsulation/gap filling material 138 and grinding or polishing the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 illustrated in FIG. 171 can be referred to as the steps of forming the encapsulation/gap filling material 64 and grinding or polishing the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 as illustrated in FIGS. 143-146. The encapsulation/gap filling material 138 can be polysilicon, silicon oxide, or a polymer.


Accordingly, the semiconductor substrate 124 of each of the chips 118 can be thinned to a thickness T15, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 118, after the grinding or polishing process, the insulating rings 500a and the semiconductor substrate 124 may have the same thickness T15. Preferably, each of the chips 118, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers.


After the grinding or polishing process, the dummy substrate(s) 158 can be thinned to a thickness T16, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 138 remaining in the gaps 4b and 8b may have a vertical thickness T17, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 124s of the semiconductor substrate 124, at the backside of each chip 118, and the ground or polished surface(s) 158s of the dummy substrate(s) 158 can be substantially flat and not covered by the encapsulation/gap filling material 138. The ground or polished surface(s) 158s may be substantially coplanar with the ground or polished surface 124s of each chip 118, with the ground or polished surface 138s of the encapsulation/gap filling material 138 in the gaps 4b and 8b, and with the exposed bottom surfaces 500u of the insulating rings 500a in the chips 118. In each chip 118, a vertical distance D16 between the ground or polished surface 124s of the semiconductor substrate 124 and the bottom of the shallow trench isolation 500b can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Referring to FIG. 172, after forming the structure illustrated in FIG. 171, the dielectric layer 139 illustrated in FIG. 64 is formed on the surface 124s of the semiconductor substrate 124 of each chip 118, on the surface(s) 158s of the dummy substrate(s) 158, on the exposed bottom surfaces 500u of the insulating rings 500a in the chips 118, and on the surface 138s of the encapsulation/gap filling material 138.


Next, referring to FIG. 173, multiple through vias 156v, including through vias 156a, 156b, 156c, 156d, 156e and 156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118, which can be referred to as the steps illustrated in FIG. 65, but, in the embodiment, forming the through vias 156v (such as the vias 156b-156f) in the chips 118 includes etching through the semiconductor substrates 124 enclosed by the insulating rings 500a in the chips 118. Each of the through vias 156v in the chips 118 passes through one of the insulating rings 500a in the chips 118. For example, the through vias 156b, 156c and 156d in the left one of the chips 118 pass through the insulating rings 500a in the left one of the chips 118 and the through vias 156e and 156f in the middle one of the chips 118 pass through the insulating rings 500a in the middle one of the chips 118.


Forming the through vias 156b, 156c, 156d, 156e and 156f includes a process of etching through the semiconductor substrates 124 enclosed by the insulating rings 500a. Particularly, forming the through via 156b includes a process of etching away the whole portion, enclosed by one of the insulating rings 500a, of the semiconductor substrate 124. Accordingly, the through vias 156b, 156c and 156d pass through the semiconductor substrate 124 in the left one of the chips 118 and are enclosed by the insulating rings 500a in the left one of the chips 118, and the through vias 156e and 156f pass through the semiconductor substrate 124 in the middle one of the chips 118 and are enclosed by the insulating rings 500a in the middle one of the chips 118. The semiconductor substrate 124 of the left one of the chips 118 has portions on inner surfaces of the insulating rings 500a enclosing the through vias 156c and 156d in the left one of the chips 118, and the semiconductor substrate 124 of the middle one of the chips 118 has portions on inner surfaces of the insulating rings 500a enclosing the through vias 156e and 156f in the middle one of the chips 118. The insulating ring 500a enclosing the through via 156b is at the sidewall of the through via 156b and exposed by the through via 156b. The insulating ring 500a enclosing the through via 156d has a portion at the sidewall of the through via 156d and exposed by the through via 156d. The insulating ring 500a enclosing the through via 156f has a portion at the sidewall of the through via 156f and exposed by the through via 156f.


Each of the through vias 156v, such as the through via 156a, 156b, 156c, 156d, 156e, or 156f, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the through vias 156v, such as the through vias 156a-156f, please refer to the illustration in FIG. 65.


As shown in FIG. 173, a supporter 803 provided by the insulating or dielectric layer 120, the layer 140, and the layers 21, 78 and 28 of the middle one of the chips 118 is between the conduction layer 86 of the metal interconnect 2b and the interconnect or metal trace 75a in the interconnection layer 17 exposed by the through via 156e for the purpose of supporting the exposed interconnect or metal trace 75a. The supporter 803 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers.



FIG. 174 is a first example of a schematic top perspective view showing the through via 156e, one of the insulating rings 500a in the middle one of the chips 118, and the interconnect or metal trace 75a in the middle one of the chips 118 as illustrated in FIG. 173. The schematic top perspective view shown in FIG. 174 is similar to the schematic top perspective view shown in FIG. 66 except that the through via 156e shown in FIG. 174 is formed within one of the insulating rings 500a. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIGS. 173 and 174, please refer to the illustration in FIGS. 65 and 66.



FIG. 175 is a second example of a schematic top perspective view showing the through via 156e, one of the insulating rings 500a in the middle one of the chips 118, and the interconnect or metal trace 75a as illustrated in FIG. 173. The schematic top perspective view shown in FIG. 175 is similar to the schematic top perspective view shown in FIG. 67 except that the through via 156e shown in FIG. 175 is formed within one of the insulating rings 500a. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIGS. 173 and 175, please refer to the illustration in FIGS. 65 and 67.



FIG. 176 is a third example of a schematic top perspective view showing the through via 156e, one of the insulating rings 500a in the middle one of the chips 118, and the interconnect or metal trace 75a as illustrated in FIG. 173. The schematic top perspective view shown in FIG. 176 is similar to the schematic top perspective view shown in FIG. 68 except that the through via 156e shown in FIG. 176 is formed within one of the insulating rings 500a. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIGS. 173 and 176, please refer to the illustration in FIGS. 65 and 68.



FIG. 177 is a fourth example of a schematic top perspective view showing the through via 156e, one of the insulating rings 500a in the middle one of the chips 118, and the interconnect or metal trace 75a as illustrated in FIG. 173. The schematic top perspective view shown in FIG. 177 is similar to the schematic top perspective view shown in FIG. 66A except that the through via 156e shown in FIG. 177 is formed within one of the insulating rings 500a. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIG. 177, please refer to the illustration in FIG. 66A.


Referring to FIG. 178, after forming the structure illustrated in FIG. 173, multiple trenches 139t are formed in the dielectric layer 139. The trenches 139t in the dielectric layer 139 have a depth D9, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers. The dielectric layer 139 under the trenches 139t has a remaining thickness T20, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers. The steps of forming the trenches 139t in the dielectric layer 139 can be referred to as the steps of forming the trenches 60t in the dielectric layer 60 as illustrated in FIGS. 153-155. The trenches 139t formed in the dielectric layer 139 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. FIG. 179 is an example of a schematic top perspective view showing the trenches 139t and the through vias 156v shown in FIG. 178, and FIG. 178 is a cross-sectional view cut along the line K-K shown in FIG. 179.


Alternatively, the trenches 139t illustrated in FIG. 178 can be formed in the dielectric layer 139 before the through vias 156v illustrated in FIG. 173 are formed in the chips 118 and in the dummy substrate(s) 158. Specifically, after the dielectric layer 139 is formed on the surfaces 124s, 138s, 158s, and 500u as shown in FIG. 172, the trenches 139t illustrated in FIG. 178 are formed in the dielectric layer 139, and then the through vias 156v illustrated in FIG. 173 are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118.


Alternatively, referring to FIG. 178A, the dielectric layer 139, the trenches 139t, and the through vias 156v as shown in FIG. 178 can be formed by the following steps. After forming the structure illustrated in FIG. 171, an insulating layer 139a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C5, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 124s of the semiconductor substrate 124 of each chip 118, on the surface(s) 158s of the dummy substrate(s) 158, on the exposed bottom surfaces 500u of the insulating rings 500a in the chips 118, and on the surface 138s of the encapsulation/gap filling material 138 as shown in FIG. 171.


Next, a polymer layer 139b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 139a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form the trenches 139t, exposing the insulating layer 139a, in the polymer layer 139b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 139b during the exposure process. Next, the polymer layer 139b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 139b after being cured or heated has a thickness C6, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


Next, a photoresist layer is formed on the insulating layer 139a exposed by the trenches 139t and on the polymer layer 139b, and multiple openings in the photoresist layer expose the insulating layer 139a at bottoms of the trenches 139t. Next, the insulating layer 139a under the openings in the photoresist layer is removed using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 158 under the openings in the photoresist layer and the chips 118 under the openings in the photoresist layer are etched away until predetermined regions of the layers 17 and 19 in the chips 118 and predetermined regions of the conduction layer 86 of the metal interconnects 2 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 156v, including the through vias 156a, 156b, 156c, 156d, 156e and 156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118. The specifications of the through vias 156v and the supporter 803 shown in FIG. 178A can be referred to as the specifications of the through vias 156v and the supporter 803, respectively, illustrated in FIGS. 173-177.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 139 also can be provided with the insulating layer 139a and the polymer layer 139b on the insulating layer 139a. The trenches 139t in the polymer layer 139b expose the insulating layer 139a and are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 156v are formed under the trenches 139t. Also, FIG. 179 can be an example of a schematic top perspective view showing the trenches 139t and the through vias 156v shown in FIG. 178A, and FIG. 178A also can be a cross-sectional view cut along the line K-K shown in FIG. 179.


Referring to FIG. 180, after forming the structure illustrated in FIG. 178 or in FIG. 178A, multiple metal interconnects (or damascene metal traces) 3, including metal interconnects (or damascene metal traces) 3a, 3b and 3c, are formed in the trenches 139t, and multiple metal plugs (or metal vias) 7p are formed in the through vias 156v. The metal plugs 7p include metal plugs (or metal vias) 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f, respectively. The metal plug 7a is formed in the dummy substrate 158, the metal plugs 7b, 7c and 7d are formed in the left one of the chips 118, and the metal plugs 7e and 7f are formed in the middle one of the chips 118. The supporter 803 and the interconnect or metal trace 75a, in the interconnection layer 17, on the supporter 803 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 17 is positioned, of the metal plug 7e.


The metal interconnects 3 in the trenches 139t and the metal plugs 7p in the through vias 156v can be formed by the following steps. First, the adhesion/barrier layer 125a illustrated in FIG. 75 is formed on the layers 17, 19 and 86 exposed by the through vias 156v, on sidewalls of the through vias 156v, on sidewalls and bottoms of the trenches 139t (or on sidewalls of the trenches 139t in the polymer layer 139b and on a top surface of the insulating layer 139a at the bottoms of the trenches 139t), and on the interconnect or metal trace 75a that is on the supporter 803 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the seed layer 125b illustrated in FIG. 75 is formed on the adhesion/barrier layer 125a, in the through vias 156v, and in the trenches 139t by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the conduction layer 125c illustrated in FIG. 75 is formed on the seed layer 125b, in the through vias 156v, and in the trenches 139t using a suitable process, such as electroplating process. Next, the layers 125a, 125b and 125c are ground or polished by using a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until the dielectric layer 139 has an exposed top surface 139s, over which there are no portions of the layers 125a, 125b and 125c, and the layers 125a, 125b and 125c outside the trenches 139t are removed. Accordingly, the layers 125a, 125b and 125c in the trenches 139t compose the metal interconnects 3, including the metal interconnects 3a, 3b and 3c, in the trenches 139t. The layers 125a, 125b and 125c in the through vias 156v compose the metal plugs 7p in the through vias 156v, including the metal plugs 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f, respectively. The adhesion/barrier layer 125a and the seed layer 125b are at sidewalls and a bottom of the conduction layer 125c in the trenches 139t, and the sidewalls and the bottom of the conduction layer 125c in the trenches 139t are covered by the adhesion/barrier layer 125a and the seed layer 125b.


In a first alternative, after the layers 125a, 125b and 125c are ground or polished, the adhesion/barrier layer 125a can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t (or on the sidewalls of the trenches 139t in the polymer layer 139b and on the top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewalls of the through vias 156v, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 139t, and in the through vias 156v. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 172-178. Alternatively, the electroplated copper layer in the trenches 139t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 178A.


In a second alternative, after the layers 125a, 125b and 125c are ground or polished, the adhesion/barrier layer 125a can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t (or on the sidewalls of the trenches 139t in the polymer layer 139b and on the top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewalls of the through vias 156v, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 139t, and in the through vias 156v. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers. The electroplated copper layer in the trenches 139t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 172-178. Alternatively, the electroplated copper layer in the trenches 139t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 178A.


In a third alternative, after the layers 125a, 125b and 125c are ground or polished, the adhesion/barrier layer 125a can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t (or on the sidewalls of the trenches 139t in the polymer layer 139b and on the top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewalls of the through vias 156v, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 139t, and in the through vias 156v. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers. The electroplated copper layer in the trenches 139t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 172-178. Alternatively, the electroplated copper layer in the trenches 139t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 178A.


The exposed top surface 139s of the dielectric layer 139 can be substantially coplanar with the ground or polished surface 227 of the conduction layer 125c in the trenches 139t, and the surfaces 139s and 227 can be substantially flat. After the layers 125a, 125b and 125c are ground or polished, the dielectric layer 139 may have a thickness, between the exposed top surface 139s and the surface 124s or 158s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 172-178. Alternatively, after the layers 125a, 125b and 125c are ground or polished, the polymer layer 139b of the dielectric layer 139 may have a thickness, between the exposed top surface 139s of the polymer layer 139b and the top surface of the insulating layer 139a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 178A.


Each of the metal plugs 7p in the chips 118 passes through one of the insulating rings 500a in the chips 118. For example, the metal plugs 7b, 7c and 7d in the left one of the chips 118 pass through the insulating rings 500a in the left one of the chips 118, and the metal plugs 7e and 7f in the middle one of the chips 118 pass through the insulating rings 500a in the middle one of the chips 118. Specifically, each of the metal plugs 7b, 7c and 7d passes through the semiconductor substrate 124 of the left one of the chips 118 and is enclosed by one of the insulating rings 500a in the left one of the chips 118, and each of the metal plugs 7e and 7f passes through the semiconductor substrate 124 of the middle one of the chips 118 and is enclosed by one of the insulating rings 500a in the middle one of the chips 118. The semiconductor substrate 124 of the left one of the chips 118 has portions on inner surfaces of the insulating rings 500a enclosing the metal plugs 7c and 7d, and the semiconductor substrate 124 of the middle one of the chips 118 has portions on inner surfaces of the insulating rings 500a enclosing the metal plugs 7e and 7f. The insulating ring 500a enclosing the metal plug 7b is at the sidewall of the metal plug 7b and contacts the metal plug 7b. The insulating ring 500a enclosing the metal plug 7d has a portion at and in contact with the sidewall of the metal plug 7d. The insulating ring 500a enclosing the metal plug 7f has a portion at and in contact with the sidewall of the metal plug 7f. For more detailed description about the metal plugs 7p (including the metal plugs 7a-7f) and the metal interconnects 3 (including the metal interconnects 3a, 3b and 3c) shown in FIG. 180, please refer to the illustration in FIG. 76.


Alternatively, the element 118 not only can indicate a chip, but also can indicate a wafer. When the element 118 is a wafer, the element 72 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 181, after forming the structure illustrated in FIG. 180, the following steps can be subsequently performed as illustrated in FIGS. 77-81, and then a singulation process is performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555s and 555t.


The system-in package or multichip module 555s can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 182, the system-in package or multichip module 555s is bonded with a top side of a carrier 176 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, an under fill 174 is formed between the polymer layer 136 of the system-in package or multichip module 555s and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, multiple solder balls 178 are formed on a bottom side of the carrier 176. The specifications of the carrier 176, the under fill 174, and the solder balls 178 shown in FIG. 182 can be referred to as the specifications of the carrier 176, the under fill 174, and the solder balls 178 as illustrated in FIG. 83, respectively.



FIG. 183 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure illustrated in FIG. 180, the steps as illustrated in FIGS. 77-79 can be subsequently performed. Next, forming metal bumps 668 on the polymer layer 136 and on the contact points, at the bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 can be referred to as the steps illustrated in FIG. 84. Next, a singulation process is performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 555u. In the system-in package or multichip module 555u, each of the interconnects 3 can be connected to one or more of the metal bumps 668.


The system-in package or multichip module 555u can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 184, the system-in package or multichip module 555u is bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Alternatively, the metal joints 180 can be a gold layer having a thickness between 0.1 and 10 micrometers. Next, the under fill 174 illustrated in FIG. 83 is formed between the polymer layer 136 of the system-in package or multichip module 555u and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 are formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 181-184 can be omitted. In this case, the polymer layer 136 is formed on the surfaces 223, 225, 227 and 139s, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIG. 185 shows a multichip package 566d including a system-in package or multichip module 555v connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps.


After forming the structure illustrated in FIG. 180, the steps illustrated in FIG. 86 are performed to form an insulating or dielectric layer 122 on the ground or polished surface 227 of the conduction layer 125c and on the exposed top surface 139s of the dielectric layer 139, to form multiple metal interconnects or traces 300 on the insulating or dielectric layer 122 and on multiple regions, exposed by multiple openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3, and to form a polymer layer 136 on the insulating or dielectric layer 122 and on the metal interconnects or traces 300. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers, and multiple openings 136a in the polymer layer 136 expose multiple contact points of the metal interconnects or traces 300. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize a plurality of the system-in package or multichip module 555v.


Next, the plurality of the system-in package or multichip module 555v are joined with a carrier 176 by, e.g., forming a glue layer 182 with a thickness between 20 and 150 micrometers on the top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 555v to a top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, are wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 555v can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 is formed on the plurality of the system-in package or multichip module 555v, on the top side of the carrier 176 and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 555v, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 are formed on the bottom side of the carrier 176. Thereafter, a singulation process is performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566d. The multichip package 566d can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178. The specifications of the carrier 176 shown in FIG. 185 can be referred to as the specifications of the carrier 176 as illustrated in FIG. 83.



FIGS. 186-207 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 186, after forming the structure illustrated in FIG. 144, a dielectric layer 60 having a thickness, e.g., between 0.1 and 100 micrometers, and preferably between 0.2 and 1.5 micrometers, between 1 and 5 micrometers, between 5 and 10 micrometers, or between 1 and 20 micrometers, is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, on the exposed bottom surfaces 500s of the insulating rings 500a in the chips 68, and on the surface 64s of the encapsulation/gap filling material 64 as shown in FIG. 144. Next, multiple through vias 170v, including through vias 170a, 170b, 170c, 170d, 170e and 170f, can be formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68. The steps of forming the through vias 170v in the chips 68 and in the dummy substrate(s) 62 illustrated in FIG. 186 can be referred to as the steps of forming the through vias 170v in the chips 68 and in the dummy substrate(s) 62 as illustrated in FIG. 15, but, in the embodiment, forming the through vias 170v in the chips 68 includes etching through the semiconductor substrates 58 enclosed by the insulating rings 500a in the chips 68. The specifications of the through vias 170v (including the vias 170a-170f), the insulating rings 500a enclosing the through vias 170v, and the supporter 801 shown in FIG. 186 can be referred to as the specifications of the through vias 170v (including the vias 170a-170f), the insulating rings 500a enclosing the through vias 170v, and the supporter 801, respectively, illustrated in FIGS. 148-152.


The dielectric layer 60 shown in FIG. 186, for example, can be an inorganic layer formed by a suitable process, such as chemical vapor deposition (CVD) process or plasma-enhanced chemical vapor deposition (PECVD) process. The inorganic layer may include or can be a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide on the surfaces 58s, 62s, 500s and 64s shown in FIG. 144. The inorganic layer may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.5 and 2 micrometers.


Alternatively, the dielectric layer 60 shown in FIG. 186 can be a polymer layer, such as a layer of polyimide, benzocyclobutane (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or epoxy, having a thickness between 3 and 100 micrometers, and preferably between 5 and 30 micrometers or between 10 and 50 micrometers, on the surfaces 58s, 62s, 500s and 64s shown in FIG. 144.


Alternatively, the dielectric layer 60 shown in FIG. 186 can be composed of an inorganic layer and a polymer layer on the inorganic layer. The inorganic layer can be formed on the surfaces 58s, 62s, 500s and 64s shown in FIG. 144 using a suitable process, such as chemical vapor deposition (CVD) process. The inorganic layer may include or can be a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide on the surfaces 58s, 62s, 500s and 64s shown in FIG. 144. The inorganic layer may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.5 and 2 micrometers. The polymer layer can be a layer of polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO) having a thickness between 3 and 100 micrometers, and preferably between 5 and 30 micrometers or between 10 and 50 micrometers, on the inorganic layer.


Next, referring to FIG. 187, an adhesion/barrier layer 52 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, can be formed on the layers 18, 26 and 34 exposed by the through vias 170v, on sidewalls of the through vias 170v, on the dielectric layer 60, and on the interconnect or metal trace 35a that is on the supporter 801. The adhesion/barrier layer 52 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 54 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, can be formed on the adhesion/barrier layer 52 and in the through vias 170v by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 194 can be formed on the seed layer 54 by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 194a, exposing multiple regions of the seed layer 54, in the photoresist layer 194. The patterned photoresist layer 194 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, a conduction layer 56 having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, can be formed on the regions, exposed by the openings 194a in the layer 194, of the seed layer 54 by using, e.g., an electroplating process. The specifications of the adhesion/barrier layer 52, the seed layer 54, and the conduction layer 56 shown in FIG. 187 can be referred to as the specifications of the adhesion/barrier layer 52, the seed layer 54, and the conduction layer 56 as illustrated in FIG. 90, respectively.


Next, referring to FIG. 188, the photoresist layer 194 is removed using, e.g., an organic chemical solution. Next, the seed layer 54 not under the conduction layer 56 is removed by using a wet etching process or a dry etching process. Next, the adhesion/barrier layer 52 not under the conduction layer 56 is removed by using a wet etching process or a dry etching process. Accordingly, the layers 52, 54 and 56 over the dielectric layer 60 and over the through vias 170v compose multiple metal interconnects 1, including metal interconnects 1a and 1b, over the dielectric layer 60 and over the through vias 170v. The adhesion/barrier layer 52 and the seed layer 54 of the metal interconnects 1 over the dielectric layer 60 are not at any sidewall 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60, but under a bottom of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60. The sidewalls 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60 are not covered by the layers 52 and 54. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f as shown in FIG. 186, respectively. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e.


Each of the metal plugs 5p in the chips 68 passes through one of the insulating rings 500a in the chips 68. For example, the metal plugs 5b, 5c, 5d, 5e and 5f in one of the chips 68 pass through the insulating rings 500a in the one of the chips 68. Specifically, each of the metal plugs 5b, 5c, 5d, 5e and 5f passes through the semiconductor substrate 58 of the one of the chips 68 and is enclosed by one of the insulating rings 500a in the one of the chips 68. The semiconductor substrate 58 of the one of the chips 68 has portions on inner surfaces of the insulating rings 500a enclosing the metal plugs 5b, 5c, 5d, 5e and 5f. For more detailed description about the metal plugs 5p (including the metal plugs 5a-5f) and the metal interconnects 1 (including the metal interconnects 1a and 1b) shown in FIG. 188, please refer to the illustration in FIG. 91.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Next, referring to FIG. 189, an insulating or dielectric layer 66 is formed on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in gaps between the metal interconnects 1. The insulating or dielectric layer 66, for example, may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in the gaps between the metal interconnects 1. The polymer layer on the conduction layer 56 may have a thickness, e.g., between 0.1 and 50 micrometers, and preferably between 1 and 30 micrometers, between 2 and 20 micrometers, or between 5 and 10 micrometers.


Alternatively, the insulating or dielectric layer 66 may include or can be an inorganic layer, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in the gaps between the metal interconnects 1. The inorganic layer on the conduction layer 56 may have a thickness, e.g., between 0.1 and 10 micrometers, and preferably between 0.1 and 1 micrometers, between 0.2 and 2 micrometers, between 0.3 and 3 micrometers, or between 0.5 and 5 micrometers.


Alternatively, referring to FIG. 190, the insulating or dielectric layer 66 as shown in FIG. 189 can be formed by the following steps. First, a polymer layer 66a, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), is formed on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in the gaps between the metal interconnects 1. Next, the polymer layer 66a is ground or polished by, e.g., a mechanical polishing process, a chemical-mechanical-polishing (CMP) process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the conduction layer 56 of the metal interconnects 1 has a top surface 56u not covered by the polymer layer 66a. Accordingly, the polymer layer 66a remains on the dielectric layer 60 and in the gaps between the metal interconnects 1 and has a thickness, e.g., greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers. The ground or polished surface 66s of the polymer layer 66a can be substantially flat and substantially coplanar with the top surface 56u of the conduction layer 56. Next, an inorganic layer 66b, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness, e.g., between 0.1 and 3 micrometers, and preferably between 0.2 and 1.5 micrometers, is formed on the top surface 56u of the conduction layer 56 and on the ground or polished surface 66s of the polymer layer 66a. Accordingly, the insulating or dielectric layer 66 as shown in FIG. 189 also can be provided with the polymer layer 66a and the inorganic layer 66b as shown in FIG. 190.


Referring to FIG. 191, after forming the insulating or dielectric layer 66, the dummy substrate 165 illustrated in FIG. 28 is joined with the insulating or dielectric layer 66 using the layer 116 illustrated in FIG. 28, which can be referred to as the steps illustrated in FIG. 28. Next, multiple openings 165a are formed in the dummy substrate 165 and expose the layer 116, which can be referred to as the steps illustrated in FIGS. 29-32. Alternatively, the openings 165a can be formed in and pass through the dummy substrate 165 before the dummy substrate 165 is joined with the insulating or dielectric layer 66 using the layer 116. Next, multiple chips 72, each of which is like the chip 72a or 72b illustrated in FIG. 141K, are joined with the layer 116 and mounted in the openings 165a and over the layer 66, which can be referred to as the steps illustrated in FIG. 33. After mounting the chips 72 in the openings 165a, the chips 72 have active sides at bottoms of the chips 72 and backsides at tops of the chips 72. FIG. 192 is an example of a schematical top view showing the chips 72 mounted in the openings 165a in the dummy substrate 165, and FIG. 191 is a cross-sectional view cut along the line G-G shown in the schematical top view of FIG. 192.


As shown in FIGS. 191 and 192, there are multiple gaps 4a each between the dummy substrate 165 and one of the chips 72, and there are multiple gaps 8a (one of them is shown) each between neighboring two chips 72. Each of the gaps 4a may have a transverse distance or spacing D4, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8a may have a transverse distance or spacing D5, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers.



FIG. 193 shows another technique to form the structure with the same cross-sectional view as shown in FIG. 191. FIG. 191 is a cross-sectional view cut along the line G-G shown in a schematical top view of FIG. 193. The structure shown in FIGS. 191 and 193 can be formed, e.g., by the following steps. After forming the structure illustrated in FIG. 189 or 190, a glue layer 116 having a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers, is formed on the insulating or dielectric layer 66 shown in FIG. 189 or 190 by using a suitable process, such as spin coating process, laminating process, spraying process, dispensing process, or screen printing process. The glue layer 116 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or silosane, with a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers. Next, the glue layer 116 can be optionally pre-cured or baked. Next, multiple chips 72, each of which is like the chip 72a or 72b illustrated in FIG. 141K, and multiple separate dummy substrates 165 are placed on the glue layer 116. When a gap between neighboring two chips 72 is too great, such as greater than 500 or 1,000 micrometers, one or more of the separate dummy substrates 165 can be placed in the gap. Alternatively, when a gap between neighboring two chips 72 is small enough, such as smaller than 500 or 1,000 micrometers, there can be no separate dummy substrates 165 placed in the gap. Next, the glue layer 116 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 116. Accordingly, the chips 72 and the separate dummy substrates 165 are joined with the insulating or dielectric layer 66 using the glue layer 116. The separate dummy substrates 165, for example, can be separate silicon bars, separate dummy chips, separate dummy silicon dies, or separate substrates of polysilicon, glass, silicon, or ceramic.


Alternatively, referring to FIGS. 191 and 193, the glue layer 116 can be replaced with a silicon-oxide layer that is formed on the insulating or dielectric layer 66 shown in FIG. 189 or 190. In this case, joining the chips 72 with the layer 66 and joining the separate dummy substrates 165 with the layer 66 can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 74, at the active side of each chip 72, with the silicon-oxide layer 116 and by bonding another silicon-oxide layer of each of the separate dummy substrates 165 with the silicon-oxide layer 116. The silicon-oxide layer of the passivation layer 74 of each chip 72 contacts the silicon-oxide layer 116, and the silicon-oxide layer of each of the separate dummy substrates 165 contacts the silicon-oxide layer 116. Accordingly, the chips 72 and the separate dummy substrates 165 can be joined with the insulating or dielectric layer 66 using these silicon-oxide layers.


As shown in FIGS. 191 and 193, there are multiple gaps 4a each between one of the chips 72 and one of the separate dummy substrates 165, and there are multiple gaps 8a (one of them is shown) each between neighboring two chips 72. Each of the gaps 4a may have a transverse distance or spacing D4, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8a may have a transverse distance or spacing D5, e.g., smaller than 500 micrometers, such as between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. In one embodiment, there are no circuits preformed in each separate dummy substrate 165 or on a top or bottom surface of each separate dummy substrate 165 before the separate dummy substrates 165 are joined with the insulating or dielectric layer 66.


Referring to FIG. 194, after the steps illustrated in FIGS. 191 and 192 or in FIGS. 191 and 193, an encapsulation/gap filling material 98 is formed on a backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165, and in the gaps 4a and 8a. Next, the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 are ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching, until all of the insulating rings 500a in the chips 72 have exposed bottom surfaces 500t, over which there are no portions of the semiconductor substrates 96. The steps of forming the encapsulation/gap filling material 98 and grinding or polishing the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 illustrated in FIG. 194 can be referred to as the steps of forming the encapsulation/gap filling material 64 and grinding or polishing the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 as illustrated in FIGS. 143-146. The encapsulation/gap filling material 98 can be polysilicon, silicon oxide, or a polymer.


Accordingly, the semiconductor substrate 96 of each of the chips 72 can be thinned to a thickness T8, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 72, after the grinding or polishing process, the insulating rings 500a and the semiconductor substrate 96 may have the same thickness T8. Preferably, each of the chips 72, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers.


After the grinding or polishing process, the dummy substrate(s) 165 can be thinned to a thickness T9, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 98 remaining in the gaps 4a and 8a may have a vertical thickness T10, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 96s of the semiconductor substrate 96, at the backside of each chip 72, and the ground or polished surface(s) 165s of the dummy substrate(s) 165 can be substantially flat and not covered by the encapsulation/gap filling material 98. The ground or polished surface(s) 165s may be substantially coplanar with the ground or polished surface 96s of each chip 72, with the ground or polished surface 98s of the encapsulation/gap filling material 98 in the gaps 4a and 8a, and with the exposed bottom surfaces 500t of the insulating rings 500a in the chips 72. In each chip 72, a vertical distance D15 between the ground or polished surface 96s of the semiconductor substrate 96 and the bottom of the shallow trench isolation 500b can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Next, referring to FIG. 195, a dielectric layer 88 having a thickness, e.g., between 0.1 and 100 micrometers, and preferably between 0.2 and 1.5 micrometers, between 1 and 5 micrometers, between 5 and 10 micrometers, or between 1 and 20 micrometers, is formed on the surface 96s of the semiconductor substrate 96 of each chip 72, on the surface(s) 165s of the dummy substrate(s) 165, on the exposed bottom surfaces 500t of the insulating rings 500a in the chips 72, and on the surface 98s of the encapsulation/gap filling material 98. Next, multiple through vias 164v, including through vias 164a, 164b, 164c, 164d and 164e, can be formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72. The steps of forming the through vias 164v in the chips 72 and in the dummy substrate(s) 165 illustrated in FIG. 195 can be referred to as the steps of forming the through vias 164v in the chips 72 and in the dummy substrate(s) 165 as illustrated in FIG. 41, but, in the embodiment, forming the through vias 164v in the chips 72 includes etching through the semiconductor substrates 96 enclosed by the insulating rings 500a in the chips 72. The specifications of the through vias 164v (including the vias 164a-164e), the insulating rings 500a enclosing the through vias 164v, and the supporter 802 shown in FIG. 195 can be referred to as the specifications of the through vias 164v (including the vias 164a-164e), the insulating rings 500a enclosing the through vias 164v, and the supporter 802, respectively, illustrated in FIGS. 162-166.


The dielectric layer 88 shown in FIG. 195, for example, can be an inorganic layer formed by a suitable process, such as chemical vapor deposition (CVD) process or plasma-enhanced chemical vapor deposition (PECVD) process. The inorganic layer may include or can be a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide on the surfaces 96s, 165s, 500t and 98s. The inorganic layer may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.5 and 2 micrometers.


Alternatively, the dielectric layer 88 shown in FIG. 195 can be a polymer layer, such as a layer of polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), having a thickness between 3 and 100 micrometers, and preferably between 5 and 30 micrometers or between 10 and 50 micrometers, on the surfaces 96s, 165s, 500t and 98s.


Alternatively, the dielectric layer 88 shown in FIG. 195 can be composed of an inorganic layer and a polymer layer on the inorganic layer. The inorganic layer can be formed on the surfaces 96s, 165s, 500t and 98s using a suitable process, such as chemical vapor deposition (CVD) process. The inorganic layer may include or can be a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide on the surfaces 96s, 165s, 500t and 98s. The inorganic layer may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.5 and 2 micrometers. The polymer layer can be a layer of polyimide, benzocyclobutane (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO) having a thickness between 3 and 100 micrometers, and preferably between 5 and 30 micrometers or between 10 and 50 micrometers, on the inorganic layer.


Next, referring to FIG. 196, an adhesion/barrier layer 92 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, is formed on the layers 56, 106 and 114 exposed by the through vias 164v, on sidewalls of the through vias 164v, on the dielectric layer 88, and on the interconnect or metal trace 55a that is on the supporter 802. The adhesion/barrier layer 92 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 94 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, is formed on the adhesion/barrier layer 92 and in the through vias 164v by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 294 is formed on the seed layer 94 by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 294a, exposing multiple regions of the seed layer 94, in the photoresist layer 294. The patterned photoresist layer 294 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, a conduction layer 86 having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, is formed on the regions, exposed by the openings 294a in the layer 294, of the seed layer 94 by using a suitable process, such as electroplating process. The specifications of the adhesion/barrier layer 92, the seed layer 94, and the conduction layer 86 shown in FIG. 196 can be referred to as the specifications of the adhesion/barrier layer 92, the seed layer 94, and the conduction layer 86 as illustrated in FIG. 95, respectively.


Next, referring to FIG. 197, the photoresist layer 294 is removed using, e.g., an organic chemical solution. Next, the seed layer 94 not under the conduction layer 86 is removed by using a wet etching process or a dry etching process. Next, the adhesion/barrier layer 92 not under the conduction layer 86 is removed by using a wet etching process or a dry etching process. Accordingly, the layers 92, 94 and 86 over the dielectric layer 88 and over the through vias 164v compose multiple metal interconnects 2, including metal interconnects 2a and 2b, over the dielectric layer 88 and over the through vias 164v. The adhesion/barrier layer 92 and the seed layer 94 of the metal interconnects 2 over the dielectric layer 88 are not at any sidewall 2w of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88, but under a bottom of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88. The sidewalls 2w of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88 are not covered by the layers 92 and 94. The layers 92, 94 and 86 in the through vias 164v compose multiple metal plugs (or metal vias) 6p in the through vias 164v, including metal plugs (or metal vias) 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e as shown in FIG. 195, respectively. The metal plug 6a is formed in the dummy substrate 165, the metal plugs 6b and 6c are formed in the left one of the chips 72, and the metal plugs 6d and 6e are formed in the middle one of the chips 72. These metal plugs 6p formed in the chips 72 and in the dummy substrate(s) 165 can connect the metal interconnects 2 and the semiconductor devices 102 in the chips 72 and connect the metal interconnects 1 and 2.


Each of the metal plugs 6p in the chips 72 passes through one of the insulating rings 500a in the chips 72. For example, the metal plugs 6b and 6c in the left one of the chips 72 pass through the insulating rings 500a in the left one of the chips 72, and the metal plugs 6d and 6e in the middle one of the chips 72 pass through the insulating rings 500a in the middle one of the chips 72. Specifically, each of the metal plugs 6b and 6c passes through the semiconductor substrate 96 of the left one of the chips 72 and is enclosed by one of the insulating rings 500a in the left one of the chips 72, and each of the metal plugs 6d and 6e passes through the semiconductor substrate 96 of the middle one of the chips 72 and is enclosed by one of the insulating rings 500a in the middle one of the chips 72. The semiconductor substrate 96 of the left one of the chips 72 has a portion on an inner surface of the insulating ring 500a enclosing the metal plug 6b, and the semiconductor substrate 96 of the middle one of the chips 72 has a portion on an inner surface of the insulating ring 500a enclosing the metal plug 6d. The insulating ring 500a enclosing the metal plug 6c is at the sidewall of the metal plug 6c and contacts the metal plug 6c, and the insulating ring 500a enclosing the metal plug 6e is at the sidewall of the metal plug 6e and contacts the metal plug 6e. For more detailed description about the metal plugs 6p (including the metal plugs 6a-6e) and the metal interconnects 2 (including the metal interconnects 2a and 2b) shown in FIG. 197, please refer to the illustration in FIG. 96.


Alternatively, the element 72 not only can indicate a chip, but also can indicate a wafer. When the element 72 is a wafer, the element 68 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Next, referring to FIG. 198, an insulating or dielectric layer 120 is formed on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in gaps between the metal interconnects 2. The insulating or dielectric layer 120, for example, may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in the gaps between the metal interconnects 2. The polymer layer on the conduction layer 86 may have a thickness, e.g., between 0.1 and 50 micrometers, and preferably between 1 and 30 micrometers, between 2 and 20 micrometers, or between 5 and 10 micrometers.


Alternatively, the insulating or dielectric layer 120 may include or can be an inorganic layer, such as a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide, on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in the gaps between the metal interconnects 2. The inorganic layer on the conduction layer 86 may have a thickness, e.g., between 0.1 and 10 micrometers, and preferably between 0.1 and 1 micrometers, between 0.2 and 2 micrometers, between 0.3 and 3 micrometers, or between 0.5 and 5 micrometers.


Alternatively, referring to FIG. 199, the insulating or dielectric layer 120 as shown in FIG. 198 can be formed by the following steps. First, a polymer layer 120a, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), is formed on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in the gaps between the metal interconnects 2. Next, the polymer layer 120a is ground or polished by, e.g., a mechanical grinding process, a mechanical polishing process, a chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching until the conduction layer 86 of the metal interconnects 2 has a top surface 86u not covered by the polymer layer 120a. Accordingly, the polymer layer 120a remains on the dielectric layer 88 and in the gaps between the metal interconnects 2 and has a thickness, e.g., greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers. The ground or polished surface 120s of the polymer layer 120a can be substantially flat and substantially coplanar with the top surface 86u of the conduction layer 86. Next, an inorganic layer 120b, such as a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide, having a thickness, e.g., between 0.1 and 3 micrometers, and preferably between 0.2 and 1.5 micrometers, is formed on the top surface 86u of the conduction layer 86 and on the ground or polished surface 120s of the polymer layer 120a. Accordingly, the insulating or dielectric layer 120 as shown in FIG. 198 can be composed of the polymer layer 120a and the inorganic layer 120b as shown in FIG. 199.


Referring to FIG. 200, after forming the insulating or dielectric layer 120, the dummy substrate 158 illustrated in FIG. 54 is joined with the insulating or dielectric layer 120 using the layer 140 illustrated in FIG. 54, which can be referred to as the steps illustrated in FIG. 54. Next, multiple openings 158a are formed in the dummy substrate 158 and expose the layer 140, which can be referred to as the steps illustrated in FIGS. 55 and 56. Alternatively, the openings 158a can be formed in and pass through the dummy substrate 158 before the dummy substrate 158 is joined with the insulating or dielectric layer 120 using the layer 140. Next, multiple chips 118, each of which is like the chip 118a or 118b illustrated in FIG. 141L, are joined with the layer 140 and mounted in the openings 158a and over the layer 120, which can be referred to as the steps illustrated in FIG. 57. After mounting the chips 118 in the openings 158a, the chips 118 have active sides at bottoms of the chips 118 and backsides at tops of the chips 118. FIG. 201 is an example of a schematical top view showing the chips 118 mounted in the openings 158a in the dummy substrate 158, and FIG. 200 is a cross-sectional view cut along the line J-J shown in the schematical top view of FIG. 201.


As shown in FIGS. 200 and 201, there are multiple gaps 4b each between the dummy substrate 158 and one of the chips 118, and there are multiple gaps 8b (one of them is shown) each between neighboring two chips 118. Each of the gaps 4b may have a transverse distance or spacing D7, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8b may have a transverse distance or spacing D8, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers.



FIG. 202 shows another technique to form the structure with the same cross-sectional view as shown in FIG. 200. FIG. 200 is a cross-sectional view cut along the line J-J shown in a schematical top view of FIG. 202. The structure shown in FIGS. 200 and 202 can be formed, e.g., by the following steps. After forming the structure illustrated in FIG. 198 or 199, a glue layer 140 having a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers, is formed on the insulating or dielectric layer 120 shown in FIG. 198 or 199 by using a suitable process, such as spin coating process, laminating process, spraying process, dispensing process, or screen printing process. The glue layer 140 can be a polymer layer, such as a layer of epoxy, polyimide, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or silosane, with a thickness, e.g., between 3 and 100 micrometers, and preferably between 5 and 10 micrometers or between 10 and 30 micrometers. Next, the glue layer 140 can be optionally pre-cured or baked. Next, multiple chips 118, each of which is like the chip 118a or 118b illustrated in FIG. 141L, and multiple separate dummy substrates 158 are placed on the glue layer 140. When a gap between neighboring two chips 118 is too great, such as greater than 500 or 1,000 micrometers, one or more of the separate dummy substrates 158 can be placed in the gap. Alternatively, when a gap between neighboring two chips 118 is small enough, such as smaller than 500 or 1,000 micrometers, there can be no separate dummy substrates 158 placed in the gap. Next, the glue layer 140 can be cured again in a temperature between 180 degrees centigrade and 350 degrees centigrade with a mechanical or thermal pressure on the glue layer 140. Accordingly, the chips 118 and the separate dummy substrates 158 are joined with the insulating or dielectric layer 120 using the glue layer 140. The separate dummy substrates 158, for example, can be separate silicon bars, separate dummy chips, separate dummy silicon dies, or separate substrates of polysilicon, glass, silicon, or ceramic.


Alternatively, referring to FIGS. 200 and 202, the glue layer 140 can be replaced with a silicon-oxide layer that is formed on the insulating or dielectric layer 120 shown in FIG. 198 or 199. In this case, joining the chips 118 with the layer 120 and joining the separate dummy substrates 158 with the layer 120 can be performed, e.g., by bonding another silicon-oxide layer of the passivation layer 21, at the active side of each chip 118, with the silicon-oxide layer 140 and by bonding another silicon-oxide layer of each of the separate dummy substrates 158 with the silicon-oxide layer 140. The silicon-oxide layer of the passivation layer 21 of each chip 118 contacts the silicon-oxide layer 140, and the silicon-oxide layer of each of the separate dummy substrates 158 contacts the silicon-oxide layer 140. Accordingly, the chips 118 and the separate dummy substrates 158 can be joined with the insulating or dielectric layer 120 using these silicon-oxide layers.


As shown in FIGS. 200 and 202, there are multiple gaps 4b each between one of the chips 118 and one of the separate dummy substrates 158, and there are multiple gaps 8b (one of them is shown) each between neighboring two chips 118. Each of the gaps 4b may have a transverse distance or spacing D7, e.g., between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. Each of the gaps 8b may have a transverse distance or spacing D8, e.g., smaller than 500 micrometers, such as between 1 and 200 micrometers, between 1 and 50 micrometers, or between 1 and 10 micrometers, and preferably between 1 and 5 micrometers. In one embodiment, there are no circuits preformed in each separate dummy substrate 158 or on a top or bottom surface of each separate dummy substrate 158 before the separate dummy substrates 158 are joined with the insulating or dielectric layer 120.


Referring to FIG. 203, after the steps illustrated in FIGS. 200 and 201 or in FIGS. 200 and 202, an encapsulation/gap filling material 138 is formed on a backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158, and in the gaps 4b and 8b. Next, the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 are ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical grinding and chemical-mechanical polishing, until all of the insulating rings 500a in the chips 118 have exposed bottom surfaces 500u, over which there are no portions of the semiconductor substrates 124. The steps of forming the encapsulation/gap filling material 138 and grinding or polishing the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 illustrated in FIG. 203 can be referred to as the steps of forming the encapsulation/gap filling material 64 and grinding or polishing the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 as illustrated in FIGS. 143-146. The encapsulation/gap filling material 138 can be polysilicon, silicon oxide, or a polymer.


Accordingly, the semiconductor substrate 124 of each of the chips 118 can be thinned to a thickness T15, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 118, after the grinding or polishing process, the insulating rings 500a and the semiconductor substrate 124 may have the same thickness T15. Preferably, each of the chips 118, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers.


After the grinding or polishing process, the dummy substrate(s) 158 can be thinned to a thickness T16, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 138 remaining in the gaps 4b and 8b may have a vertical thickness T17, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 124s of the semiconductor substrate 124, at the backside of each chip 118, and the ground or polished surface(s) 158s of the dummy substrate(s) 158 can be substantially flat and not covered by the encapsulation/gap filling material 138. The ground or polished surface(s) 158s may be substantially coplanar with the ground or polished surfaces 124s of the chips 118, with the ground or polished surface 138s of the encapsulation/gap filling material 138 in the gaps 4b and 8b, and with the exposed bottom surfaces 500u of the insulating rings 500a in the chips 118. In each chip 118, a vertical distance D16 between the ground or polished surface 124s of the semiconductor substrate 124 and the bottom of the shallow trench isolation 500b can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Next, referring to FIG. 204, a dielectric layer 139 having a thickness, e.g., between 0.1 and 100 micrometers, and preferably between 0.2 and 1.5 micrometers, between 1 and 5 micrometers, between 5 and 10 micrometers, or between 1 and 20 micrometers, is formed on the surface 124s of the semiconductor substrate 124 of each chip 118, on the surface(s) 158s of the dummy substrate(s) 158, on the exposed bottom surfaces 500u of the insulating rings 500a in the chips 118, and on the surface 138s of the encapsulation/gap filling material 138. Next, multiple through vias 156v, including through vias 156a, 156b, 156c, 156d, 156e and 156f, can be formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118. The steps of forming the through vias 156v in the chips 118 and in the dummy substrate(s) 158 illustrated in FIG. 204 can be referred to as the steps of forming the through vias 156v in the chips 118 and in the dummy substrate(s) 158 as illustrated in FIG. 65, but, in the embodiment, forming the through vias 156v in the chips 118 includes etching through the semiconductor substrates 124 enclosed by the insulating rings 500a in the chips 118. The specifications of the through vias 156v (including the vias 156a-156f), the insulating rings 500a enclosing the through vias 156v, and the supporter 803 shown in FIG. 204 can be referred to as the specifications of the through vias 156v (including the vias 156a-156f), the insulating rings 500a enclosing the through vias 156v, and the supporter 803, respectively, illustrated in FIGS. 173-177.


The dielectric layer 139 shown in FIG. 204, for example, can be an inorganic layer formed by a suitable process, such as chemical vapor deposition (CVD) process or plasma-enhanced chemical vapor deposition (PECVD) process. The inorganic layer may include or can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC) on the surfaces 124s, 158s, 500u and 138s. The inorganic layer may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.5 and 2 micrometers.


Alternatively, the dielectric layer 139 shown in FIG. 204 can be a polymer layer, such as a layer of polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), or poly-phenylene oxide (PPO), having a thickness between 3 and 100 micrometers, and preferably between 5 and 30 micrometers or between 10 and 50 micrometers, on the surfaces 124s, 158s, 500u and 138s.


Alternatively, the dielectric layer 139 shown in FIG. 204 can be composed of an inorganic layer and a polymer layer on the inorganic layer. The inorganic layer can be formed on the surfaces 124s, 158s, 500u and 138s using a suitable process, such as chemical vapor deposition (CVD) process. The inorganic layer may include or can be a layer of silicon oxide (such as SiO2), silicon nitride (such as Si3N4), silicon carbon nitride (such as SiCN), silicon oxynitride (such as SiON), or silicon oxycarbide (such as SiOC) on the surfaces 124s, 158s, 500u and 138s. The inorganic layer may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.5 and 2 micrometers. The polymer layer can be a layer of polyimide, benzocyclobutane (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO) having a thickness between 3 and 100 micrometers, and preferably between 5 and 30 micrometers or between 10 and 50 micrometers, on the inorganic layer.


Next, referring to FIG. 205, an adhesion/barrier layer 125a having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, is formed on the layers 17, 19 and 86 exposed by the through vias 156v, on sidewalls of the through vias 156v, on the dielectric layer 139, and on the interconnect or metal trace 75a that is on the supporter 803. The adhesion/barrier layer 125a can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 125b having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, is formed on the adhesion/barrier layer 125a and in the through vias 156v by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a photoresist layer 394 is formed on the seed layer 125b by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 394a, exposing multiple regions of the seed layer 125b, in the photoresist layer 394. The patterned photoresist layer 394 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, a conduction layer 125c having a thickness greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers, can be formed on the regions, exposed by the openings 394a in the layer 394, of the seed layer 125b by using a suitable process, such as electroplating process. The specifications of the adhesion/barrier layer 125a, the seed layer 125b, and the conduction layer 125c shown in FIG. 205 can be referred to as the specifications of the adhesion/barrier layer 125a, the seed layer 125b, and the conduction layer 125c as illustrated in FIG. 100, respectively.


Next, referring to FIG. 206, the photoresist layer 394 is removed using, e.g., an organic chemical solution. Next, the seed layer 125b not under the conduction layer 125c is removed by using a wet etching process or a dry etching process. Next, the adhesion/barrier layer 125a not under the conduction layer 125c is removed by using a wet etching process or a dry etching process. Accordingly, the layers 125a, 125b and 125c over the dielectric layer 139 and over the through vias 156v compose multiple metal interconnects 3, including metal interconnects 3a, 3b and 3c, over the dielectric layer 139 and over the through vias 156v. The adhesion/barrier layer 125a and the seed layer 125b of the metal interconnects 3 over the dielectric layer 139 are not at any sidewall 3w of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139, but under a bottom of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139. The sidewalls 3w of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139 are not covered by the layers 125a and 125b. The layers 125a, 125b and 125c in the through vias 156v compose multiple metal plugs (or metal vias) 7p in the through vias 156v, including metal plugs (or metal vias) 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f as shown in FIG. 204, respectively. The metal plug 7a is formed in the dummy substrate 158, the metal plugs 7b, 7c and 7d are formed in the left one of the chips 118, and the metal plugs 7e and 7f are formed in the middle one of the chips 118. These metal plugs 7p formed in the chips 118 and in the dummy substrate(s) 158 can connect the metal interconnects 3 and the semiconductor devices 13 in the chips 118 and connect the metal interconnects 2 and 3. The supporter 803 and the interconnect or metal trace 75a, in the interconnection layer 17, on the supporter 803 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 17 is positioned, of the metal plug 7e.


Each of the metal plugs 7p in the chips 118 passes through one of the insulating rings 500a in the chips 118. For example, the metal plugs 7b, 7c and 7d in the left one of the chips 118 pass through the insulating rings 500a in the left one of the chips 118, and the metal plugs 7e and 7f in the middle one of the chips 118 pass through the insulating rings 500a in the middle one of the chips 118. Specifically, each of the metal plugs 7b, 7c and 7d passes through the semiconductor substrate 124 of the left one of the chips 118 and is enclosed by one of the insulating rings 500a in the left one of the chips 118, and each of the metal plugs 7e and 7f passes through the semiconductor substrate 124 of the middle one of the chips 118 and is enclosed by one of the insulating rings 500a in the middle one of the chips 118. The semiconductor substrate 124 of the left one of the chips 118 has portions on inner surfaces of the insulating rings 500a enclosing the metal plugs 7c and 7d, and the semiconductor substrate 124 of the middle one of the chips 118 has portions on inner surfaces of the insulating rings 500a enclosing the metal plugs 7e and 7f. The insulating ring 500a enclosing the metal plug 7b is at the sidewall of the metal plug 7b and contacts the metal plug 7b. The insulating ring 500a enclosing the metal plug 7d has a portion at and in contact with the sidewall of the metal plug 7d. The insulating ring 500a enclosing the metal plug 7f has a portion at and in contact with the sidewall of the metal plug 7f. For more detailed description about the metal plugs 7p (including the metal plugs 7a-7f) and the metal interconnects 3 (including the metal interconnects 3a, 3b and 3c) shown in FIG. 206, please refer to the illustration in FIG. 101.


Alternatively, the element 118 not only can indicate a chip, but also can indicate a wafer. When the element 118 is a wafer, the element 72 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 207, after forming the structure illustrated in FIG. 206, the following steps can be subsequently performed as illustrated in FIG. 102 to form the insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in gaps between the metal interconnects 3, to form the polymer layer 136 on the insulating or dielectric layer 122, and to form multiple openings 136a, exposing multiple regions of the insulating or dielectric layer 122, in the polymer layer 136. Next, forming an under bump metallurgic (UBM) layer 666 on the polymer layer 136 and on multiple contact points, at bottoms of multiple openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 and forming multiple solder bumps or balls 126 on the UBM layer 666 can be referred to as the steps illustrated in FIGS. 78-81. Next, a singulation process is performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 555w and 555x.


The system-in package or multichip module 555w can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 208, the system-in package or multichip module 555w is bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, the under fill 174 illustrated in FIG. 83 is formed between the polymer layer 136 of the system-in package or multichip module 555w and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, the solder balls 178 illustrated in FIG. 83 are formed on the bottom side of the carrier 176.



FIG. 209 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure illustrated in FIG. 206, the following steps can be subsequently performed as illustrated in FIG. 102 to form the insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in gaps between the metal interconnects 3, to form the polymer layer 136 on the insulating or dielectric layer 122, and to form multiple openings 136a, exposing multiple regions of the insulating or dielectric layer 122, in the polymer layer 136. Next, the steps illustrated in FIGS. 78 and 79 can be subsequently performed. Next, forming metal bumps 668 on the polymer layer 136 and on contact points, at bottoms of openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 can be referred to as the steps illustrated in FIG. 84. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 555y. In the system-in package or multichip module 555y, each of the interconnects 3 can be connected to one or more of the metal bumps 668.


The system-in package or multichip module 555y can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 210, the system-in package or multichip module 555y can be bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Next, the under fill 174 illustrated in FIG. 83 can be formed between the polymer layer 136 of the system-in package or multichip module 555y and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 207-210 can be omitted. In this case, the polymer layer 136 is formed on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in the gaps between the metal interconnects 3, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIG. 211 shows a multichip package 566e including a system-in package or multichip module 555z connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps. After forming the structure illustrated in FIG. 206, the following steps can be subsequently performed as illustrated in FIG. 107 to form an insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in gaps between the metal interconnects 3, to form multiple metal interconnects or traces 300 on the insulating or dielectric layer 122 and on multiple regions, exposed by multiple openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3, and to form a polymer layer 136 on the insulating or dielectric layer 122 and on the metal interconnects or traces 300. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers, and multiple openings 136a in the polymer layer 136 expose multiple contact points of the metal interconnects or traces 300. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as the system-in package or multichip module 555z.


Next, a plurality of the system-in package or multichip module 555z can be joined with the carrier 176 shown in FIG. 83 by, e.g., forming a glue layer 182 with a thickness, e.g., between 1 and 20 micrometers or between 20 and 150 micrometers on the top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 555z to the top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 1 and 20 micrometers or between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, can be wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 555z can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 can be formed on the plurality of the system-in package or multichip module 555z, on the top side of the carrier 176 and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 555z, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176. Thereafter, a singulation process can be performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566e. The multichip package 566e can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178.


Alternatively, the chips 68 illustrated in FIGS. 7-109 can be replaced with another type of chips 68 shown in FIG. 212L that further include insulating plugs 789 thicker than shallow trench isolation (STI) 345. FIGS. 212A-212L show a process for forming the another type of chips 68 according to an embodiment of the present disclosure. Referring to FIG. 212A, an insulating layer 301a is formed on a semiconductor substrate 58 of a wafer 680a using a suitable process, such as chemical vapor deposition (CVD) process. The semiconductor substrate 58 can be a silicon-germanium (SiGe) substrate, a gallium-arsenide (GaAs) substrate, or a silicon substrate with a thickness, e.g., greater than 100 micrometers, such as between 100 and 500 micrometers, and preferably between 150 and 250 micrometers or between 100 and 300 micrometers. The insulating layer 301a, for example, can be a pad oxide having a thickness between 1 and 20 nanometers, and preferably between 1 and 10 nanometers, on a top surface of the semiconductor substrate 58. After forming the insulating layer 301a on the top surface of the semiconductor substrate 58, a patterned photoresist layer 306 is formed on the insulating layer 301a. Multiple openings 306a in the patterned photoresist layer 306 expose multiple regions of the insulating layer 301a.


Next, referring to FIG. 212B, multiple openings 307 are formed in the semiconductor substrate 58 by removing the insulating layer 301a under the openings 306a and etching the semiconductor substrate 58 under the openings 306a, leading the openings 307 with a depth D17 in the semiconductor substrate 58, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers. Each of the openings 307 may have a diameter or width W10, e.g., between 2 and 100 micrometers, between 2 and 50 micrometers, between 2 and 20 micrometers, between 2 and 10 micrometers, or between 2 and 5 micrometers.


Next, referring to FIG. 212C, the patterned photoresist layer 306 is removed using a chemical solution. Next, referring to FIG. 212D, an insulating layer 567 having a thickness T27, e.g., between 10 and 250 nanometers, and preferably between 15 and 150 nanometers, is formed on the insulating layer 301a and on sidewalls and bottoms of the openings 307 using a suitable process, such as chemical vapor deposition (CVD) process, and then an insulating layer 456 is formed on the insulating layer 567 and in the openings 307 using a suitable process, such as chemical vapor deposition (CVD) process.


In a first alternative, the insulating layer 567 can be formed by depositing a layer of silicon nitride or silicon oxynitride with a thickness, e.g., between 10 and 250 nanometers, and preferably between 15 and 150 nanometers, on the insulating layer 301a and on the sidewalls and bottoms of the openings 307 using a suitable process, such as chemical vapor deposition (CVD). The insulating layer 456 can be formed by depositing a layer of polysilicon or silicon oxide in the openings 307 and on the layer of silicon nitride or silicon oxynitride using a suitable process, such as chemical vapor deposition (CVD).


In a second alternative, the insulating layer 567 can be formed by depositing a silicon-oxide layer with a thickness, e.g., between 1 and 20 nanometers, and preferably between 1 and 10 nanometers, on the insulating layer 301a and on the sidewalls and bottoms of the openings 307 using a suitable process, such as chemical vapor deposition (CVD), and then depositing a layer of silicon nitride or silicon oxynitride with a thickness, e.g., between 10 and 230 nanometers, and preferably between 15 and 140 nanometers, on the silicon-oxide layer and at the sidewalls and bottoms of the openings 307 using a suitable process, such as chemical vapor deposition (CVD). The insulating layer 456 can be formed by depositing a layer of polysilicon or silicon oxide in the openings 307 and on the layer of silicon nitride or silicon oxynitride of the insulating layer 567 using a suitable process, such as chemical vapor deposition (CVD).


Next, referring to FIG. 212E, the insulating layer 456 is ground or polished by a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the insulating layer 567, such as the layer of silicon nitride or silicon oxynitride of the insulating layer 567, outside the openings 307 has a top surface 567a not covered by the insulating layer 456.


Next, referring to FIG. 212F, a patterned photoresist layer 302 is formed on the top surface 567a of the insulating layer 567 and on the insulating layer 456. Multiple openings 302a in the patterned photoresist layer 302 expose multiple regions of the top surface 567a of the insulating layer 567.


Next, referring to FIG. 212G, multiple shallow trenches 303 are formed in the semiconductor substrate 58 by removing the insulating layer 567 under the openings 302a, removing the insulating layer 301a under the openings 302a, and etching the semiconductor substrate 58 under the openings 302a, leading the shallow trenches 303 with a depth D10 in the semiconductor substrate 58, e.g., between 0.1 and 0.5 micrometers, and preferably between 0.15 and 0.4 micrometers. The shallow trenches 303 are used to accommodate a shallow trench isolation (STI).


Next, referring to FIG. 212H, the patterned photoresist layer 302 is removed using a chemical solution. Next, referring to FIG. 212I, an inorganic material 345 is formed on the top surface 567a of the insulating layer 567, on the insulating layer 456, and in the shallow trenches 303 by using a suitable process, such as chemical vapor deposition (CVD) process. The inorganic material 345 may include or can be silicon oxide.


Next, referring to FIG. 212J, the inorganic material 345 outside the shallow trenches 303 is removed by a suitable process, such as chemical mechanical polishing (CMP) process, then the insulating layer 567 outside the openings 307 is etched away by using a chemical solution, and then all of the insulating layer 301a is etched away by using a chemical solution. Accordingly, the insulating layers 456 and 567 remains in the openings 307, so called as insulating plugs 789, and the inorganic material 345 remains in the shallow trenches 303, so called as shallow trench isolation (STI). The insulating layer 567 of the insulating plugs 789 is on sidewalls and a bottom of the insulating layer 456 of the insulating plugs 789, and the sidewalls and bottom of the insulating layer 456 are covered by the insulating layer 567. The insulating layer 567 of the insulating plugs 789, for example, can be a layer of silicon nitride or silicon oxynitride with a thickness, e.g., between 10 and 250 nanometers, and preferably between 15 and 150 nanometers, on the sidewalls and bottom of the insulating layer 456 of the insulating plugs 789. Alternatively, the insulating layer 567 of the insulating plugs 789 can be composed of a silicon-oxide layer with a thickness, e.g., between 1 and 20 nanometers, and preferably between 1 and 10 nanometers, at the sidewalls and bottom of the insulating layer 456 of the insulating plugs 789, and a layer of silicon nitride or silicon oxynitride with a thickness, e.g., between 10 and 230 nanometers, and preferably between 15 and 140 nanometers, between the silicon-oxide layer and the insulating layer 456 and on the sidewalls and bottom of the insulating layer 456. The insulating plugs 789 are in the openings 307 having the depth D17, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers, and the diameter or width W10 between 2 and 100 micrometers, between 2 and 50 micrometers, between 2 and 20 micrometers, between 2 and 10 micrometers, or between 2 and 5 micrometers. The shallow trench isolation (STI) 345 may include or can be silicon oxide and is in the shallow trenches 303 having the depth D10 in the semiconductor substrate 58, e.g., between 0.1 and 0.5 micrometers, and preferably between 0.15 and 0.4 micrometers. A vertical distance D18 between a bottom of one of the insulating plugs 789 and a bottom of the shallow trench isolation 345 can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Next, referring to FIG. 212K, multiple semiconductor devices 36 can be formed in and/or on the semiconductor substrate 58, and then multiple dielectric layers 42, 44, 46 and 48, multiple via plugs 26a and 34a, an interconnection layer 34, a patterned metal layer 26, and a passivation layer 24 can be formed over the top surface of the semiconductor substrate 58.


Next, referring to FIG. 212L, a singulation process can be performed to cut the semiconductor substrate 58 and the layers 24, 42, 44, 46 and 48 of the wafer 680a and to singularize multiple chips 68 (one of them is shown). Each of the chips 68 includes the previously described interconnects or metal traces 35a, 35b, 35c and 35d. The element of the chips 68 in FIG. 212L indicated by a same reference number as indicates the element of the chips 68 in FIG. 7 has a same material and spec as the element of the chips 68 illustrated in FIG. 7. The chips 68 shown in FIG. 212L are reverse arrangement of the chips 68 shown in FIG. 7.


Alternatively, each of the chips 72 illustrated in FIGS. 33-109 can be replaced with another type of chip 72a or 72b shown in FIG. 212M that further includes insulating plugs 789 thicker than shallow trench isolation (STI) 345. FIG. 212M shows cross-sectional views of the chips 72a and 72b according to an embodiment of the present disclosure. The element of the chips 72a and 72b in FIG. 212M indicated by a same reference number as indicates the element of the chips 72 in FIG. 33 has a same material and spec as the element of the chips 72 illustrated in FIG. 33. The chips 72a and 72b shown in FIG. 212M are reverse arrangement of the chips 72 shown in FIG. 33. Referring to FIG. 212M, each of the chips 72a and 72b is provided with the semiconductor substrate 96, the insulating plugs 789, the shallow trench isolation (STI) 345, the semiconductor devices 102, the passivation layer 74, the dielectric layers 82, 108, 104 and 100, the patterned metal layer 114, the interconnection layer 106, and the via plugs 106a and 114a. The steps of forming the insulating plugs 789 in the openings 307 in the semiconductor substrate 96 and forming the shallow trench isolation (STI) 345 in the shallow trenches 303 in the semiconductor substrate 96 can be referred to as the steps of forming the insulating plugs 789 in the openings 307 in the semiconductor substrate 58 and forming the shallow trench isolation (STI) 345 in the shallow trenches 303 in the semiconductor substrate 58 as illustrated in FIGS. 212A-212L. The specifications of the shallow trenches 303, the openings 307, the insulating plugs 789, and the shallow trench isolation (STI) 345 can be referred to as the specifications of the shallow trenches 303, the openings 307, the insulating plugs 789, and the shallow trench isolation (STI) 345, respectively, illustrated in FIGS. 212A-212L.


In one case, the chip 72a may have different circuit designs from those of the chip 72b. Also, in another case, the chip 72a may have same circuit designs as those of the chip 72b. Alternatively, the chip 72a may have a different area (top surface) or size from that of the chip 72b. Also, in another case, the chip 72a may have a same area (top surface) or size as that of the chip 72b.


Alternatively, each of the chips 118 illustrated in FIGS. 57-109 can be replaced with another type of chip 118a or 118b shown in FIG. 212N that further includes insulating plugs 789 thicker than shallow trench isolation (STI) 345. FIG. 212N shows cross-sectional views of the chips 118a and 118b according to an embodiment of the present disclosure. The element of the chips 118a and 118b in FIG. 212N indicated by a same reference number as indicates the element of the chips 118 in FIG. 57 has a same material and spec as the element of the chips 118 illustrated in FIG. 57. The chips 118a and 118b shown in FIG. 212N are reverse arrangement of the chips 118 shown in FIG. 57. Referring to FIG. 212N, each of the chips 118a and 118b is provided with the semiconductor substrate 124, the insulating plugs 789, the shallow trench isolation (STI) 345, the semiconductor devices 13, the passivation layer 21, the dielectric layers 78, 28, 38 and 40, the patterned metal layer 19, the interconnection layer 17, and the via plugs 17a and 19a. The steps of forming the insulating plugs 789 in the openings 307 in the semiconductor substrate 124 and forming the shallow trench isolation (STI) 345 in the shallow trenches 303 in the semiconductor substrate 124 can be referred to as the steps of forming the insulating plugs 789 in the openings 307 in the semiconductor substrate 58 and forming the shallow trench isolation (STI) 345 in the shallow trenches 303 in the semiconductor substrate 58 as illustrated in FIGS. 212A-212L. The specifications of the shallow trenches 303, the openings 307, the insulating plugs 789, and the shallow trench isolation (STI) 345 can be referred to as the specifications of the shallow trenches 303, the openings 307, the insulating plugs 789, and the shallow trench isolation (STI) 345, respectively, illustrated in FIGS. 212A-212L.


In one case, the chip 118a may have different circuit designs from those of the chip 118b. Also, in another case, the chip 118a may have same circuit designs as those of the chip 118b. Alternatively, the chip 118a may have a different area (top surface) or size from that of the chip 118b. Also, in another case, the chip 118a may have a same area (top surface) or size as that of the chip 118b.



FIGS. 213-250 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 213, multiple of the chips 68 illustrated in FIG. 212L and the previously described dummy substrate(s) 62 are joined with the carrier 11 using the layer 22, which can be referred to as the steps illustrated in FIGS. 1-9.


Next, referring to FIG. 214, an encapsulation/gap filling material 64, such as polysilicon, silicon oxide, or a polymer, can be formed on a backside of the semiconductor substrate 58 of each chip 68, on the dummy substrate(s) 62, and in the gaps 4 and 8, which can be referred to as the step illustrated in FIG. 10.


Next, referring to FIG. 215, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 are ground or polished by a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until all of the insulating plugs 789 in the chips 68 have exposed bottom surfaces 789s, over which there are no portions of the semiconductor substrates 58. In the case that the insulating layer 567 of the insulating plugs 789 as illustrated in FIG. 212J is composed only of the layer of silicon nitride or silicon oxynitride, during the grinding or polishing process, the exposed bottom surfaces 789s are provided by the layer of silicon nitride or silicon oxynitride at tops of the insulating plugs 789. In the another case that the insulating layer 567 of the insulating plugs 789 as illustrated in FIG. 212J is composed of the layer of silicon oxide and the layer of silicon nitride or silicon oxynitride, during the grinding or polishing process, the layer of silicon oxide at tops of the insulating plugs 789 is removed and the exposed bottom surfaces 789s are provided by the layer of silicon nitride or silicon oxynitride at the tops of the insulating plugs 789.


Accordingly, the semiconductor substrate 58 of each of the chips 68 can be thinned to a thickness T1, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 68, after the grinding or polishing process, the insulating plugs 789 and the semiconductor substrate 58 may have the same thickness T1. Preferably, each of the chips 68, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. After the grinding or polishing process, the dummy substrate(s) 62 can be thinned to a thickness T2, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 remaining in the gaps 4 and 8 may have a vertical thickness T3, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the ground or polished surface(s) 62s of the dummy substrate(s) 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The ground or polished surface(s) 62s may be substantially coplanar with the ground or polished surface 58s of each chip 68, with the ground or polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8, and with the exposed bottom surfaces 789s of the insulating plugs 789. In each chip 68, a vertical distance D14 between the ground or polished surface 58s of the semiconductor substrate 58 and the bottom of the shallow trench isolation 345 can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Alternatively, FIGS. 216 and 217 show another technique to form the structure illustrated in FIG. 215. Referring to FIG. 216, after forming the structure illustrated in FIG. 213, an encapsulation/gap filling material 64, such as polysilicon or silicon oxide, is formed on a backside of the semiconductor substrate 58 of each chip 68, on the dummy substrate(s) 62, and in the gaps 4 and 8, and then a polymer 65, such as polyimide, epoxy, benzocyclobutane (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), or molding compound, is formed on the encapsulation/gap filling material 64 and in the gaps 4 and 8. The encapsulation/gap filling material 64 in the gaps 4 and 8 may have a vertical thickness T4, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers.


Next, referring to FIG. 217, a mechanical grinding process can be performed, e.g., by using an abrasive or grinding pad with water to grind the polymer 65, the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 until all of the polymer 65 is removed and until a predetermined vertical thickness T5 of the encapsulation/gap filling material 64 in the gaps 4 and 8 is reached. The predetermined vertical thickness T5 can be, e.g., between 10 and 100 micrometers, and preferably between 10 and 50 micrometers or between 20 and 50 micrometers. The abrasive or grinding pad can be provided with rough grit having an average grain size, e.g., between 0.5 and 15 micrometers for performing the mechanical grinding process. In the step, the semiconductor substrate 58 of each chip 68 has portions vertically over the insulating plugs 789. Thereafter, a chemical-mechanical-polishing (CMP) process can be performed, e.g., by using a polish pad with a slurry containing chemicals and a fine abrasive like silica with an average grain size, e.g., between 0.02 and 0.05 micrometers to polish the backside of the semiconductor substrate 58 of each chip 68, the dummy substrate(s) 62, and the encapsulation/gap filling material 64 in the gaps 4 and 8 until all of the insulating plugs 789 in the chips 68 have the exposed bottom surfaces 789s, over which there are no portions of the semiconductor substrates 58, as shown in FIG. 215. Accordingly, after the grinding or polishing process, the semiconductor substrate 58 of each of the chips 68 can be thinned to the thickness T1 between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 68, after the grinding or polishing process, the insulating plugs 789 and the semiconductor substrate 58 may have the same thickness T1.


After the chemical-mechanical-polishing (CMP) process, the polished surface 58s of the semiconductor substrate 58, at the backside of each chip 68, and the polished surface(s) 62s of the dummy substrate(s) 62 can be substantially flat and not covered by the encapsulation/gap filling material 64. The polished surface(s) 62s may be substantially coplanar with the polished surface 58s of each chip 68, with the polished surface 64s of the encapsulation/gap filling material 64 in the gaps 4 and 8, and with the exposed bottom surfaces 789s of the insulating plugs 789. The polished surfaces 58s, 62s and 64s may have a micro-roughness, e.g., less than 20 nanometers. The chemical-mechanical-polishing (CMP) process, using a very fine abrasive like silica and a relatively weak chemical attack, will create the surfaces 58s, 62s and 64s almost without deformation and scratches, and this means that the chemical-mechanical-polishing (CMP) process is very well suited for the final polishing step, creating the clean surfaces 58s, 62s and 64s. Using the mechanical grinding process and the chemical-mechanical-polishing (CMP) process can be performed to create a very thin semiconductor substrate 10 of each chip 68. Accordingly, after the chemical-mechanical-polishing (CMP) process, each of the chips 68 can be thinned to a thickness, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, the dummy substrate(s) 62 can be thinned to the thickness T2, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 64 in the gaps 4 and 8 can be thinned to the thickness T3, e.g., between 3 and 35 micrometers, and preferably between 5 and 10 micrometers or between 5 and 25 micrometers.


Referring to FIG. 218, after forming the structure illustrated in FIG. 215, the dielectric layer 60 illustrated in FIG. 14 is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, on the exposed bottom surfaces 789s of the insulating plugs 789 in the chips 68, and on the surface 64s of the encapsulation/gap filling material 64.


Next, referring to FIG. 219, multiple through vias 170v, including through vias 170a, 170b, 170c, 170d, 170e and 170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68, which can be referred to as the steps illustrated in FIG. 15, but, in the embodiment, forming the through vias 170v (such as the vias 170b-170f) in the chips 68 includes etching through the insulating plugs 789 in the chips 68. The insulating plugs 789 in the chips 68 are enclosed by the semiconductor substrates 58 of the chips 68. The through vias 170v in the chips 68 pass through and are enclosed by the insulating plugs 789 in the chips 68 and expose inner walls of the insulating plugs 789. For example, each of the through vias 170b, 170c, 170d, 170e and 170f in one of the chips 68 passes through and is enclosed by the insulating layers 456 and 567 of one of the insulating plugs 789 in the one of the chips 68, exposes an inner wall of the one of the insulating plugs 789, and exposes the insulating layer 456, enclosed by the layer 567, of the one of the insulating plugs 789. Each of the through vias 170v, such as the through via 170a, 170b, 170c, 170d, 170e, or 170f, may have a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the through vias 170v, such as the through vias 170a-170f, please refer to the illustration in FIG. 15.


As shown in FIG. 219, a supporter 801 provided by the dielectric or insulating layer 20, the glue or silicon-oxide layer 22, and the layers 24, 42 and 44 of one of the chips 68 is between the conductive layer 18 of the carrier 11 and the interconnect or metal trace 35a in the interconnection layer 34 exposed by the through via 170e for the purpose of supporting the exposed interconnect or metal trace 35a. The supporter 801 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers.



FIG. 220 is a first example of a schematic top perspective view showing the through via 170e, the insulating plug 789 enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 219. The schematic top perspective view shown in FIG. 220 is similar to the schematic top perspective view shown in FIG. 16 except that the through via 170e shown in FIG. 220 is formed within one of the insulating plugs 789 in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIGS. 219 and 220, please refer to the illustration in FIGS. 15 and 16.



FIG. 221 is a second example of a schematic top perspective view showing the through via 170e, the insulating plug 789 enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 219. The schematic top perspective view shown in FIG. 221 is similar to the schematic top perspective view shown in FIG. 17 except that the through via 170e shown in FIG. 221 is formed within one of the insulating plugs 789 in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIGS. 219 and 221, please refer to the illustration in FIGS. 15 and 17.



FIG. 222 is a third example of a schematic top perspective view showing the through via 170e, the insulating plug 789 enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 219. The schematic top perspective view shown in FIG. 222 is similar to the schematic top perspective view shown in FIG. 18 except that the through via 170e shown in FIG. 222 is formed within one of the insulating plugs 789 in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIGS. 219 and 222, please refer to the illustration in FIGS. 15 and 18.



FIG. 223 is a fourth example of a schematic top perspective view showing the through via 170e, the insulating plug 789 enclosing the through via 170e, and the interconnect or metal trace 35a as illustrated in FIG. 219. The schematic top perspective view shown in FIG. 223 is similar to the schematic top perspective view shown in FIG. 16A except that the through via 170e shown in FIG. 223 is formed within one of the insulating plugs 789 in one of the chips 68. For more detailed description about the through via 170e and the interconnect or metal trace 35a as shown in FIG. 223, please refer to the illustration in FIG. 16A.


Referring to FIG. 224, after forming the structure illustrated in FIG. 219, multiple trenches 60t are formed in the dielectric layer 60. The trenches 60t in the dielectric layer 60 have a depth D3, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers. The dielectric layer 60 under the trenches 60t has a remaining thickness T6, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers. The steps of forming the trenches 60t in the dielectric layer 60 shown in FIG. 224 can be referred to as the steps of forming the trenches 60t in the dielectric layer 60 as illustrated in FIGS. 153-155. The trenches 60t formed in the dielectric layer 60 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. Also, FIG. 156 can be an example of a schematic top perspective view showing the trenches 60t and the through vias 170v shown in FIG. 224, and FIG. 224 also can be a cross-sectional view cut along the line D-D shown in FIG. 156.


Alternatively, the trenches 60t illustrated in FIG. 224 can be formed in the dielectric layer 60 before the through vias 170v illustrated in FIG. 219 are formed in the chips 68 and in the dummy substrate(s) 62. Specifically, after the dielectric layer 60 is formed on the surfaces 58s, 62s, 64s and 789s as shown in FIG. 218, the trenches 60t illustrated in FIG. 224 are formed in the dielectric layer 60, and then the through vias 170v illustrated in FIG. 219 are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68.


Alternatively, referring to FIG. 225, the dielectric layer 60, the trenches 60t, and the through vias 170v as shown in FIG. 224 can be formed by the following steps. After forming the structure illustrated in FIG. 215, an insulating layer 60a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C1, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, on the exposed bottom surfaces 789s of the insulating plugs 789 in the chips 68, and on the surface 64s of the encapsulation/gap filling material 64 as shown in FIG. 215.


Next, a polymer layer 60b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 60a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form the trenches 60t, exposing the insulating layer 60a, in the polymer layer 60b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 60b during the exposure process. Next, the polymer layer 60b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 60b after being cured or heated has a thickness C2, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


Next, a photoresist layer is formed on the insulating layer 60a exposed by the trenches 60t and on the polymer layer 60b, and multiple openings in the photoresist layer expose the insulating layer 60a at bottoms of the trenches 60t. Next, the insulating layer 60a under the openings in the photoresist layer is removed using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 62 under the openings in the photoresist layer and the chips 68 under the openings in the photoresist layer are etched away until predetermined regions of the layers 26 and 34 in the chips 68 and predetermined regions of the conductive layer 18 in the carrier 11 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 170v, including the through vias 170a, 170b, 170c, 170d, 170e and 170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68. The specifications of the through vias 170v and the supporter 801 shown in FIG. 225 can be referred to as the specifications of the through vias 170v and the supporter 801, respectively, illustrated in FIGS. 219-223.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 60 also can be provided with the insulating layer 60a and the polymer layer 60b on the insulating layer 60a. The trenches 60t in the polymer layer 60b expose the insulating layer 60a and are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 170v are formed under the trenches 60t. Also, FIG. 156 can be an example of a schematic top perspective view showing the trenches 60t and the through vias 170v shown in FIG. 225, and FIG. 225 also can be a cross-sectional view cut along the line D-D shown in FIG. 156.


Referring to FIG. 226, after forming the structure illustrated in FIG. 224 or in FIG. 225, an adhesion/barrier layer 52 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, is formed on the layers 18, 26 and 34 exposed by the through vias 170v, on sidewalls of the through vias 170v, on sidewalls and bottoms of the trenches 60t (or on sidewalls of the trenches 60t in the polymer layer 60b and on a top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the inner walls, exposed by the through vias 170v, of the insulating plugs 789, and on the interconnect or metal trace 35a that is on the supporter 801. The adhesion/barrier layer 52 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 54 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, is formed on the adhesion/barrier layer 52 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a conduction layer 56 is formed on the seed layer 54 using a suitable process, such as electroplating process. The specifications of the adhesion/barrier layer 52, the seed layer 54, and the conduction layer 56 shown in FIG. 226 can be referred to as the specifications of the adhesion/barrier layer 52, the seed layer 54, and the conduction layer 56 as illustrated in FIG. 25, respectively.


Next, referring to FIG. 227, the layers 52, 54 and 56 are ground or polished by using, e.g., a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the dielectric layer 60 has an exposed top surface 60s, over which there are no portions of the layers 52, 54 and 56, and the layers 52, 54 and 56 outside the trenches 60t are removed.


Accordingly, the exposed top surface 60s of the dielectric layer 60 can be substantially coplanar with the ground or polished surface 56s of the conduction layer 56 in the trenches 60t, and the surfaces 56s and 60s can be substantially flat. The adhesion/barrier layer 52 and the seed layer 54 are at sidewalls and a bottom of the conduction layer 56 in the trenches 60t, and the sidewalls and the bottom of the conduction layer 56 in the trenches 60t are covered by the adhesion/barrier layer 52 and the seed layer 54.


After the layers 52, 54 and 56 are ground or polished, the dielectric layer 60 has a thickness, between the exposed top surface 60s and the surface 58s or 62s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 218-224. Alternatively, after the layers 52, 54 and 56 are ground or polished, the polymer layer 60b of the dielectric layer 60 has a thickness, between the exposed top surface 60s of the polymer layer 60b and the top surface of the insulating layer 60a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layer 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 225.


In a first alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t (or on the sidewalls of the trenches 60t in the polymer layer 60b and on the top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the sidewalls of the through vias 170v, on the inner walls of the insulating plugs 789 in the chips 68, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 218-224. Alternatively, the electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layers 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 225.


In a second alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t (or on the sidewalls of the trenches 60t in the polymer layer 60b and on the top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the sidewalls of the through vias 170v, on the inner walls of the insulating plugs 789 in the chips 68, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 218-224. Alternatively, the electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layers 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 225.


In a third alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 60t (or on the sidewalls of the trenches 60t in the polymer layer 60b and on the top surface of the insulating layer 60a at the bottoms of the trenches 60t), on the sidewalls of the through vias 170v, on the inner walls of the insulating plugs 789 in the chips 68, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 60, the trenches 60t, and the through vias 170v are formed as illustrated in FIGS. 218-224. Alternatively, the electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 60 composed of the layers 60a and 60b, the trenches 60t, and the through vias 170v are formed as illustrated in FIG. 225.


After the layers 52, 54 and 56 are ground or polished, the layers 52, 54 and 56 in the trenches 60t compose multiple metal interconnects (or damascene metal traces) 1, including metal interconnects (or damascene metal traces) 1a and 1b, in the trenches 60t. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f, respectively. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The metal interconnects 1, such as 1a and 1b, in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e.


Each of the metal plugs 5p in the chips 68 passes through one of the insulating plugs 789 in the chips 68, contacts the inner wall of the one of the insulating plugs 789, and is enclosed by the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. For example, each of the metal plugs 5b, 5c, 5d, 5e and 5f in one of the chips 68 passes through one of the insulating plugs 789 in the one of the chips 68, contacts the inner wall of the one of the insulating plugs 789, and is enclosed by the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. For more detailed description about the metal plugs 5p (including the metal plugs 5a-5f) and the metal interconnects 1 (including the metal interconnects 1a and 1b) shown in FIG. 227, please refer to the illustration in FIG. 26.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 228, after forming the structure illustrated in FIG. 227, the insulating or dielectric layer 66 illustrated in FIG. 27 is formed on the ground or polished surface 56s of the conduction layer 56 and on the exposed top surface 60s of the dielectric layer 60. Next, multiple chips 72, each of which is like the chip 72a or 72b illustrated in FIG. 212M, and the previously described dummy substrate(s) 165 are placed over the layer 116, which can be referred to as the steps illustrated in FIGS. 28-35. The arrangement of placing the chips 72 and the dummy substrate(s) 165 over the insulating or dielectric layer 66, in the embodiment, can be referred to as that of placing the chips 72 and the dummy substrate(s) 165 over the insulating or dielectric layer 66 as illustrated in FIG. 34 or 35.


Next, referring to FIG. 229, an encapsulation/gap filling material 98 is formed on a backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165, and in the gaps 4a and 8a. Next, the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 are ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical grinding and chemical-mechanical polishing, until all of the insulating plugs 789 in the chips 72 have exposed bottom surfaces 789t, over which there are no portions of the semiconductor substrates 96. The steps of forming the encapsulation/gap filling material 98 and grinding or polishing the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 illustrated in FIG. 229 can be referred to as the steps of forming the encapsulation/gap filling material 64 and grinding or polishing the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 as illustrated in FIGS. 214-217. The encapsulation/gap filling material 98 can be polysilicon, silicon oxide, or a polymer. In the case that the insulating layer 567 of the insulating plugs 789 is composed only of the layer of silicon nitride or silicon oxynitride, during the grinding or polishing process, the exposed bottom surfaces 789t are provided by the layer of silicon nitride or silicon oxynitride at tops of the insulating plugs 789. In the another case that the insulating layer 567 of the insulating plugs 789 is composed of the layer of silicon oxide and the layer of silicon nitride or silicon oxynitride, during the grinding or polishing process, the layer of silicon oxide at tops of the insulating plugs 789 is removed and the exposed bottom surfaces 789t are provided by the layer of silicon nitride or silicon oxynitride at the tops of the insulating plugs 789.


Accordingly, the semiconductor substrate 96 of each of the chips 72 can be thinned to a thickness T8, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 72, after the grinding or polishing process, the insulating plugs 789 and the semiconductor substrate 96 may have the same thickness T8. Preferably, each of the chips 72, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers.


After the grinding or polishing process, the dummy substrate(s) 165 can be thinned to a thickness T9, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 98 remaining in the gaps 4a and 8a may have a vertical thickness T10, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 96s of the semiconductor substrate 96, at the backside of each chip 72, and the ground or polished surface(s) 165s of the dummy substrate(s) 165 can be substantially flat and not covered by the encapsulation/gap filling material 98. The ground or polished surface(s) 165s may be substantially coplanar with the ground or polished surface 96s of each chip 72, with the ground or polished surface 98s of the encapsulation/gap filling material 98 in the gaps 4a and 8a, and with the exposed bottom surfaces 789t of the insulating plugs 789 in the chips 72. In each chip 72, a vertical distance D15 between the surface 96s of the semiconductor substrate 96 and the bottom of the shallow trench isolation 345 can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Referring to FIG. 230, after forming the structure illustrated in FIG. 229, the dielectric layer 88 illustrated in FIG. 40 is formed on the surface 96s of the semiconductor substrate 96 of each chip 72, on the surface(s) 165s of the dummy substrate(s) 165, on the exposed bottom surfaces 789t of the insulating plugs 789 in the chips 72, and on the surface 98s of the encapsulation/gap filling material 98.


Next, referring to FIG. 231, multiple through vias 164v, including through vias 164a, 164b, 164c, 164d and 164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72, which can be referred to as the steps illustrated in FIG. 41, but, in the embodiment, forming the through vias 164v (such as the vias 164b-164e) in the chips 72 includes etching through the insulating plugs 789 in the chips 72. The insulating plugs 789 in the chips 72 are enclosed by the semiconductor substrates 96 of the chips 72. The through vias 164v in the chips 72 pass through and are enclosed by the insulating plugs 789 in the chips 72 and expose inner walls of the insulating plugs 789. For example, the through via 164b in the left one of the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the left one of the chips 72, exposes an inner wall of the one of the insulating plugs 789, and exposes the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The through via 164c in the left one of the chips 72 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 72, exposes an inner wall of the another one of the insulating plugs 789, and exposes the insulating layer 567 of the another one of the insulating plugs 789. The through via 164d in the middle one of the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the middle one of the chips 72, exposes an inner wall of the one of the insulating plugs 789, and exposes the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The through via 164e in the middle one of the chips 72 passes through and is enclosed by another one of the insulating plugs 789 in the middle one of the chips 72, exposes an inner wall of the another one of the insulating plugs 789, and exposes the insulating layer 567 of the another one of the insulating plugs 789.


Each of the through vias 164v, such as the through via 164a, 164b, 164c, 164d, or 164e, has a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the through vias 164v, such as the through vias 164a-164e, please refer to the illustration in FIG. 41.


As shown in FIG. 231, a supporter 802 provided by the insulating or dielectric layer 66, the layer 116, and the layers 74, 82 and 108 of the middle one of the chips 72 is between the conduction layer 56 of the metal interconnect 1b and the interconnect or metal trace 55a in the interconnection layer 106 exposed by the through via 164e for the purpose of supporting the exposed interconnect or metal trace 55a. The supporter 802 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers.



FIG. 232 is a first example of a schematic top perspective view showing the through via 164e, the insulating plug 789 enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 231. The schematic top perspective view shown in FIG. 232 is similar to the schematic top perspective view shown in FIG. 42 except that the through via 164e shown in FIG. 232 is formed within one of the insulating plugs 789 in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIGS. 231 and 232, please refer to the illustration in FIGS. 41 and 42.



FIG. 233 is a second example of a schematic top perspective view showing the through via 164e, the insulating plug 789 enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 231. The schematic top perspective view shown in FIG. 233 is similar to the schematic top perspective view shown in FIG. 43 except that the through via 164e shown in FIG. 233 is formed within one of the insulating plugs 789 in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIGS. 231 and 233, please refer to the illustration in FIGS. 41 and 43.



FIG. 234 is a third example of a schematic top perspective view showing the through via 164e, the insulating plug 789 enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 231. The schematic top perspective view shown in FIG. 234 is similar to the schematic top perspective view shown in FIG. 44 except that the through via 164e shown in FIG. 234 is formed within one of the insulating plugs 789 in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIGS. 231 and 234, please refer to the illustration in FIGS. 41 and 44.



FIG. 235 is a fourth example of a schematic top perspective view showing the through via 164e, the insulating plug 789 enclosing the through via 164e, and the interconnect or metal trace 55a as illustrated in FIG. 231. The schematic top perspective view shown in FIG. 235 is similar to the schematic top perspective view shown in FIG. 42A except that the through via 164e shown in FIG. 235 is formed within one of the insulating plugs 789 in the middle one of the chips 72. For more detailed description about the through via 164e and the interconnect or metal trace 55a as shown in FIG. 235, please refer to the illustration in FIG. 42A.


Referring to FIG. 236, after forming the structure illustrated in FIG. 231, multiple trenches 88t are formed in the dielectric layer 88. The trenches 88t in the dielectric layer 88 have a depth D6, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers. The dielectric layer 88 under the trenches 88t has a remaining thickness T13, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers. The steps of forming the trenches 88t in the dielectric layer 88 shown in FIG. 236 can be referred to as the steps of forming the trenches 60t in the dielectric layer 60 as illustrated in FIGS. 153-155. The trenches 88t formed in the dielectric layer 88 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. Also, FIG. 168 can be an example of a schematic top perspective view showing the trenches 88t and the through vias 164v shown in FIG. 236, and FIG. 236 also can be a cross-sectional view cut along the line H-H shown in FIG. 168.


Alternatively, the trenches 88t illustrated in FIG. 236 can be formed in the dielectric layer 88 before the through vias 164v illustrated in FIG. 231 are formed in the chips 72 and in the dummy substrate(s) 165. Specifically, after the dielectric layer 88 is formed on the surfaces 96s, 98s, 165s and 789t as shown in FIG. 230, the trenches 88t illustrated in FIG. 236 are first formed in the dielectric layer 88, and then the through vias 164v illustrated in FIG. 231 are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72.


Alternatively, referring to FIG. 237, the dielectric layer 88, the trenches 88t, and the through vias 164v as shown in FIG. 236 can be formed by the following steps. After forming the structure illustrated in FIG. 229, an insulating layer 88a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C3, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 96s of the semiconductor substrate 96 of each chip 72, on the surface(s) 165s of the dummy substrate(s) 165, on the exposed bottom surfaces 789t of the insulating plugs 789 in the chips 72, and on the surface 98s of the encapsulation/gap filling material 98 as shown in FIG. 229.


Next, a polymer layer 88b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 88a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form the trenches 88t, exposing the insulating layer 88a, in the polymer layer 88b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 88b during the exposure process. Next, the polymer layer 88b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 88b after being cured or heated has a thickness C4, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


Next, a photoresist layer is formed on the insulating layer 88a exposed by the trenches 88t and on the polymer layer 88b, and multiple openings in the photoresist layer expose the insulating layer 88a at bottoms of the trenches 88t. Next, the insulating layer 88a under the openings in the photoresist layer is removed using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 165 under the openings in the photoresist layer and the chips 72 under the openings in the photoresist layer are etched away until predetermined regions of the layers 106 and 114 in the chips 72 and predetermined regions of the conduction layer 56 of the metal interconnects 1 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 164v, including the through vias 164a, 164b, 164c, 164d and 164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 106 and 114 of the chips 72. The specifications of the through vias 164v and the supporter 802 shown in FIG. 237 can be referred to as the specifications of the through vias 164v and the supporter 802, respectively, illustrated in FIGS. 231-235.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 88 also can be provided with the insulating layer 88a and the polymer layer 88b on the insulating layer 88a. The trenches 88t in the polymer layer 88b expose the insulating layer 88a and are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 164v are formed under the trenches 88t. Also, FIG. 168 can be an example of a schematic top perspective view showing the trenches 88t and the through vias 164v shown in FIG. 237, and FIG. 237 also can be a cross-sectional view cut along the line H-H shown in FIG. 168.


Referring to FIG. 238, after forming the structure illustrated in FIG. 236 or in FIG. 237, multiple metal interconnects (or damascene metal traces) 2, including metal interconnects (or damascene metal traces) 2a and 2b, are formed in the trenches 88t, and multiple metal plugs (or metal vias) 6p are formed in the through vias 164v. The metal plugs 6p include metal plugs (or metal vias) 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e, respectively. The metal plug 6a is formed in the dummy substrate 165. The metal plugs 6b and 6c are formed in the left one of the chips 72, and the metal plugs 6d and 6e are formed in the middle one of the chips 72. The supporter 802 and the interconnect or metal trace 55a, in the interconnection layer 106, on the supporter 802 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 106 is positioned, of the metal plug 6e.


The metal interconnects 2 in the trenches 88t and the metal plugs 6p in the through vias 164v can be formed by the following steps. First, the adhesion/barrier layer 92 illustrated in FIG. 51 is formed on the layers 56, 106 and 114 exposed by the through vias 164v, on sidewalls of the through vias 164v, on sidewalls and bottoms of the trenches 88t (or on sidewalls of the trenches 88t in the polymer layer 88b and on a top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the inner walls, exposed by the through vias 164v, of the insulating plugs 789, and on the interconnect or metal trace 55a that is on the supporter 802 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the seed layer 94 illustrated in FIG. 51 is formed on the adhesion/barrier layer 92, in the through vias 164v, and in the trenches 88t by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the conduction layer 86 illustrated in FIG. 51 is formed on the seed layer 94, in the through vias 164v, and in the trenches 88t by using a suitable process, such as electroplating process. Next, the layers 92, 94 and 86 are ground or polished by using, e.g., a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the dielectric layer 88 has an exposed top surface 88s, over which there are no portions of the layers 92, 94 and 86, and the layers 92, 94 and 86 outside the trenches 88t are removed. Accordingly, the layers 92, 94 and 86 in the trenches 88t compose the metal interconnects 2, including the metal interconnects 2a and 2b, in the trenches 88t. The layers 92, 94 and 86 in the through vias 164v compose the metal plugs 6p in the through vias 164v, including the metal plugs 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e, respectively. The adhesion/barrier layer 92 and the seed layer 94 are at sidewalls and a bottom of the conduction layer 86 in the trenches 88t, and the sidewalls and the bottom of the conduction layer 86 in the trenches 88t are covered by the adhesion/barrier layer 92 and the seed layer 94.


In a first alternative, after the layers 92, 94 and 86 are ground or polished, the adhesion/barrier layer 92 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t (or on the sidewalls of the trenches 88t in the polymer layer 88b and on the top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewalls of the through vias 164v, on the inner walls of the insulating plugs 789 in the chips 72, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 88t, and in the through vias 164v. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 230-236. Alternatively, the electroplated copper layer in the trenches 88t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 237.


In a second alternative, after the layers 92, 94 and 86 are ground or polished, the adhesion/barrier layer 92 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t (or on the sidewalls of the trenches 88t in the polymer layer 88b and on the top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewalls of the through vias 164v, on the inner walls of the insulating plugs 789 in the chips 72, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 88t, and in the through vias 164v. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 230-236. Alternatively, the electroplated copper layer in the trenches 88t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 237.


In a third alternative, after the layers 92, 94 and 86 are ground or polished, the adhesion/barrier layer 92 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 88t (or on the sidewalls of the trenches 88t in the polymer layer 88b and on the top surface of the insulating layer 88a at the bottoms of the trenches 88t), on the layers 56, 106 and 114 at the bottoms of the through vias 164v, on the sidewalls of the through vias 164v, on the inner walls of the insulating plugs 789 in the chips 72, and on the interconnect or metal trace 55a that is on the supporter 802. The seed layer 94 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 88t, and in the through vias 164v. The conduction layer 86 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 88t, and in the through vias 164v. The electroplated copper layer in the trenches 88t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 230-236. Alternatively, the electroplated copper layer in the trenches 88t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 237.


The exposed top surface 88s of the dielectric layer 88 can be substantially coplanar with the ground or polished surface 86s of the conduction layer 86 in the trenches 88t, and the surfaces 86s and 88s can be substantially flat. After the layers 92, 94 and 86 are ground or polished, the dielectric layer 88 may have a thickness, between the exposed top surface 88s and the surface 96s or 165s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers, in case the dielectric layer 88, the trenches 88t, and the through vias 164v are formed as illustrated in FIGS. 230-236. Alternatively, after the layers 92, 94 and 86 are ground or polished, the polymer layer 88b of the dielectric layer 88 may have a thickness, between the exposed top surface 88s of the polymer layer 88b and the top surface of the insulating layer 88a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 88 composed of the layers 88a and 88b, the trenches 88t, and the through vias 164v are formed as illustrated in FIG. 237.


Each of the metal plugs 6p in the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the chips 72 and contacts the inner wall of the one of the insulating plugs 789. For example, the metal plug 6b in the left one of the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the left one of the chips 72, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The metal plug 6c in the left one of the chips 72 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 72, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 of the another one of the insulating plugs 789. The metal plug 6d in the middle one of the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the middle one of the chips 72, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The metal plug 6e in the middle one of the chips 72 passes through and is enclosed by another one of the insulating plugs 789 in the middle one of the chips 72, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 of the another one of the insulating plugs 789. For more detailed description about the metal plugs 6p (including the metal plugs 6a-6e) and the metal interconnects 2 (including the metal interconnects 2a and 2b) shown in FIG. 238, please refer to the illustration in FIG. 52.


Alternatively, the element 72 not only can indicate a chip, but also can indicate a wafer. When the element 72 is a wafer, the element 68 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 239, after forming the structure illustrated in FIG. 238, the insulating or dielectric layer 120 illustrated in FIG. 53 is formed on the ground or polished surface 86s of the conduction layer 86 and on the exposed top surface 88s of the dielectric layer 88. Next, multiple chips 118, each of which is like the chip 118a or 118b illustrated in FIG. 212N, and the previously described dummy substrate(s) 158 are placed over the layer 140, which can be referred to as the steps illustrated in FIGS. 54-59. The arrangement of placing the chips 118 and the dummy substrate(s) 158 over the insulating or dielectric layer 120, in the embodiment, can be referred to as that of placing the chips 118 and the dummy substrate(s) 158 over the insulating or dielectric layer 120 as illustrated in FIG. 58 or 59.


Next, referring to FIG. 240, an encapsulation/gap filling material 138 is formed on a backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158, and in the gaps 4b and 8b. Next, the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 are ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical grinding and chemical-mechanical polishing, until all of the insulating plugs 789 in the chips 118 have exposed bottom surfaces 789u, over which there are no portions of the semiconductor substrates 124. The steps of forming the encapsulation/gap filling material 138 and grinding or polishing the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 illustrated in FIG. 240 can be referred to as the steps of forming the encapsulation/gap filling material 64 and grinding or polishing the encapsulation/gap filling material 64, the backside of the semiconductor substrate 58 of each chip 68, and the dummy substrate(s) 62 as illustrated in FIGS. 214-217. The encapsulation/gap filling material 138 can be polysilicon, silicon oxide, or a polymer. In the case that the insulating layer 567 of the insulating plugs 789 is composed only of the layer of silicon nitride or silicon oxynitride, during the grinding or polishing process, the exposed bottom surfaces 789u are provided by the layer of silicon nitride or silicon oxynitride at tops of the insulating plugs 789. In the another case that the insulating layer 567 of the insulating plugs 789 is composed of the layer of silicon oxide and the layer of silicon nitride or silicon oxynitride, during the grinding or polishing process, the layer of silicon oxide at tops of the insulating plugs 789 is removed and the exposed bottom surfaces 789u are provided by the layer of silicon nitride or silicon oxynitride at the tops of the insulating plugs 789.


Accordingly, the semiconductor substrate 124 of each of the chips 118 can be thinned to a thickness T15, e.g., between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 30 micrometers, between 1 and 10 micrometers, or between 1 and 5 micrometers, and preferably between 2 and 20 micrometers or between 3 and 30 micrometers. Regarding to each of the chips 118, after the grinding or polishing process, the insulating plugs 789 and the semiconductor substrate 124 may have the same thickness T15. Preferably, each of the chips 118, after the grinding or polishing process, may have a thickness, e.g., between 3 and 105 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers.


After the grinding or polishing process, the dummy substrate(s) 158 can be thinned to a thickness T16, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers, and the encapsulation/gap filling material 138 remaining in the gaps 4b and 8b may have a vertical thickness T17, e.g., between 3 and 100 micrometers, and preferably between 3 and 30 micrometers or between 5 and 25 micrometers. The ground or polished surface 124s of the semiconductor substrate 124, at the backside of each chip 118, and the ground or polished surface(s) 158s of the dummy substrate(s) 158 can be substantially flat and not covered by the encapsulation/gap filling material 138. The ground or polished surface(s) 158s may be substantially coplanar with the ground or polished surface 124s of each chip 118, with the ground or polished surface 138s of the encapsulation/gap filling material 138 in the gaps 4b and 8b, and with the exposed bottom surfaces 789u of the insulating plugs 789 in the chips 118. In each chip 118, a vertical distance D16 between the ground or polished surface 124s of the semiconductor substrate 124 and the bottom of the shallow trench isolation 345 can be, e.g., greater than 0.1 micrometers, such as between 1 and 100 micrometers, between 1 and 50 micrometers, between 1 and 25 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 0.1 and 2 micrometers.


Referring to FIG. 241, after forming the structure illustrated in FIG. 240, the dielectric layer 139 illustrated in FIG. 64 is formed on the surface 124s of the semiconductor substrate 124 of each chip 118, on the surface(s) 158s of the dummy substrate(s) 158, on the exposed bottom surfaces 789u of the insulating plugs 789 in the chips 118, and on the surface 138s of the encapsulation/gap filling material 138.


Next, referring to FIG. 242, multiple through vias 156v, including through vias 156a, 156b, 156c, 156d, 156e and 156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118, which can be referred to as the steps illustrated in FIG. 65, but, in the embodiment, forming the through vias 156v (such as the vias 156b-156f) in the chips 118 includes etching through the insulating plugs 789 in the chips 118. The insulating plugs 789 in the chips 118 are enclosed by the semiconductor substrates 124 of the chips 118. The through vias 156v in the chips 118 pass through and are enclosed by the insulating plugs 789 in the chips 118 and expose inner walls of the insulating plugs 789. For example, the through via 156b in the left one of the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the left one of the chips 118, exposes an inner wall of the one of the insulating plugs 789, and exposes the insulating layer 567 of the one of the insulating plugs 789. The through via 156c in the left one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 118, exposes an inner wall of the another one of the insulating plugs 789, and exposes the insulating layer 456, enclosed by the insulating layer 567, of the another one of the insulating plugs 789. The through via 156d in the left one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 118, exposes an inner wall of the another one of the insulating plugs 789, and exposes the insulating layer 567 and the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. The through via 156e in the middle one of the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the middle one of the chips 118, exposes an inner wall of the one of the insulating plugs 789, and exposes the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The through via 156f in the middle one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the middle one of the chips 118, exposes an inner wall of the another one of the insulating plugs 789, and exposes the insulating layer 567 and the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789.


Each of the through vias 156v, such as the through via 156a, 156b, 156c, 156d, 156e, or 156f, has a width or a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the through vias 156v, such as the through vias 156a-156f, please refer to the illustration in FIG. 65.


As shown in FIG. 242, a supporter 803 provided by the insulating or dielectric layer 120, the layer 140, and the layers 21, 78 and 28 of the middle one of the chips 118 is between the conduction layer 86 of the metal interconnect 2b and the interconnect or metal trace 75a in the interconnection layer 17 exposed by the through via 156e for the purpose of supporting the exposed interconnect or metal trace 75a. The supporter 803 may have a height, e.g., between 0.5 and 10 micrometers, and preferably between 1 and 5 micrometers, and a width, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 10 micrometers, 0.3 and 5 micrometers, or between 0.3 and 1 micrometers.



FIG. 243 is a first example of a schematic top perspective view showing the through via 156e, the insulating plug 789 enclosing the through via 156e, and the interconnect or metal trace 75a in the middle one of the chips 118 as illustrated in FIG. 242. The schematic top perspective view shown in FIG. 243 is similar to the schematic top perspective view shown in FIG. 66 except that the through via 156e shown in FIG. 243 is formed within one of the insulating plugs 789 in the middle one of the chips 118. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIGS. 242 and 243, please refer to the illustration in FIGS. 65 and 66.



FIG. 244 is a second example of a schematic top perspective view showing the through via 156e, the insulating plug 789 enclosing the through via 156e, and the interconnect or metal trace 75a as illustrated in FIG. 242. The schematic top perspective view shown in FIG. 244 is similar to the schematic top perspective view shown in FIG. 67 except that the through via 156e shown in FIG. 244 is formed within one of the insulating plugs 789 in the middle one of the chips 118. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIGS. 242 and 244, please refer to the illustration in FIGS. 65 and 67.



FIG. 245 is a third example of a schematic top perspective view showing the through via 156e, the insulating plug 789 enclosing the through via 156e, and the interconnect or metal trace 75a as illustrated in FIG. 242. The schematic top perspective view shown in FIG. 245 is similar to the schematic top perspective view shown in FIG. 68 except that the through via 156e shown in FIG. 245 is formed within one of the insulating plugs 789 in the middle one of the chips 118. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIGS. 242 and 245, please refer to the illustration in FIGS. 65 and 68.



FIG. 246 is a fourth example of a schematic top perspective view showing the through via 156e, the insulating plug 789 enclosing the through via 156e, and the interconnect or metal trace 75a as illustrated in FIG. 242. The schematic top perspective view shown in FIG. 246 is similar to the schematic top perspective view shown in FIG. 66A except that the through via 156e shown in FIG. 246 is formed within one of the insulating plugs 789 in the middle one of the chips 118. For more detailed description about the through via 156e and the interconnect or metal trace 75a as shown in FIG. 246, please refer to the illustration in FIG. 66A.


Referring to FIG. 247, after forming the structure illustrated in FIG. 242, multiple trenches 139t are formed in the dielectric layer 139. The trenches 139t in the dielectric layer 139 have a depth D9, e.g., between 0.1 and 5 micrometers, and preferably between 0.5 and 3 micrometers. The dielectric layer 139 under the trenches 139t has a remaining thickness T20, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 5 micrometers, between 0.5 and 2 micrometers, between 0.1 and 3 micrometers, or between 0.2 and 1.5 micrometers. The steps of forming the trenches 139t in the dielectric layer 139 can be referred to as the steps of forming the trenches 60t in the dielectric layer 60 as illustrated in FIGS. 153-155. The trenches 139t formed in the dielectric layer 139 are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. Also, FIG. 179 can be an example of a schematic top perspective view showing the trenches 139t and the through vias 156v shown in FIG. 247, and FIG. 247 also can be a cross-sectional view cut along the line K-K shown in FIG. 179.


Alternatively, the trenches 139t illustrated in FIG. 247 can be formed in the dielectric layer 139 before the through vias 156v illustrated in FIG. 242 are formed in the chips 118 and the dummy substrate(s) 158. Specifically, after the dielectric layer 139 is formed on the surfaces 124s, 138s, 158s and 789u as shown in FIG. 241, the trenches 139t illustrated in FIG. 247 are formed in the dielectric layer 139, and then the through vias 156v illustrated in FIG. 242 are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118.


Alternatively, referring to FIG. 248, the dielectric layer 139, the trenches 139t, and the through vias 156v as shown in FIG. 247 can be formed by the following steps. After forming the structure illustrated in FIG. 240, an insulating layer 139a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C5, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 124s of the semiconductor substrate 124 of each chip 118, on the surface(s) 158s of the dummy substrate(s) 158, on the exposed bottom surfaces 789u of the insulating plugs 789 in the chips 118, and on the surface 138s of the encapsulation/gap filling material 138 as shown in FIG. 240.


Next, a polymer layer 139b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 139a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form the trenches 139t, exposing the insulating layer 139a, in the polymer layer 139b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 139b during the exposure process. Next, the polymer layer 139b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 139b after being cured or heated has a thickness C6, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


Next, a photoresist layer is formed on the insulating layer 139a exposed by the trenches 139t and on the polymer layer 139b, and multiple openings in the photoresist layer expose the insulating layer 139a at bottoms of the trenches 139t. Next, the insulating layer 139a under the openings in the photoresist layer is removed using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 158 under the openings in the photoresist layer and the chips 118 under the openings in the photoresist layer are etched away until predetermined regions of the layers 17 and 19 in the chips 118 and predetermined regions of the conduction layer 86 of the metal interconnects 2 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 156v, including the through vias 156a, 156b, 156c, 156d, 156e and 156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118. The specifications of the through vias 156v and the supporter 803 shown in FIG. 248 can be referred to as the specifications of the through vias 156v and the supporter 803, respectively, illustrated in FIGS. 242-246.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 139 also can be provided with the insulating layer 139a and the polymer layer 139b on the insulating layer 139a. The trenches 139t in the polymer layer 139b expose the insulating layer 139a and are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 156v are formed under the trenches 139t. Also, FIG. 179 can be an example of a schematic top perspective view showing the trenches 139t and the through vias 156v shown in FIG. 248, and FIG. 248 also can be a cross-sectional view cut along the line K-K shown in FIG. 179.


Referring to FIG. 249, after forming the structure illustrated in FIG. 247 or in FIG. 248, multiple metal interconnects (or damascene metal traces) 3, including metal interconnects (or damascene metal traces) 3a, 3b and 3c, are formed in the trenches 139t, and multiple metal plugs (or metal vias) 7p are formed in the through vias 156v. The metal plugs 7p include metal plugs (or metal vias) 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f, respectively. The metal plug 7a is formed in the dummy substrate 158. The metal plugs 7b, 7c and 7d are formed in the left one of the chips 118, and the metal plugs 7e and 7f are formed in the middle one of the chips 118. The supporter 803 and the interconnect or metal trace 75a, in the interconnection layer 17, on the supporter 803 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 17 is positioned, of the metal plug 7e.


The metal interconnects 3 in the trenches 139t and the metal plugs 7p in the through vias 156v can be formed by the following steps. First, the adhesion/barrier layer 125a illustrated in FIG. 75 is formed on the layers 17, 19 and 86 exposed by the through vias 156v, on sidewalls of the through vias 156v, on sidewalls and bottoms of the trenches 139t (or on sidewalls of the trenches 139t in the polymer layer 139b and on a top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the inner walls, exposed by the through vias 156v, of the insulating plugs 789, and on the interconnect or metal trace 75a that is on the supporter 803 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the seed layer 125b illustrated in FIG. 75 is formed on the adhesion/barrier layer 125a, in the through vias 156v, and in the trenches 139t by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, the conduction layer 125c illustrated in FIG. 75 is formed on the seed layer 125b, in the through vias 156v, and in the trenches 139t by using a suitable process, such as electroplating process. Next, the layers 125a, 125b and 125c are ground or polished using, e.g., a chemical-mechanical-polishing (CMP) process, a mechanical polishing process, a mechanical grinding process, or a process including mechanical polishing and chemical etching until the dielectric layer 139 has an exposed top surface 139s, over which there are no portions of the layers 125a, 125b and 125c, and the layers 125a, 125b and 125c outside the trenches 139t are removed. Accordingly, the layers 125a, 125b and 125c in the trenches 139t compose the metal interconnects 3, including the metal interconnects 3a, 3b and 3c, in the trenches 139t. The layers 125a, 125b and 125c in the through vias 156v compose the metal plugs 7p in the through vias 156v, including the metal plugs 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f, respectively. The adhesion/barrier layer 125a and the seed layer 125b are at sidewalls and a bottom of the conduction layer 125c in the trenches 139t, and the sidewalls and the bottom of the conduction layer 125c in the trenches 139t are covered by the adhesion/barrier layer 125a and the seed layer 125b.


In a first alternative, after the layers 125a, 125b and 125c are ground or polished, the adhesion/barrier layer 125a can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t (or on the sidewalls of the trenches 139t in the polymer layer 139b and on the top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewalls of the through vias 156v, on the inner walls of the insulating plugs 789 in the chips 118, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 139t, and in the through vias 156v. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 241-247. Alternatively, the electroplated copper layer in the trenches 139t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 248.


In a second alternative, after the layers 125a, 125b and 125c are ground or polished, the adhesion/barrier layer 125a can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t (or on the sidewalls of the trenches 139t in the polymer layer 139b and on the top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewalls of the through vias 156v, on the inner walls of the insulating plugs 789 in the chips 118, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 139t, and in the through vias 156v. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 241-247. Alternatively, the electroplated copper layer in the trenches 139t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 248.


In a third alternative, after the layers 125a, 125b and 125c are ground or polished, the adhesion/barrier layer 125a can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls and bottoms of the trenches 139t (or on the sidewalls of the trenches 139t in the polymer layer 139b and on the top surface of the insulating layer 139a at the bottoms of the trenches 139t), on the layers 17, 19 and 86 at the bottoms of the through vias 156v, on the sidewalls of the through vias 156v, on the inner walls of the insulating plugs 789 in the chips 118, and on the interconnect or metal trace 75a that is on the supporter 803. The seed layer 125b can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 139t, and in the through vias 156v. The conduction layer 125c can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 139t, and in the through vias 156v. The electroplated copper layer in the trenches 139t has a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 0.3 and 1.5 micrometers or between 0.5 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 241-247. Alternatively, the electroplated copper layer in the trenches 139t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 248.


The exposed top surface 139s of the dielectric layer 139 can be substantially coplanar with the ground or polished surface 227 of the conduction layer 125c in the trenches 139t, and the surfaces 139s and 227 can be substantially flat. After the layers 125a, 125b and 125c are ground or polished, the dielectric layer 139 may have a thickness, between the exposed top surface 139s and the surface 124s or 158s, e.g., between 1 and 10 micrometers, and preferably between 1 and 3 micrometers, in case the dielectric layer 139, the trenches 139t, and the through vias 156v are formed as illustrated in FIGS. 241-247. Alternatively, after the layers 125a, 125b and 125c are ground or polished, the polymer layer 139b of the dielectric layer 139 may have a thickness, between the exposed top surface 139s of the polymer layer 139b and the top surface of the insulating layer 139a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers, in case the dielectric layer 139 composed of the layers 139a and 139b, the trenches 139t, and the through vias 156v are formed as illustrated in FIG. 248.


Each of the metal plugs 7p in the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the chips 118 and contacts the inner wall of the one of the insulating plugs 789. For example, the metal plug 7b in the left one of the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the left one of the chips 118, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 567 of the one of the insulating plugs 789. The metal plug 7c in the left one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 118, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. The metal plug 7d in the left one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 118, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 and the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. The metal plug 7e in the middle one of the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the middle one of the chips 118, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The metal plug 7f in the middle one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the middle one of the chips 118, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 and the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. For more detailed description about the metal plugs 7p (including the metal plugs 7a-7f) and the metal interconnects 3 (including the metal interconnects 3a, 3b and 3c) shown in FIG. 249, please refer to the illustration in FIG. 76.


Alternatively, the element 118 not only can indicate a chip, but also can indicate a wafer. When the element 118 is a wafer, the element 72 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 250, after forming the structure illustrated in FIG. 249, the following steps can be subsequently performed as illustrated in FIGS. 77-81, and then a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 556a and 556b.


The system-in package or multichip module 556a can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 251, the system-in package or multichip module 556a can be bonded with a top side of a carrier 176 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, an under fill 174 can be formed between the polymer layer 136 of the system-in package or multichip module 556a and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, multiple solder balls 178 can be formed on a bottom side of the carrier 176. The specifications of the carrier 176, the under fill 174, and the solder balls 178 shown in FIG. 251 can be referred to as the specifications of the carrier 176, the under fill 174, and the solder balls 178 as illustrated in FIG. 83, respectively.



FIG. 252 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure illustrated in FIG. 249, the steps as illustrated in FIGS. 77-79 can be subsequently performed. Next, forming metal bumps 668 on the polymer layer 136 and on the contact points, at the bottoms of the openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 can be referred to as the steps illustrated in FIG. 84. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 556c. In the system-in package or multichip module 556c, each of the interconnects 3 can be connected to one or more of the metal bumps 668.


The system-in package or multichip module 556c can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 253, the system-in package or multichip module 556c can be bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Alternatively, the metal joints 180 can be a gold layer having a thickness between 0.1 and 10 micrometers. Next, the under fill 174 illustrated in FIG. 83 can be formed between the polymer layer 136 of the system-in package or multichip module 556c and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 can be formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 250-253 can be omitted. In this case, the polymer layer 136 is formed on the surfaces 227 and 139s, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIG. 254 shows a multichip package 566f including a system-in package or multichip module 556d connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps.


After forming the structure illustrated in FIG. 249, the steps illustrated in FIG. 86 are performed to form an insulating or dielectric layer 122 on the ground or polished surface 227 of the conduction layer 125c and on the exposed top surface 139s of the dielectric layer 139, to form multiple metal interconnects or traces 300 on the insulating or dielectric layer 122 and on multiple regions, exposed by multiple openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3, and to form a polymer layer 136 on the insulating or dielectric layer 122 and on the metal interconnects or traces 300. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers, and multiple openings 136a in the polymer layer 136 expose multiple contact points of the metal interconnects or traces 300. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize a plurality of the system-in package or multichip module 556d.


Next, the plurality of the system-in package or multichip module 556d can be joined with a carrier 176 by, e.g., forming a glue layer 182 with a thickness between 20 and 150 micrometers on a top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 556d to the top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, can be wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 556d can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 can be formed on the plurality of the system-in package or multichip module 556d, on the top side of the carrier 176, and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 556d, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 can be formed on a bottom side of the carrier 176. Thereafter, a singulation process can be performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566f. The multichip package 566f can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178. The specifications of the carrier 176 shown in FIG. 254 can be referred to as the specifications of the carrier 176 as illustrated in FIG. 83.



FIGS. 255-270 show a process for forming another system-in package or multichip module according to another embodiment of the present disclosure. Referring to FIG. 255, after forming the structure illustrated in FIG. 215, the dielectric layer 60 illustrated in FIG. 186 is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, on the exposed bottom surfaces 789s of the insulating plugs 789 in the chips 68, and on the surface 64s of the encapsulation/gap filling material 64. Next, multiple through vias 170v, including through vias 170a, 170b, 170c, 170d, 170e and 170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68. The steps of forming the through vias 170v in the chips 68 and in the dummy substrate(s) 62 illustrated in FIG. 255 can be referred to as the steps of forming the through vias 170v in the chips 68 and in the dummy substrate(s) 62 as illustrated in FIG. 15, but, in the embodiment, forming the through vias 170v (such as the vias 170b-170f) in the chips 68 includes etching through the insulating plugs 789 in the chips 68. The specifications of the through vias 170v (including the vias 170a-170f), the insulating plugs 789 enclosing the through vias 170v, and the supporter 801 shown in FIG. 255 can be referred to as the specifications of the through vias 170v (including the vias 170a-170f), the insulating plugs 789 enclosing the through vias 170v, and the supporter 801, respectively, illustrated in FIGS. 219-223.


Next, referring to FIG. 256, the adhesion/barrier layer 52 illustrated in FIG. 90 is formed on the layers 18, 26 and 34 exposed by the through vias 170v, on sidewalls of the through vias 170v, on the dielectric layer 60, on the inner walls, exposed by the through vias 170v, of the insulating plugs 789, and on the interconnect or metal trace 35a that is on the supporter 801. Next, the seed layer 54 illustrated in FIG. 90 is formed on the adhesion/barrier layer 52 and in the through vias 170v. Next, a photoresist layer 194 is formed on the seed layer 54 by using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 194a, exposing multiple regions of the seed layer 54, in the photoresist layer 194. The patterned photoresist layer 194 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, the conduction layer 56 illustrated in FIG. 90 is formed on the regions, exposed by the openings 194a in the layer 194, of the seed layer 54.


Next, referring to FIG. 257, the photoresist layer 194 is removed using, e.g., an organic chemical solution. Next, the seed layer 54 not under the conduction layer 56 is removed by using a wet etching process or a dry etching process. Next, the adhesion/barrier layer 52 not under the conduction layer 56 is removed by using a wet etching process or a dry etching process. Accordingly, the layers 52, 54 and 56 over the dielectric layer 60 and over the through vias 170v compose multiple metal interconnects 1, including metal interconnects 1a and 1b, over the dielectric layer 60 and over the through vias 170v. The adhesion/barrier layer 52 and the seed layer 54 of the metal interconnects 1 over the dielectric layer 60 are not at any sidewall 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60, but under a bottom of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60. The sidewalls 1w of the conduction layer 56 of the metal interconnects 1 over the dielectric layer 60 are not covered by the layers 52 and 54. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f as shown in FIG. 255, respectively. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e.


Each of the metal plugs 5p in the chips 68 passes through one of the insulating plugs 789 in the chips 68, contacts the inner wall of the one of the insulating plugs 789, and is enclosed by the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. For example, each of the metal plugs 5b, 5c, 5d, 5e and 5f in one of the chips 68 passes through one of the insulating plugs 789 in the one of the chips 68, contacts the inner wall of the one of the insulating plugs 789, and is enclosed by the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. For more detailed description about the metal plugs 5p (including the metal plugs 5a-5f) and the metal interconnects 1 (including the metal interconnects 1a and 1b) shown in FIG. 257, please refer to the illustration in FIG. 91.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 258, after forming the structure illustrated in FIG. 257, an insulating or dielectric layer 66 is formed on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in gaps between the metal interconnects 1. The insulating or dielectric layer 66, for example, may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in the gaps between the metal interconnects 1. The polymer layer on the conduction layer 56 may have a thickness, e.g., between 0.1 and 50 micrometers, and preferably between 1 and 30 micrometers, between 2 and 20 micrometers, or between 5 and 10 micrometers.


Alternatively, the insulating or dielectric layer 66 may include or can be an inorganic layer, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in the gaps between the metal interconnects 1. The inorganic layer on the conduction layer 56 may have a thickness, e.g., between 0.1 and 10 micrometers, and preferably between 0.1 and 1 micrometers, between 0.2 and 2 micrometers, between 0.3 and 3 micrometers, or between 0.5 and 5 micrometers.


Alternatively, referring to FIG. 259, the insulating or dielectric layer 66 as shown in FIG. 258 can be formed by the following steps. First, a polymer layer 66a, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), is formed on the conduction layer 56 of the metal interconnects 1, on the dielectric layer 60, and in the gaps between the metal interconnects 1. Next, the polymer layer 66a is ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching, until the conduction layer 56 of the metal interconnects 1 has a top surface 56u not covered by the polymer layer 66a. Accordingly, the polymer layer 66a remains on the dielectric layer 60 and in the gaps between the metal interconnects 1 and has a thickness, e.g., greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers. The ground or polished surface 66s of the polymer layer 66a can be substantially flat and substantially coplanar with the top surface 56u of the conduction layer 56. Next, an inorganic layer 66b, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness, e.g., between 0.1 and 3 micrometers, and preferably between 0.2 and 1.5 micrometers, is formed on the top surface 56u of the conduction layer 56 and on the ground or polished surface 66s of the polymer layer 66a. Accordingly, the insulating or dielectric layer 66 as shown in FIG. 258 also can be provided with the polymer layer 66a and the inorganic layer 66b as shown in FIG. 259.


Referring to FIG. 260, after forming the insulating or dielectric layer 66, the following steps can be subsequently performed as illustrated in FIGS. 228 and 229 to place the chips 72, each of which is like the chip 72a or 72b illustrated in FIG. 212M, and the previously described dummy substrate(s) 165 over the layer 116 formed on the layer 66, to form the encapsulation/gap filling material 98 on the backside of the semiconductor substrate 96 of each chip 72, on the dummy substrate(s) 165, and in the gaps 4a and 8a, and to grind or polish the encapsulation/gap filling material 98, the backside of the semiconductor substrate 96 of each chip 72, and the dummy substrate(s) 165 until all of the insulating plugs 789 in the chips 72 have the exposed bottom surfaces 789t, over which there are no portions of the semiconductor substrates 96.


Next, referring to FIG. 261, the dielectric layer 88 illustrated in FIG. 195 is formed on the surface 96s of the semiconductor substrate 96 of each chip 72, on the surface(s) 165s of the dummy substrate(s) 165, on the exposed bottom surfaces 789t of the insulating plugs 789 in the chips 72, and on the surface 98s of the encapsulation/gap filling material 98. Next, multiple through vias 164v, including through vias 164a, 164b, 164c, 164d and 164e, are formed in the chips 72 and in the dummy substrate(s) 165, exposing the conduction layer 56 of the metal interconnects 1 and exposing the layers 114 and 106 of the chips 72. The steps of forming the through vias 164v in the chips 72 and in the dummy substrate(s) 165 illustrated in FIG. 261 can be referred to as the steps of forming the through vias 164v in the chips 72 and in the dummy substrate(s) 165 as illustrated in FIG. 41, but, in the embodiment, forming the through vias 164v (such as the vias 164b-164e) in the chips 72 includes etching through the insulating plugs 789 in the chips 72. The specifications of the through vias 164v (including the vias 164a-164e), the insulating plugs 789 enclosing the through vias 164v, and the supporter 802 shown in FIG. 261 can be referred to as the specifications of the through vias 164v (including the vias 164a-164e), the insulating plugs 789 enclosing the through vias 164v, and the supporter 802, respectively, illustrated in FIGS. 231-235.


Next, referring to FIG. 262, the adhesion/barrier layer 92 illustrated in FIG. 95 is formed on the layers 56, 106 and 114 exposed by the through vias 164v, on sidewalls of the through vias 164v, on the dielectric layer 88, on the inner walls, exposed by the through vias 164v, of the insulating plugs 789 in the chips 72, and on the interconnect or metal trace 55a that is on the supporter 802. Next, the seed layer 94 illustrated in FIG. 95 is formed on the adhesion/barrier layer 92 and in the through vias 164v. Next, a photoresist layer 294 is formed on the seed layer 94 by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 294a, exposing multiple regions of the seed layer 94, in the photoresist layer 294. The patterned photoresist layer 294 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, the conduction layer 86 illustrated in FIG. 95 is formed on the regions, exposed by the openings 294a in the layer 294, of the seed layer 94.


Next, referring to FIG. 263, the photoresist layer 294 is removed using, e.g., an organic chemical solution. Next, the seed layer 94 not under the conduction layer 86 is removed by using a wet etching process or a dry etching process. Next, the adhesion/barrier layer 92 not under the conduction layer 86 is removed by using a wet etching process or a dry etching process. Accordingly, the layers 92, 94 and 86 over the dielectric layer 88 and over the through vias 164v compose multiple metal interconnects 2, including metal interconnects 2a and 2b, over the dielectric layer 88 and over the through vias 164v. The adhesion/barrier layer 92 and the seed layer 94 of the metal interconnects 2 over the dielectric layer 88 are not at any sidewall 2w of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88, but under a bottom of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88. The sidewalls 2w of the conduction layer 86 of the metal interconnects 2 over the dielectric layer 88 are not covered by the layers 92 and 94. The layers 92, 94 and 86 in the through vias 164v compose multiple metal plugs (or metal vias) 6p in the through vias 164v, including metal plugs (or metal vias) 6a, 6b, 6c, 6d and 6e in the through vias 164a, 164b, 164c, 164d and 164e as shown in FIG. 261, respectively. The metal plug 6a is formed in the dummy substrate 165, the metal plugs 6b and 6c are formed in the left one of the chips 72, and the metal plugs 6d and 6e are formed in the middle one of the chips 72. The supporter 802 and the interconnect or metal trace 55a, in the interconnection layer 106, on the supporter 802 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 106 is positioned, of the metal plug 6e. These metal plugs 6p formed in the chips 72 and in the dummy substrate(s) 165 can connect the metal interconnects 2 and the semiconductor devices 102 in the chips 72 and connect the metal interconnects 1 and 2.


Each of the metal plugs 6p in the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the chips 72 and contacts the inner wall of the one of the insulating plugs 789. For example, the metal plug 6b in the left one of the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the left one of the chips 72, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The metal plug 6c in the left one of the chips 72 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 72, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 of the another one of the insulating plugs 789. The metal plug 6d in the middle one of the chips 72 passes through and is enclosed by one of the insulating plugs 789 in the middle one of the chips 72, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The metal plug 6e in the middle one of the chips 72 passes through and is enclosed by another one of the insulating plugs 789 in the middle one of the chips 72, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 of the another one of the insulating plugs 789. For more detailed description about the metal plugs 6p (including the metal plugs 6a-6e) and the metal interconnects 2 (including the metal interconnects 2a and 2b) shown in FIG. 263, please refer to the illustration in FIG. 96.


Alternatively, the element 72 not only can indicate a chip, but also can indicate a wafer. When the element 72 is a wafer, the element 68 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Next, referring to FIG. 264, an insulating or dielectric layer 120 is formed on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in gaps between the metal interconnects 2. The insulating or dielectric layer 120, for example, may include or can be a polymer layer, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in the gaps between the metal interconnects 2. The polymer layer on the conduction layer 86 may have a thickness, e.g., between 0.1 and 50 micrometers, and preferably between 1 and 30 micrometers, between 2 and 20 micrometers, or between 5 and 10 micrometers.


Alternatively, the insulating or dielectric layer 120 may include or can be an inorganic layer, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in the gaps between the metal interconnects 2. The inorganic layer on the conduction layer 86 may have a thickness, e.g., between 0.1 and 10 micrometers, and preferably between 0.1 and 1 micrometers, between 0.2 and 2 micrometers, between 0.3 and 3 micrometers, or between 0.5 and 5 micrometers.


Alternatively, referring to FIG. 265, the insulating or dielectric layer 120 as shown in FIG. 264 can be formed by the following steps. First, a polymer layer 120a, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, poly-phenylene oxide (PPO), or polybenzoxazole (PBO), is formed on the conduction layer 86 of the metal interconnects 2, on the dielectric layer 88, and in the gaps between the metal interconnects 2. Next, the polymer layer 120a is ground or polished by a suitable process, such as mechanical grinding process, mechanical polishing process, chemical-mechanical-polishing (CMP) process, or a process including mechanical polishing and chemical etching, until the conduction layer 86 of the metal interconnects 2 has a top surface 86u not covered by the polymer layer 120a. Accordingly, the polymer layer 120a remains on the dielectric layer 88 and in the gaps between the metal interconnects 2 and has a thickness, e.g., greater than 1 micrometer, such as between 1 and 20 micrometers, and preferably between 1 and 10 micrometers, between 1 and 5 micrometers, or between 2 and 20 micrometers. The ground or polished surface 120s of the polymer layer 120a can be substantially flat and substantially coplanar with the top surface 86u of the conduction layer 86. Next, an inorganic layer 120b, such as a layer of silicon oxide, silicon nitride, silicon carbon nitride, silicon oxynitride, or silicon oxycarbide, having a thickness, e.g., between 0.1 and 3 micrometers, and preferably between 0.2 and 1.5 micrometers, is formed on the top surface 86u of the conduction layer 86 and on the ground or polished surface 120s of the polymer layer 120a. Accordingly, the insulating or dielectric layer 120 as shown in FIG. 264 also can be provided with the polymer layer 120a and the inorganic layer 120b as shown in FIG. 265.


Referring to FIG. 266, after forming the insulating or dielectric layer 120, the following steps can be subsequently performed as illustrated in FIGS. 239 and 240 to place the chips 118, each of which is like the chip 118a or 118b illustrated in FIG. 212N, and the previously described dummy substrate(s) 158 over the layer 140 formed on the layer 120, to form the encapsulation/gap filling material 138 on the backside of the semiconductor substrate 124 of each chip 118, on the dummy substrate(s) 158, and in the gaps 4b and 8b, and to grind or polish the encapsulation/gap filling material 138, the backside of the semiconductor substrate 124 of each chip 118, and the dummy substrate(s) 158 until all of the insulating plugs 789 in the chips 118 have the exposed bottom surfaces 789u, over which there are no portions of the semiconductor substrates 124.


Next, referring to FIG. 267, the dielectric layer 139 illustrated in FIG. 204 is formed on the surface 124s of the semiconductor substrate 124 of each chip 118, on the surface(s) 158s of the dummy substrate(s) 158, on the exposed bottom surfaces 789u of the insulating plugs 789 in the chips 118, and on the surface 138s of the encapsulation/gap filling material 138. Next, multiple through vias 156v, including through vias 156a, 156b, 156c, 156d, 156e, and 156f, are formed in the chips 118 and in the dummy substrate(s) 158, exposing the conduction layer 86 of the metal interconnects 2 and exposing the layers 17 and 19 of the chips 118. The steps of forming the through vias 156v in the chips 118 and in the dummy substrate(s) 158 illustrated in FIG. 267 can be referred to as the steps of forming the through vias 156v in the chips 118 and in the dummy substrate(s) 158 as illustrated in FIG. 65, but, in the embodiment, forming the through vias 156v (such as the vias 156b-156f) in the chips 118 includes etching through the insulating plugs 789 in the chips 118. The specifications of the through vias 156v (including the vias 156a-156f), the insulating plugs 789 enclosing the through vias 156v, and the supporter 803 shown in FIG. 267 can be referred to as the specifications of the through vias 156v (including the vias 156a-156f), the insulating plugs 789 enclosing the through vias 156v, and the supporter 803, respectively, illustrated in FIGS. 242-246.


Next, referring to FIG. 268, the adhesion/barrier layer 125a illustrated in FIG. 100 is formed on the layers 17, 19 and 86 exposed by the through vias 156v, on sidewalls of the through vias 156v, on the dielectric layer 139, on the inner walls, exposed by the through vias 156v, of the insulating plugs 789 in the chips 118, and on the interconnect or metal trace 75a that is on the supporter 803. Next, the seed layer 125b illustrated in FIG. 100 is formed on the adhesion/barrier layer 125a and in the through vias 156v. Next, a photoresist layer 394 is formed on the seed layer 125b by using, e.g., a spin coating process, a screen printing process, or a lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings 394a, exposing multiple regions of the seed layer 125b, in the photoresist layer 394. The patterned photoresist layer 394 may have a thickness, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers or between 1 and 10 micrometers. Next, the conduction layer 125c illustrated in FIG. 100 is formed on the regions, exposed by the openings 394a in the layer 394, of the seed layer 125b.


Next, referring to FIG. 269, the photoresist layer 394 is removed using, e.g., an organic chemical solution. Next, the seed layer 125b not under the conduction layer 125c is removed by using a wet etching process or a dry etching process. Next, the adhesion/barrier layer 125a not under the conduction layer 125c is removed by using a wet etching process or a dry etching process. Accordingly, the layers 125a, 125b and 125c over the dielectric layer 139 and over the through vias 156v compose multiple metal interconnects 3, including metal interconnects 3a, 3b and 3c, over the dielectric layer 139 and over the through vias 156v. The adhesion/barrier layer 125a and the seed layer 125b of the metal interconnects 3 over the dielectric layer 139 are not at any sidewall 3w of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139, but under a bottom of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139. The sidewalls 3w of the conduction layer 125c of the metal interconnects 3 over the dielectric layer 139 are not covered by the layers 125a and 125b. The layers 125a, 125b and 125c in the through vias 156v compose multiple metal plugs (or metal vias) 7p in the through vias 156v, including metal plugs (or metal vias) 7a, 7b, 7c, 7d, 7e and 7f in the through vias 156a, 156b, 156c, 156d, 156e and 156f as shown in FIG. 267, respectively. The metal plug 7a is formed in the dummy substrate 158. The metal plugs 7b, 7c and 7d are formed in the left one of the chips 118, and the metal plugs 7e and 7f are formed in the middle one of the chips 118. These metal plugs 7p formed in the chips 118 and in the dummy substrate(s) 158 can connect the metal interconnects 3 and the semiconductor devices 13 in the chips 118 and connect the metal interconnects 2 and 3. The supporter 803 and the interconnect or metal trace 75a, in the interconnection layer 17, on the supporter 803 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 17 is positioned, of the metal plug 7e.


Each of the metal plugs 7p in the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the chips 118 and contacts the inner wall of the one of the insulating plugs 789. For example, the metal plug 7b in the left one of the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the left one of the chips 118, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 567 of the one of the insulating plugs 789. The metal plug 7c in the left one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 118, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. The metal plug 7d in the left one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the left one of the chips 118, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 and the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. The metal plug 7e in the middle one of the chips 118 passes through and is enclosed by one of the insulating plugs 789 in the middle one of the chips 118, contacts the inner wall of the one of the insulating plugs 789, and contacts the insulating layer 456, enclosed by the insulating layer 567, of the one of the insulating plugs 789. The metal plug 7f in the middle one of the chips 118 passes through and is enclosed by another one of the insulating plugs 789 in the middle one of the chips 118, contacts the inner wall of the another one of the insulating plugs 789, and contacts the insulating layer 567 and the insulating layer 456, enclosed by the layer 567, of the another one of the insulating plugs 789. For more detailed description about the metal plugs 7p (including the metal plugs 7a-7f) and the metal interconnects 3 (including the metal interconnects 3a, 3b and 3c) shown in FIG. 269, please refer to the illustration in FIG. 101.


Alternatively, the element 118 not only can indicate a chip, but also can indicate a wafer. When the element 118 is a wafer, the element 72 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


Referring to FIG. 270, after forming the structure illustrated in FIG. 269, the following steps can be subsequently performed as illustrated in FIG. 102 to form the insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in the gaps between the metal interconnects 3, to form the polymer layer 136 on the insulating or dielectric layer 122, and to form multiple openings 136a, exposing multiple regions of the insulating or dielectric layer 122, in the polymer layer 136. Next, forming an under bump metallurgic (UBM) layer 666 on the polymer layer 136 and on multiple contact points, at bottoms of multiple openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 and forming multiple solder bumps or balls 126 on the UBM layer 666 can be referred to as the steps illustrated in FIGS. 78-81. Next, a singulation process is performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in packages or multichip modules 556e and 556f.


The system-in package or multichip module 556e can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the solder bumps or balls 126. For example, referring to FIG. 271, the system-in package or multichip module 556e is bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder bumps or balls 126 with a solder or gold layer preformed on the top side of the carrier 176. Next, the under fill 174 illustrated in FIG. 83 is formed between the polymer layer 136 of the system-in package or multichip module 556e and the top side of the carrier 176 and encloses the solder bumps or balls 126. Next, the solder balls 178 illustrated in FIG. 83 are formed on the bottom side of the carrier 176.



FIG. 272 shows another system-in package or multichip module according to another embodiment of the present disclosure, which can be formed by the following steps. After forming the structure illustrated in FIG. 269, the following steps can be subsequently performed as illustrated in FIG. 102 to form the insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in the gaps between the metal interconnects 3, to form the polymer layer 136 on the insulating or dielectric layer 122, and to form multiple openings 136a, exposing multiple regions of the insulating or dielectric layer 122, in the polymer layer 136. Next, the steps illustrated in FIGS. 78 and 79 can be subsequently performed. Next, forming metal bumps 668 on the polymer layer 136 and on contact points, at bottoms of openings in the insulating or dielectric layer 122 and under the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3 can be referred to as the steps illustrated in FIG. 84. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as system-in package or multichip module 556g. In the system-in package or multichip module 556g, each of the interconnects 3 can be connected to one or more of the metal bumps 668.


The system-in package or multichip module 556g can be connected to and bonded with a carrier, such as mother board, printed circuit board (PCB), ball-grid-array (BGA) substrate, metal substrate, glass substrate, or ceramic substrate, using the metal bumps 668. For example, referring to FIG. 273, the system-in package or multichip module 556g is bonded with the top side of the carrier 176 illustrated in FIG. 83 using, e.g., a flip chip technology of joining the solder wetting layer 146 of the metal bumps 668 with a solder or gold layer preformed on the top side of the carrier 176. After joining the solder wetting layer 146 with the solder or gold layer preformed on the top side of the carrier 176, multiple metal joints 180 are formed between the barrier layer 144 of the metal bumps 668 and the top side of the carrier 176. The metal joints 180 can be a layer of a Sn—Ag alloy, a Sn—Ag—Cu alloy, a Sn—Au alloy, or a Sn—Pb alloy having a thickness between 5 and 50 micrometers. Next, the under fill 174 illustrated in FIG. 83 is formed between the polymer layer 136 of the system-in package or multichip module 556g and the top side of the carrier 176 and encloses the metal bumps 668 and the metal joints 180. Next, the solder balls 178 illustrated in FIG. 83 are formed on the bottom side of the carrier 176.


Alternatively, the insulating or dielectric layer 122 as shown FIGS. 270-273 can be omitted. In this case, the polymer layer 136 is formed on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in the gaps between the metal interconnects 3, and the contact points of the conduction layer 125c of the metal interconnects 3 are exposed by and at ends of the openings 136a in the polymer layer 136. Further, the adhesion/barrier layer 134 is formed on the contact points, exposed by and at the ends of the openings 136a in the polymer layer 136, of the conduction layer 125c of the metal interconnects 3.



FIG. 274 shows a multichip package 566g including a system-in package or multichip module 556h connected to the carrier 176 illustrated in FIG. 83 through wirebonded wires 184, which can be formed by, e.g., the following steps. After forming the structure illustrated in FIG. 269, the following steps can be subsequently performed as illustrated in FIG. 107 to form an insulating or dielectric layer 122 on the conduction layer 125c of the metal interconnects 3, on the dielectric layer 139, and in gaps between the metal interconnects 3, to form multiple metal interconnects or traces 300 on the insulating or dielectric layer 122 and on multiple regions, exposed by multiple openings 122a in the layer 122, of the conduction layer 125c of the metal interconnects 3, and to form a polymer layer 136 on the insulating or dielectric layer 122 and on the metal interconnects or traces 300. The polymer layer 136 after being cured may have a thickness, e.g., between 1 and 20 micrometers, and preferably between 2 and 15 micrometers or between 5 and 10 micrometers, and multiple openings 136a in the polymer layer 136 expose multiple contact points of the metal interconnects or traces 300. Next, a singulation process can be performed to cut the carrier 11, the dummy substrates 62, 165 and 158, and the layers 22, 60, 66, 88, 116, 120, 122, 136, 139 and 140 by using, e.g., mechanical sawing or laser cutting and to singularize multiple system-in packages or multichip modules, such as the system-in package or multichip module 556h.


Next, a plurality of the system-in package or multichip module 556h are joined with a carrier 176 by, e.g., forming a glue layer 182 with a thickness, e.g., between 1 and 20 micrometers or between 20 and 150 micrometers on a top side of the carrier 176, and then attaching the plurality of the system-in package or multichip module 556h to the top side of the carrier 11 using the glue layer 182. The glue layer 182 can be a polymer layer, such as a layer of polyimide, epoxy, benzocyclobutene (BCB), polybenzoxazole (PBO), poly-phenylene oxide (PPO), silosane, or SU-8, with a thickness, e.g., between 1 and 20 micrometers or between 20 and 150 micrometers. Next, multiple wires 184, such as gold wires, copper wires, or aluminum wires, are wirebonded onto the top side of the carrier 176 and onto the contact points, exposed by the openings 136a in the polymer layer 136, of the conduction layer 150 of the metal interconnects or traces 300 by a wirebonding process. Accordingly, the metal interconnects or traces 300 of the plurality of the system-in package or multichip module 556h can be physically and electrically connected to the carrier 176 through the wirebonded wires 184. Next, a molding compound 186 is formed on the plurality of the system-in package or multichip module 556h, on the top side of the carrier 176 and on the wirebonded wires 184, encapsulating the wirebonded wires 184 and the plurality of the system-in package or multichip module 556h, by a molding process. The molding compound 186 may include epoxy, carbon filler or glass filler, and the glass filler or carbon filler can be distributed in the epoxy. Next, the solder balls 178 illustrated in FIG. 83 are formed on the bottom side of the carrier 176. Thereafter, a singulation process is performed to cut the carrier 176 and the molding compound 186 and to singularize a plurality of the multichip package 566g. The multichip package 566g can be connected to a carrier, such as mother board, ball-grid-array (BGA) substrate, printed circuit board, metal substrate, glass substrate, or ceramic substrate, through the solder balls 178. The specifications of the carrier 176 shown in FIG. 274 can be referred to as the specifications of the carrier 176 as illustrated in FIG. 83.



FIGS. 275A-275L show another process for forming the dielectric layer 60, the trenches 60t, the sidewall dielectric layers 50, and the through vias 170v as shown in FIG. 26. Referring to FIG. 275A, after forming the structure illustrated in FIG. 11, an insulating layer 60a, such as a layer of silicon oxide, silicon nitride, silicon oxynitride, silicon carbon nitride, or silicon oxycarbide, having a thickness C1, e.g., between 0.1 and 5 micrometers, and preferably between 0.2 and 1.5 micrometers or between 0.15 and 2 micrometers, is formed on the surface 58s of the semiconductor substrate 58 of each chip 68, on the surface(s) 62s of the dummy substrate(s) 62, and on the surface 64s of the encapsulation/gap filling material 64.


Next, referring to FIG. 275B, multiple through vias 170v, including through vias 170a, 170b, 170c, 170d, 170e and 170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the conductive layer 18 of the carrier 11 and exposing the layers 26 and 34 of the chips 68, by, e.g., the following steps. First, a photoresist layer is formed on the insulating layer 60a by using a suitable process, such as spin coating process or lamination process. Next, a photo exposure process and a development process can be employed to form multiple openings, exposing multiple regions of the insulating layer 60a, in the photoresist layer. Next, the insulating layer 60a under the openings in the photoresist layer is removed by using a suitable process, such as anisotropic plasma etching process. Next, the dummy substrate(s) 62 under the openings in the photoresist layer and the chips 68 under the openings in the photoresist layer are etched away until predetermined regions of the layers 26 and 34 in the chips 68 and predetermined regions of the conductive layer 18 in the carrier 11 are exposed by the openings in the photoresist layer. Next, the photoresist layer is removed by using, e.g., an organic chemical. Accordingly, the through vias 170v, including the vias 170a-170f, are formed in the chips 68 and in the dummy substrate(s) 62, exposing the predetermined regions of the conductive layer 18 of the carrier 11 and exposing the predetermined regions of the layers 26 and 34 of the chips 68. The specifications of the through vias 170v and the supporter 801 shown in FIG. 275B can be referred to as the specifications of the through vias 170v and the supporter 801 as illustrated in FIG. 15. FIGS. 275C and 275D are two examples of schematic top perspective views showing the through via 170e and the interconnect or metal trace 35a shown in FIG. 275B.


As shown in FIGS. 275B and 275C, the through via 170e can be, but is not limited to, oval-shaped and has a width W1, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers. The oval-shaped through via 170e in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes two regions of the conductive layer 18 in the carrier 11 under the one of the chips 68. The interconnect or metal trace 35a has a line-shaped region, exposed by the oval-shaped through via 170e, extending in a horizontal direction from a side of the oval-shaped through via 170e to the opposite side of the oval-shaped through via 170e through a center of the oval-shaped through via 170e. The supporter 801, between the conductive layer 18 of the carrier 11 and the exposed line-shaped region of the interconnect or metal trace 35a in the interconnection layer 34, can be line-shaped, like the exposed line-shaped region of the interconnect or metal trace 35a. The interconnect or metal trace 35a exposed by the oval-shaped through via 170e has a width W2, e.g., between 0.3 and 30 micrometers, and preferably between 0.3 and 20 micrometers, between 0.3 and 10 micrometers, between 0.3 and 5 micrometers, or between 0.3 and 1 micrometers. A horizontal distance S1 between an endpoint of the long axis of the oval-shaped through via 170e and an edge, which is closer to the endpoint than the other opposite edge, of the interconnect or metal trace 35a exposed by the oval-shaped through via 170e can be, e.g., between 1 and 30 micrometers, and preferably between 1 and 20 micrometers, between 1 and 10 micrometers, between 1 and 5 micrometers, or between 3 and 10 micrometers.


As shown in FIGS. 275B and 275D, the through via 170e can be, but is not limited to, a circular shape and has a diameter, e.g., between 0.5 and 100 micrometers, between 0.5 and 50 micrometers, between 0.5 and 30 micrometers, between 0.5 and 20 micrometers, between 0.5 and 10 micrometers, or between 0.5 and 5 micrometers, and preferably between 1 and 3 micrometers. The through via 170e in one of the chips 68 exposes the interconnect or metal trace 35a in the one of the chips 68 and exposes a region of the conductive layer 18 in the carrier 11 under the one of the chips 68. The interconnect or metal trace 35a has a peninsula region, exposed by the through via 170e, extending in a horizontal direction from one side of the through via 170e at least to a center of the through via 170e, but does not reach to the opposite side of the through via 170e; the interconnect or metal trace 35a has an end exposed by the through via 170e. The supporter 801, between the conductive layer 18 of the carrier 11 and the exposed peninsula region of the interconnect or metal trace 35a in the interconnection layer 34, can be peninsula-shaped, like the exposed peninsula region of the interconnect or metal trace 35a.


Next, referring to FIG. 275E, the dielectric layer 50 illustrated in FIG. 19 is formed on a top surface of the insulating layer 60a, on the conductive layer 18, exposed by the through vias 170v (such as the vias 170a, 170b and 170e), of the carrier 11, on the layers 26 and 34, exposed by the through vias 170v (such as the vias 170c, 170d, 170e and 170f), of the chips 68, and on sidewalls of the through vias 170v.


Next, referring to FIG. 275F, the dielectric layer 50 formed on the top surface of the insulating layer 60a and on the layers 18, 26 and 34 is removed by using a suitable process, such as anisotropic plasma etching process. Accordingly, the dielectric layer 50 at bottoms of the through vias 170v, on the top surface of the insulating layer 60a, and on a top surface of the interconnect or metal trace 35a on the supporter 801 is etched away, and the dielectric layer 50 remains on the sidewalls of the through vias 170v, so called as sidewall dielectric layers in the through vias 170v. The sidewall dielectric layers 50 are formed on the sidewalls of the through vias 170v in the chips 68 or in the dummy substrate(s) 62 and are enclosed by the semiconductor substrates 58 of the chips 68 or by the dummy substrate(s) 62. FIGS. 275G and 275H are two examples of schematic top views showing the through via 170e, the sidewall dielectric layer 50 on the sidewall of the through via 170e and on sidewalls of the supporter 801, and the interconnect or metal trace 35a shown in FIG. 275F.


Next, referring to FIG. 275I, a polymer layer 60b, such as a layer of polyimide, benzocyclobutene (BCB), epoxy, polybenzoxazole (PBO), or poly-phenylene oxide (PPO), is formed on the insulating layer 60a using a suitable process, such as spin coating process, screen printing process, or lamination process. Next, an exposure process and a development process can be employed to form multiple trenches 60t, exposing the insulating layer 60a, the through vias 170v and the layers 18, 26 and 34 exposed by the through vias 170v, in the polymer layer 60b. A 1X stepper or 1X contact aligner can be used to expose the polymer layer 60b during the exposure process. Next, the polymer layer 60b is cured or heated at a temperature between 150 degrees centigrade and 400 degrees centigrade, and preferably between 180 degrees centigrade and 250 degrees centigrade. The polymer layer 60b after being cured or heated has a thickness C2, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers. FIG. 275J is a schematic top perspective view showing the trenches 60t, the sidewall dielectric layers 50 and the through vias 170v (including the vias 170a-170f) shown in FIG. 275I according an embodiment of the present invention, and FIG. 275I is a cross-sectional view cut along the line D-D shown in FIG. 275J.


Accordingly, using the above-mentioned steps, the above-mentioned dielectric layer 60 also can be provided with the insulating layer 60a and the polymer layer 60b on the insulating layer 60a. The trenches 60t in the polymer layer 60b are used to provide spaces having inter-chip interconnects and intra-chip interconnects formed therein. The through vias 170v are formed under the trenches 60t.


Next, referring to FIG. 275K, an adhesion/barrier layer 52 having a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, is formed on the layers 18, 26 and 34 exposed by the through vias 170v, on the sidewalls of the through vias 170v, on a top surface of the polymer layer 60b, on sidewalls of the trenches 60t in the polymer layer 60b, on the top surface of the insulating layer 60a at the bottoms of the trenches 60t, and on the interconnect or metal trace 35a that is on the supporter 801. The adhesion/barrier layer 52 can be formed by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a seed layer 54 having a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, is formed on the adhesion/barrier layer 52 by a physical vapor deposition (PVD) process, such as sputtering process or evaporation process, by a chemical-vapor deposition (CVD) process, or by other thin-film deposition processes, such as atomic layer deposition (ALD). Next, a conduction layer 56 is formed on the seed layer 54 using a suitable process, such as electroplating process.


The adhesion/barrier layer 52 may include or can be a layer of titanium, a titanium-tungsten alloy, titanium nitride, chromium, tantalum, tantalum nitride, nickel, or nickel vanadium having a thickness, e.g., smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers. The seed layer 54 may include or can be a layer of copper, a titanium-copper alloy, nickel, gold, or silver having a thickness, e.g., smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the adhesion/barrier layer 52. The conduction layer 56 may include or can be an electroplated metal layer of copper, gold, or silver on the seed layer 54.


Next, referring to FIG. 275L, the layers 52, 54 and 56 are ground or polished by using a suitable process, such as chemical-mechanical-polishing (CMP) process, mechanical polishing process, mechanical grinding process, or a process including mechanical polishing and chemical etching, until the polymer layer 60b of the dielectric layer 60 has an exposed top surface 60s, over which there are no portions of the layers 52, 54 and 56, and the layers 52, 54 and 56 outside the trenches 60t are removed.


Accordingly, the exposed top surface 60s of the polymer layer 60b can be substantially coplanar with the ground or polished surface 56s of the conduction layer 56 in the trenches 60t, and the surfaces 56s and 60s can be substantially flat. The adhesion/barrier layer 52 and the seed layer 54 are at sidewalls and a bottom of the conduction layer 56 in the trenches 60t, and the sidewalls and the bottom of the conduction layer 56 in the trenches 60t are covered by the adhesion/barrier layer 52 and the seed layer 54. After the layers 52, 54 and 56 are ground or polished, the polymer layer 60b of the dielectric layer 60 has a thickness, between the exposed top surface 60s of the polymer layer 60b and the top surface of the insulating layer 60a, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


In a first alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a titanium-containing layer, such as a single layer of titanium, titanium-tungsten alloy, or titanium nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls of the trenches 60t in the polymer layer 60b, on the top surface of the insulating layer 60a at the bottoms of the trenches 60t, on the sidewalls of the through vias 170v, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the titanium-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


In a second alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a tantalum-containing layer, such as a single layer of tantalum or tantalum nitride, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls of the trenches 60t in the polymer layer 60b, on the top surface of the insulating layer 60a at the bottoms of the trenches 60t, on the sidewalls of the through vias 170v, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the tantalum-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


In a third alternative, after the layers 52, 54 and 56 are ground or polished, the adhesion/barrier layer 52 can be a chromium-containing layer, such as a single layer of chromium, with a thickness smaller than 1 micrometer, such as between 1 nanometer and 0.5 micrometers, and preferably between 0.1 and 0.2 micrometers, on the sidewalls of the trenches 60t in the polymer layer 60b, on the top surface of the insulating layer 60a at the bottoms of the trenches 60t, on the sidewalls of the through vias 170v, on the layers 18, 26 and 34 at the bottoms of the through vias 170v, and on the interconnect or metal trace 35a that is on the supporter 801. The seed layer 54 can be a single layer of copper or a titanium-copper alloy with a thickness smaller than 1 micrometer, such as between 10 nanometers and 0.8 micrometers, and preferably between 80 nanometers and 0.15 micrometers, on the chromium-containing layer, in the trenches 60t, and in the through vias 170v. The conduction layer 56 can be an electroplated copper layer on the single layer of copper or a titanium-copper alloy, in the trenches 60t, and in the through vias 170v. The electroplated copper layer in the trenches 60t has a thickness, e.g., between 1 and 50 micrometers, and preferably between 2 and 30 micrometers or between 5 and 25 micrometers.


After the layers 52, 54 and 56 are ground or polished, the layers 52, 54 and 56 in the trenches 60t compose multiple metal interconnects (or damascene metal traces) 1, including metal interconnects (or damascene metal traces) 1a and 1b, in the trenches 60t. The layers 52, 54 and 56 in the through vias 170v compose multiple metal plugs (or metal vias) 5p in the through vias 170v, including metal plugs (or metal vias) 5a, 5b, 5c, 5d, 5e and 5f in the through vias 170a, 170b, 170c, 170d, 170e and 170f, respectively. Each of the metal plugs 5p in the chips 68 and in the dummy substrate(s) 62 is enclosed by one of the sidewall dielectric layers 50 in the through vias 170v. The metal plug 5a is formed in the dummy substrate 62, and the metal plugs 5b, 5c, 5d, 5e and 5f are formed in the same chip 68. The supporter 801 and the interconnect or metal trace 35a, in the interconnection layer 34, on the supporter 801 can be between two portions, lower than a horizontal level, at which a top surface of the interconnection layer 34 is positioned, of the metal plug 5e. These metal plugs 5p formed in the chips 68 and in the dummy substrate(s) 62 can connect the metal interconnects 1 and the semiconductor devices 36 in the chips 68 and connect the metal interconnects 1 and multiple contact points of the conductive layer 18 in the carrier 11. The metal interconnects 1, such as 1a and 1b, in the trenches 60t may have a thickness, e.g., between 0.1 and 5 micrometers, and preferably between 1 and 3 micrometers. For more detailed description about the metal plugs 5p (including the metal plugs 5a-5f) and the metal interconnects 1 (including the metal interconnects 1a and 1b) shown in FIG. 275L, please refer to the illustration in FIG. 26.


Alternatively, the element 68 not only can indicate a chip, but also can indicate a wafer. When the element 68 is a wafer, the carrier 11 can be another wafer. Thereby, the process illustrated in the invention can be employed to the wafer-to-wafer bonding.


After forming the structure illustrated in FIG. 275L, the steps illustrated in FIGS. 27-88 can be performed to form the system-in package or multichip module 555, 555b, or 555c.


In FIG. 82, 83, 84, 85, 87, 88, 103, 104, 105, 106, 108, 109, 128, 129, 130, 131, 132, 136, 137, 138, 139, 181, 140, 182, 183, 184, 185, 207, 208, 209, 250, 210, 211, 251, 252, 253, 254, 270, 271, 272, 273, or 274, any one of the chips 68 may have a different circuit design from that of any one of the chips 72 and 118 and may have a different area (top surface) or size from that of any one of the chips 72 and 118, and any one of the chips 72 may have a different circuit design from that of any one of the chips 118 and may have a different area (top surface) or size from that of any one of the chips 118. Alternatively, the chip 72 including the metal plug 6d may have a different circuit design or a different area (top surface) or size from that of the chip 118 including the metal plug 7e and may have a same circuit design or a same area (top surface) or size as that of the chip 118 including the metal plug 7d, and the chip 72 including the metal plug 6c may have a same circuit design or a same area (top surface) or size as that of the chip 72 including the metal plug 6d or may have a different circuit design or a different area (top surface) or size from that of the chip 72 including the metal plug 6d.


Regarding to the previously described system-in package or multichip module 555, 555b, 555c, 555e, 555g, 555h, 555j, 555m, 555n, 555o, 555q, 555r, 555s, 555u, 555v, 555w, 555y, 555z, 556a, 556c, 556d, 556e, 556g, or 556h, no matter where the chips 68, 72 and 118 are provided, each of the chips 68, 72 and 118 can be a central-processing-unit (CPU) chip designed by x86 architecture, a central-processing-unit (CPU) chip designed by non x86 architectures, such as ARM, Strong ARM or MIPs, a graphics-processing-unit (GPU) chip, a digital-signal-processing (DSP) chip, a baseband chip, a wireless local area network (WLAN) chip, a memory chip, such as flash memory chip, dynamic-random-access-memory (DRAM) chip or static-random-access-memory (SRAM) chip, a logic chip, an analog chip, a power device, a regulator, a power management device, a global-positioning-system (GPS) chip, a “Bluetooth” chip, a system-on chip (SOC) including a graphics-processing-unit (GPU) circuit block, a wireless local area network (WLAN) circuit block and a central-processing-unit (CPU) circuit block designed by x86 architecture or by non x86 architectures, a system-on chip (SOC) including a baseband circuit block, a wireless local area network (WLAN) circuit block and a central-processing-unit (CPU) circuit block designed by x86 architecture or by non x86 architectures, a system-on chip (SOC) including a baseband circuit block, a graphics-processing-unit (GPU) circuit block and a central-processing-unit (CPU) circuit block designed by x86 architecture or by non x86 architectures, or a system-on chip (SOC) including a central-processing-unit (CPU) circuit block, a graphics-processing-unit (GPU) circuit block, and a memory circuit block (such as flash memory circuit block, dynamic-random-access-memory (DRAM) circuit block, or static-random-access-memory (SRAM) circuit block). Alternatively, each of the chips 68, 72 and 118 can be a chip including one or more of a central-processing-unit (CPU) circuit block, a graphics-processing-unit (GPU) circuit block, a digital-signal-processing (DSP) circuit block, a memory circuit block (such as dynamic-random-access-memory (DRAM) circuit block, static-random-access-memory (SRAM) circuit block, or flash memory circuit block), a baseband circuit block, a Bluetooth circuit block, a global-positioning-system (GPS) circuit block, a wireless local area network (WLAN) circuit block, and a modem circuit block.


Regarding to the previously described system-in package or multichip module 555, 555b, 555c, 555e, 555g, 555h, 555j, 555m, 555n, 555o, 555q, 555r, 555s, 555u, 555v, 555w, 555y, 555z, 556a, 556c, 556d, 556e, 556g, or 556h, each of the chips 68, 72 and 118 may include loading input/output (I/O) circuits serving for chip probing testing (CP testing), for built-in-self testing, or for external signal transmission through the solder bumps or balls 126, through the metal bumps 668, or through the wirebonded wires 184. Each of the loading input/output (I/O) circuits may have a total loading (total capacitance) greater than 10 pF (pico farad), such as between 15 pF and 50 pF. Each of the chips 68, 72 and 118 may further include small loading input/output (I/O) circuits each having a total loading (total capacitance) between 0.1 pF and 10 pF, and preferably between 0.1 pF and 2 pF.


For example, each of the chips 68 may include some of the small loading input/output (I/O) circuits serving for intra-chip signal connection, having a data bit width between 32 and 2,048, between 128 and 2,048, between 256 and 1,024, between 512 and 1,024, or equal to or more than 128, to be connected to another one of the chips 68 through the metal plugs 5p and through the metal interconnects 1, may include some of the small loading input/output (I/O) circuits serving for inter-chip signal connection, having a data bit width between 32 and 2,048, between 128 and 2,048, between 256 and 1,024, between 512 and 1,024, or equal to or more than 128, to be connected to one or more of the chips 72 through the metal plugs 5p and 6p and through the metal interconnects 1 and 2, and may include some of the small loading input/output (I/O) circuits serving for inter-chip signal connection, having a data bit width between 32 and 2,048, between 128 and 2,048, between 256 and 1,024, between 512 and 1,024, or equal to or more than 128, to be connected to one of the chips 118 through the metal plugs 5p, 6p and 7p and through the metal interconnects 1, 2 and 3. Each of the chips 72 may include some of the small loading input/output (I/O) circuits serving for intra-chip signal connection, having a data bit width between 32 and 2,048, between 128 and 2,048, between 256 and 1,024, between 512 and 1,024, or equal to or more than 128, to be connected to another one of the chips 72 through the metal plugs 6p and through the metal interconnects 2, and may include some of the small loading input/output (I/O) circuits serving for inter-chip signal connection, having a data bit width between 32 and 2,048, between 128 and 2,048, between 256 and 1,024, between 512 and 1,024, or equal to or more than 128, to be connected to one of the chips 118 through the metal plugs 6p and 7p and through the metal interconnects 2 and 3. Each of the chips 118 may include some of the small loading input/output (I/O) circuits serving for intra-chip signal connection, having a data bit width between 32 and 2,048, between 128 and 2,048, between 256 and 1,024, between 512 and 1,024, or equal to or more than 128, to be connected to another one of the chips 118 through the metal plugs 7p and through the metal interconnects 3.


Regarding to the previously described system-in package or multichip module 555, 555b, 555c, 555e, 555g, 555h, 555j, 555m, 555n, 555o, 555q, 555r, 555s, 555u, 555v, 555w, 555y, 555z, 556a, 556c, 556d, 556e, 556g, or 556h, the chips 68 can be connected to multiple metal interconnects of the conductive layer 18 of the carrier 11 through the metal interconnects 1 (such as the metal interconnects 1a and 1b) and through the metal plugs 5p, can be connected to the chips 72 through the metal plugs 5p and 6p, through the metal interconnects 1 (such as the metal interconnects 1a and 1b), and through the metal interconnects 2 (such as the metal interconnects 2a and 2b), and can be connected to the chips 118 through the metal plugs 5p, 6p and 7p, through the metal interconnects 1 (such as the metal interconnects 1a and 1b), through the metal interconnects 2 (such as the metal interconnects 2a and 2b), and through the metal interconnects 3 (such as the metal interconnects 3a and 3c). The chips 72 can be connected to the metal interconnects of the conductive layer 18 of the carrier 11 through the metal interconnects 2 (such as the metal interconnects 2a and 2b), through the metal interconnects 1 (such as the metal interconnects 1a and 1b), and through the metal plugs 5p and 6p, and can be connected to the chips 118 through the metal plugs 6p and 7p, through the metal interconnects 2 (such as the metal interconnects 2a and 2b), and through the metal interconnects 3 (such as the metal interconnects 3a and 3c). The chips 118 can be connected to the metal interconnects of the conductive layer 18 of the carrier 11 through the metal interconnects 3 (such as the metal interconnects 3a and 3c), through the metal interconnects 2 (such as the metal interconnects 2a and 2b), through the metal interconnects 1 (such as the metal interconnects 1a and 1b), and through the metal plugs 5p, 6p and 7p.



FIG. 276 is an example of a circuit diagram showing interface circuits between two chips. The circuits 700 and 800 can be provided in any two of the previously described chips 68, 72 and 118 of the previously described system-in package or multichip module illustrated in FIG. 82, 83, 84, 85, 87, 88, 103, 104, 105, 106, 108, 109, 128, 129, 130, 131, 132, 136, 137, 138, 139, 181, 140, 182, 183, 184, 185, 207, 208, 209, 250, 210, 211, 251, 252, 253, 254, 270, 271, 272, 273, or 274. The circuits 700 include contact points P1 and P2 connected to contact points P3 and P4 of the circuits 800 through metal interconnects 350 that are not connected to any external circuit of the system-in package or multichip module, such as the previously described carrier 176. The circuits 700 further include contact points P5 and P6 serving for chip probing testing (CP testing), for built-in-self testing, or for external signal connection. The circuits 800 further include contact points P7 and P8 serving for chip probing testing (CP testing), for built-in-self testing, or for external signal connection. Alternatively, the contact points P5 and P6 of the circuits 700 and the contact points P7 and P8 of the circuits 800 can be connected to an external circuit of the system-in package or multichip module, such as mother board, metal substrate, glass substrate, ceramic substrate or the previously described carrier 176, through the previously described solder bumps or balls 126, through the previously described metal bumps 672, or through the previously described wirebonded wires 184.


In a first alternative, the circuits 700 can be provided in one of the chips 68, and the circuits 800 can be provided in another one of the chips 68. In this case, the two contact points P1 and P2 of the circuits 700 are two contact points, at bottoms of two of the through vias 170v in the one of the chips 68, of the layers 26 and/or 34 of the one of the chips 68, in which the two contact points are not connected to any external circuit of the system-in package or multichip module, and the two contact points P3 and P4 of the circuits 800 are two contact points, at bottoms of two of the through vias 170v in the another one of the chips 68, of the layers 26 and/or 34 of the another one of the chips 68, in which the two contact points are not connected to any external circuit of the system-in package or multichip module. The contact point P5 of the circuits 700, for example, can be a contact point, at the bottom of the previously described through via 170c or 170d, of the interconnect or metal trace 35d or 35c, connecting to the previously described metal plug 5c or 5d, and the contact point P6 of the circuits 700 can be a contact point, at the bottom of the previously described through via 170f, of the interconnect or metal trace 35b, connecting to the previously described metal plug 5f. Alternatively, the contact point P5 of the circuits 700 can be a contact point, at the bottom of the previously described through via 170c or 170d, of the interconnect or metal trace 35d or 35c, connecting to the previously described metal plug 5c or 5d, and the contact point P6 of the circuits 700 can be a contact point of the interconnect or metal trace 35a on the previously described supporter 801, connecting to the previously described metal plug 5e. Alternatively, the contact point P5 of the circuits 700 can be a contact point of the interconnect or metal trace 35a on the previously described supporter 801, connecting to the previously described metal plug 5e, and the contact point P6 of the circuits 700 can be a contact point, at the bottom of the previously described through via 170c or 170d, of the interconnect or metal trace 35d or 35c, connecting to the previously described metal plug 5c or 5d. The metal interconnect 350 connecting the contact point P1 of the circuits 700 and the contact point P3 of the circuits 800 includes one of the metal plugs 5p in the one of the chips 68, one of the metal plugs 5p in the another one of the chips 68, and one of the metal interconnects 1. The metal interconnect 350 connecting the contact point P2 of the circuits 700 and the contact point P4 of the circuits 800 includes another one of the metal plugs 5p in the one of the chips 68, another one of the metal plugs 5p in the another one of the chips 68, and another one of the metal interconnects 1.


In a second alternative, the circuits 700 can be provided in one of the chips 68, and the circuits 800 can be provided in one of the chips 72. In this case, the two contact points P1 and P2 of the circuits 700 can be supposed to be two contact points, at bottoms of two of the through vias 170v in the one of the chips 68, of the layers 26 and/or 34 of the one of the chips 68, in which the two contact points are not connected to any external circuit of the system-in package or multichip module, and the two contact points P3 and P4 of the circuits 800 can be supposed to be two contact points, at bottoms of two of the through vias 164v in the one of the chips 72, of the layers 106 and/or 114 of the one of the chips 72, in which the two contact points are not connected to any external circuit of the system-in package or multichip module. In this case, the metal interconnect 350 connecting the contact point P1 or P2 of the circuits 700 and the contact point P3 or P4 of the circuits 800 may be a direct path, as indicated by circles with cross lines shown in the following FIG. 297, connecting the contact point P3 or P4 directly downward to the contact point P1 or P2 not through any one of the metal interconnects 2, or an indirect path, connecting the contact point P3 or P4 to the contact point P1 or P2 through one of the metal interconnects 2. The direct path may include an interconnect like the metal plug 6e passing completely through the chip 72 having the circuits 800, connecting the contact point P3 or P4 over the supporter 802 to one of the metal interconnects 1 connected to the contact point P1 or P2 through one of the metal plugs 5p, like the metal plug 5c, 5d or 5f, passing blindly through the chip 68 having the circuits 700. The indirect path may include one of the interconnects 2 connected to the contact point P3 or P4 through one of the metal plugs 6p, like the metal plug 6c or 6d, passing blindly through the chip 72 having the circuits 800, and one of the interconnects 1 connected to the one of the interconnects 2 through one of the metal plugs 6p, like the metal plug 6a passing completely through the dummy substrate 165 or like the metal plug 6b passing completely through the chip 72 either having the circuits 800 or not having the circuits 800, and connected to the contact point P1 or P2 through one of the metal plugs 5p, like the metal plug 5c, 5d or 5f, passing blindly through the chip 68 having the circuits 700.


Besides, in this case, the contact point P5 or P6 of the circuits 700 provided in the one of the chips 68 can be supposed to be a contact point, at the bottom of the previously described through via 170c, 170d or 170f, of the interconnect or metal trace 35d, 35c or 35b, connected to an external circuit of the system-in package or multichip module through one of the metal plugs 5p, like the metal plug 5c, 5d or 5f, passing blindly through the chip 68 having the circuits 700, through one of the metal interconnects 1, through one of the metal plugs 6p, like the metal plug 6a passing completely through the dummy substrate 165 or like the metal plug 6b passing completely through one of the chips 72, through one of the metal interconnects 2, through one of the metal plugs 7p, like the metal plug 7a passing completely through the dummy substrate 158 or like the metal plug 7b passing completely through one of the chips 118, through one of the interconnects 3 and through one of the solder bumps or balls 126, the metal bumps 668 or the wirebonded wires 184. The contact point P7 or P8 of the circuits 800 provided in the one of the chips 72 can be supposed to be a contact point, at the bottom of the previously described through via 164c or 164d, of the interconnect or metal trace 55c or 55b, connected to an external circuit of the system-in package or multichip module through one of the metal plugs 6p, like the metal plug 6c or 6d, passing blindly through the chip 72 having the circuits 800, through one of the metal interconnects 2, through one of the metal plugs 7p, like the metal plug 7a passing completely through the dummy substrate 158 or like the metal plug 7b passing completely through one of the chips 118, through one of the interconnects 3 and through one of the solder bumps or balls 126, the metal bumps 668 or the wirebonded wires 184.


In a third alternative, the circuits 700 can be provided in one of the chips 68, and the circuits 800 can be provided in one of the chips 118. In this case, the two contact points P1 and P2 of the circuits 700 are two contact points, at bottoms of two of the through vias 170v in the one of the chips 68, of the layers 26 and/or 34 of the one of the chips 68, in which the two contact points are not connected to any external circuit of the system-in package or multichip module, and the two contact points P3 and P4 of the circuits 800 are two contact points, at bottoms of two of the through vias 156v in the one of the chips 118, of the layers 17 and/or 19 of the one of the chips 118, in which the two contact points are not connected to any external circuit of the system-in package or multichip module. The contact point P5 of the circuits 700 can be a contact point, at the bottom of the previously described through via 170c or 170d, of the interconnect or metal trace 35d or 35c, connecting to the previously described metal plug 5c or 5d, and the contact point P7 of the circuits 800 can be a contact point of the interconnect or metal trace 75a on the previously described supporter 803, connecting to the previously described metal plug 7e. Alternatively, the contact point P6 of the circuits 700 can be a contact point of the interconnect or metal trace 35a on the previously described supporter 801, connecting to the previously described metal plug 5e, and the contact point P8 of the circuits 800 can be a contact point, at the bottom of the previously described through via 156c, 156d or 156f, of the interconnect or metal trace 75d, 75c or 75b, connecting to the previously described metal plug 7c, 7d or 7f. The metal interconnect 350 connecting the contact point P1 of the circuits 700 and the contact point P3 of the circuits 800 includes one of the metal plugs 6p passing through one of the chips 72 or the dummy substrate 165 and further includes one of the metal plugs 7p passing through the one of the chips 118, the dummy substrate 158 or another one of the chips 118. The metal interconnect 350 connecting the contact point P2 of the circuits 700 and the contact point P4 of the circuits 800 includes another one of the metal plugs 6p passing through one of the chips 72 or the dummy substrate 165 and further includes another one of the metal plugs 7p passing through the one of the chips 118, the dummy substrate 158 or another one of the chips 118.


In a fourth alternative, the circuits 700 can be provided in one of the chips 72, and the circuits 800 can be provided in another one of the chips 72. In this case, the two contact points P1 and P2 of the circuits 700 are two contact points, at bottoms of two of the through vias 164v in the one of the chips 72, of the layers 106 and/or 114 of the one of the chips 72, in which the two contact points are not connected to any external circuit of the system-in package or multichip module, and the two contact points P3 and P4 of the circuits 800 are two contact points, at bottoms of two of the through vias 164v in the another one of the chips 72, of the layers 106 and/or 114 of the another one of the chips 72, in which the two contact points are not connected to any external circuit of the system-in package or multichip module. The contact point P5 of the circuits 700 can be a contact point of the interconnect or metal trace 55a on the previously described supporter 802, connecting to the previously described metal plug 6e, and the contact point P7 of the circuits 800 can be a contact point, at the bottom of the previously described through via 164c, of the interconnect or metal trace 55c, connecting to the previously described metal plug 6c. Alternatively, the contact point P6 of the circuits 700 can be a contact point of the interconnect or metal trace 55a on the previously described supporter 802, connecting to the previously described metal plug 6e, and the contact point P8 of the circuits 800 can be a contact point, at the bottom of the previously described through via 164c, of the interconnect or metal trace 55c, connecting to the previously described metal plug 6c. The metal interconnect 350 connecting the contact point P1 of the circuits 700 and the contact point P3 of the circuits 800 includes one of the metal plugs 6p in the one of the chips 72, one of the metal plugs 6p in the another one of the chips 72, and one of the metal interconnects 2. The metal interconnect 350 connecting the contact point P2 of the circuits 700 and the contact point P4 of the circuits 800 includes another one of the metal plugs 6p in the one of the chips 72, another one of the metal plugs 6p in the another one of the chips 72, and another one of the metal interconnects 2.


In a fifth alternative, the circuits 700 can be provided in one of the chips 72, and the circuits 800 can be provided in one of the chips 118. In this case, the two contact points P1 and P2 of the circuits 700 are two contact points, at bottoms of two of the through vias 164v in the one of the chips 72, of the layers 106 and/or 114 of the one of the chips 72, in which the two contact points are not connected to any external circuit of the system-in package or multichip module, and the two contact points P3 and P4 of the circuits 800 are two contact points, at bottoms of two of the through vias 156v in the one of the chips 118, of the layers 17 and/or 19 of the one of the chips 118, in which the two contact points are not connected to any external circuit of the system-in package or multichip module. The contact point P5 of the circuits 700 can be a contact point of the interconnect or metal trace 55a on the previously described supporter 802, connecting to the previously described metal plug 6e, and the contact point P7 of the circuits 800 can be a contact point, at the bottom of the through via 156c, 156d or 156f, of the interconnect or metal trace 75d, 75c or 75b, connecting to the previously described metal plug 7c, 7d or 7f. Alternatively, the contact point P6 of the circuits 700 can be a contact point, at the bottom of the through via 164c or 164d, of the interconnect or metal trace 55c or 55b, connecting to the previously described metal plug 6c or 6d, and the contact point P8 of the circuits 800 can be a contact point of the interconnect or metal trace 75a on the previously described supporter 803, connecting to the previously described metal plug 7e. The metal interconnect 350 connecting the contact point P1 of the circuits 700 and the contact point P3 of the circuits 800 includes one of the metal plugs 7p passing through the one of the chips 118, the dummy substrate 158, or another one of the chips 118. The metal interconnect 350 connecting the contact point P2 of the circuits 700 and the contact point P4 of the circuits 800 includes another one of the metal plugs 7p passing through the one of the chips 118, the dummy substrate 158, or another one of the chips 118.


In a sixth alternative, the circuits 700 can be provided in one of the chips 118, and the circuits 800 can be provided in another one of the chips 118. In this case, the two contact points P1 and P2 of the circuits 700 are two contact points, at bottoms of two of the through vias 156v in the one of the chips 118, of the layers 17 and/or 19 of the one of the chips 118, in which the two contact points are not connected to any external circuit of the system-in package or multichip module, and the two contact points P3 and P4 of the circuits 800 are two contact points, at bottoms of two of the through vias 156v in the another one of the chips 118, of the layers 17 and/or 19 of the another one of the chips 118, in which the two contact points are not connected to any external circuit of the system-in package or multichip module. The contact point P5 of the circuits 700 can be a contact point, at the bottom of the previously described through via 156c, of the interconnect or metal trace 75d, connecting to the previously described metal plug 7c, and the contact point P7 of the circuits 800 can be a contact point of the interconnect or metal trace 75a on the previously described supporter 803, connecting to the previously described metal plug 7e. Alternatively, the contact point P6 of the circuits 700 can be a contact point, at the bottom of the previously described through via 156c, of the interconnect or metal trace 75d, connecting to the previously described metal plug 7c, and the contact point P8 of the circuits 800 can be a contact point, at the bottom of the previously described through via 156f, of the interconnect or metal trace 75b, connecting to the previously described metal plug 7f. The metal interconnect 350 connecting the contact point P1 of the circuits 700 and the contact point P3 of the circuits 800 includes one of the metal plugs 7p in the one of the chips 118, one of the metal plugs 7p in the another one of the chips 118, and one of the metal interconnects 3. The metal interconnect 350 connecting the contact point P2 of the circuits 700 and the contact point P4 of the circuits 800 includes another one of the metal plugs 7p in the one of the chips 118, another one of the metal plugs 7p in the another one of the chips 118, and another one of the metal interconnects 3.


Referring to FIG. 276, the circuits 700 may include two inter-chip circuits 200a and 200b, two internal circuits 200c and 200d, two off-chip circuits 57a and 57b, and two testing interface circuits 333a and 333b. The circuits 800 may include two inter-chip circuits 200e and 200f, two internal circuits 200g and 200h, two off-chip circuits 57c and 57d, and two testing interface circuits 333c and 333d.


The inter-chip circuit 200a of the circuits 700 may include an inter-chip buffer 701a and an inter-chip ESD (electro static discharge) circuit 701b. The inter-chip buffer 701a has a first node FN1 and a second node SN1, and the inter-chip ESD circuit 701b has a node En connected to the first node FN1. The inter-chip buffer 701a can be an inter-chip receiver which can be an inverter composed of an NMOS transistor 751a and a PMOS transistor 751b. The gates of the NMOS transistor 751a and the PMOS transistor 751b serve as an input node that is the first node FN1 of the inter-chip buffer 701a. The drains of the NMOS transistor 751a and the PMOS transistor 751b serve as an output node that is the second node SN1 of the inter-chip buffer 701a.


Alternatively, the inter-chip buffer 701a can be a multi-stage cascade inter-chip receiver including several stages of inverters. For example, referring to FIG. 277, the inter-chip buffer 701a can be a two-stage cascade inter-chip receiver. The first stage 584a of the two-stage cascade inter-chip receiver is an inverter composed of the NMOS transistor 751a and the PMOS transistor 751b, and the second stage 584b (the last stage) of the two-stage cascade inter-chip receiver is an inverter composed of an NMOS transistor 751c and a PMOS transistor 751d. The size of the NMOS transistor 751c is larger than that of the NMOS transistor 751a, and the size of the PMOS transistor 751d is larger than that of the PMOS transistor 751b. The gates of the NMOS transistor 751a and the PMOS transistor 751b serve as an input node that is the first node FN1 of the inter-chip buffer 701a. The drains of the NMOS transistor 751c and the PMOS transistor 751d serve as an output node that is the second node SN1 of the inter-chip buffer 701a. The drains of the NMOS transistor 751a and the PMOS transistor 751b are connected to the gates of the NMOS transistor 751c and the PMOS transistor 751d.


Referring to FIG. 276, the inter-chip circuit 200b of the circuits 700 may include an inter-chip buffer 702a and an inter-chip ESD (electro static discharge) circuit 702b. The inter-chip buffer 702a has a first node FN2 and a second node SN2, and the inter-chip ESD circuit 702b has a node En connected to the second node SN2. The inter-chip buffer 702a can be an inter-chip driver which can be an inverter composed of an NMOS transistor 752a and a PMOS transistor 752b. The gates of the NMOS transistor 752a and the PMOS transistor 752b serve as an input node that is the first node FN2 of the inter-chip buffer 702a. The drains of the NMOS transistor 752a and the PMOS transistor 752b serve as an output node that is the second node SN2 of the inter-chip buffer 702a.


Alternatively, the inter-chip buffer 702a can be a multi-stage cascade inter-chip driver including several stages of inverters. For example, referring to FIG. 278, the inter-chip buffer 702a can be a two-stage cascade inter-chip driver. The first stage 585a of the two-stage cascade inter-chip driver is an inverter composed of an NMOS transistor 752c and a PMOS transistor 752d, and the second stage 585b (the last stage) of the two-stage cascade inter-chip driver is an inverter composed of the NMOS transistor 752a and the PMOS transistor 752b. The size of the NMOS transistor 752a is larger than that of the NMOS transistor 752c, and the size of the PMOS transistor 752b is larger than that of the PMOS transistor 752d. The gates of the NMOS transistor 752c and the PMOS transistor 752d serve as an input node that is the first node FN2 of the inter-chip buffer 702a. The drains of the NMOS transistor 752a and the PMOS transistor 752b serve as an output node that is the second node SN2 of the inter-chip buffer 702a. The drains of the NMOS transistor 752c and the PMOS transistor 752d are connected to the gates of the NMOS transistor 752a and the PMOS transistor 752b.


Referring to FIG. 276, the inter-chip circuit 200e of the circuits 800 may include an inter-chip buffer 703a and an inter-chip ESD (electro static discharge) circuit 703b. The inter-chip buffer 703a has a first node FN3 and a second node SN3, and the inter-chip ESD circuit 703b has a node En connected to the second node SN3. The inter-chip buffer 703a can be an inter-chip driver which can be an inverter composed of an NMOS transistor 753a and a PMOS transistor 753b. The gates of the NMOS transistor 753a and the PMOS transistor 753b serve as an input node that is the first node FN3 of the inter-chip buffer 703a. The drains of the NMOS transistor 753a and the PMOS transistor 753b serve as an output node that is the second node SN3 of the inter-chip buffer 703a.


Alternatively, the inter-chip buffer 703a can be a multi-stage cascade inter-chip driver including several stages of inverters. For example, referring to FIG. 279, the inter-chip buffer 703a can be a two-stage cascade inter-chip driver. The first stage 586a of the two-stage cascade inter-chip driver is an inverter composed of an NMOS transistor 753c and a PMOS transistor 753d, and the second stage 586b (the last stage) of the two-stage cascade inter-chip driver is an inverter composed of the NMOS transistor 753a and the PMOS transistor 753b. The size of the NMOS transistor 753a is larger than that of the NMOS transistor 753c, and the size of the PMOS transistor 753b is larger than that of the PMOS transistor 753d. The gates of the NMOS transistor 753c and the PMOS transistor 753d serve as an input node that is the first node FN3 of the inter-chip buffer 703a. The drains of the NMOS transistor 753a and the PMOS transistor 753b serve as an output node that is the second node SN3 of the inter-chip buffer 703a. The drains of the NMOS transistor 753c and the PMOS transistor 753d are connected to the gates of the NMOS transistor 753a and the PMOS transistor 753b.


Referring to FIG. 276, the inter-chip circuit 200f of the circuits 800 may include an inter-chip buffer 704a and an inter-chip ESD (electro static discharge) circuit 704b. The inter-chip buffer 704a has a first node FN4 and a second node SN4, and the inter-chip ESD circuit 704b has a node En connected to the first node FN4. The inter-chip buffer 704a can be an inter-chip receiver which can be an inverter composed of an NMOS transistor 754a and a PMOS transistor 754b. The gates of the NMOS transistor 754a and the PMOS transistor 754b serve as an input node that is the first node FN4 of the inter-chip buffer 704a. The drains of the NMOS transistor 754a and the PMOS transistor 754b serve as an output node that is the second node SN4 of the inter-chip buffer 704a.


Alternatively, the inter-chip buffer 704a can be a multi-stage cascade inter-chip receiver including several stages of inverters. For example, referring to FIG. 280, the inter-chip buffer 704a can be a two-stage cascade inter-chip receiver. The first stage 587a of the two-stage cascade inter-chip receiver is an inverter composed of the NMOS transistor 754a and the PMOS transistor 754b, and the second stage 587b (the last stage) of the two-stage cascade inter-chip receiver is an inverter composed of an NMOS transistor 754c and a PMOS transistor 754d. The size of the NMOS transistor 754c is larger than that of the NMOS transistor 754a, and the size of the PMOS transistor 754d is larger than that of the PMOS transistor 754b. The gates of the NMOS transistor 754a and the PMOS transistor 754b serve as an input node that is the first node FN4 of the inter-chip buffer 704a. The drains of the NMOS transistor 754c and the PMOS transistor 754d serve as an output node that is the second node SN4 of the inter-chip buffer 704a. The drains of the NMOS transistor 754a and the PMOS transistor 754b are connected to the gates of the NMOS transistor 754c and the PMOS transistor 754d.


Referring to FIG. 276, the off-chip circuit 57a of the circuits 700 may include an off-chip buffer 61a and an off-chip ESD (electro static discharge) circuit 59a. The off-chip buffer 61a has a first node FN5 and a second node SN5, and the off-chip ESD circuit 59a has a node En connected to the first node FN5. The off-chip buffer 61a can be an off-chip receiver which can be an inverter composed of an NMOS transistor 4205 and a PMOS transistor 4206. The gates of the NMOS transistor 4205 and the PMOS transistor 4206 serve as an input node that is the first node FN5 of the off-chip buffer 61a. The drains of the NMOS transistor 4205 and the PMOS transistor 4206 serve as an output node that is the second node SN5 of the off-chip buffer 61a.


Alternatively, the off-chip buffer 61a can be a multi-stage cascade off-chip receiver including several stages of inverters. For example, referring to FIG. 281, the off-chip buffer 61a can be a two-stage cascade off-chip receiver. The first stage 425a of the two-stage cascade off-chip receiver is an inverter composed of the NMOS transistor 4205 and the PMOS transistor 4206, and the second stage 425b (the last stage) of the two-stage cascade off-chip receiver is an inverter composed of an NMOS transistor 4207 and a PMOS transistor 4208. The size of the NMOS transistor 4207 is larger than that of the NMOS transistor 4205, and the size of the PMOS transistor 4208 is larger than that of the PMOS transistor 4206. The gates of the NMOS transistor 4205 and the PMOS transistor 4206 serve as an input node that is the first node FN5 of the off-chip buffer 61a. The drains of the NMOS transistor 4207 and the PMOS transistor 4208 serve as an output node that is the second node SN5 of the off-chip buffer 61a. The drains of the NMOS transistor 4205 and the PMOS transistor 4206 are connected to the gates of the NMOS transistor 4207 and the PMOS transistor 4208.


Referring to FIG. 276, the off-chip circuit 57b of the circuits 700 may include an off-chip buffer 61b and an off-chip ESD (electro static discharge) circuit 59b. The off-chip buffer 61b has a first node FN6 and a second node SN6, and the off-chip ESD circuit 59b has a node En connected to the second node SN6. The off-chip buffer 61b can be an off-chip driver which can be an inverter composed of an NMOS transistor 4203 and a PMOS transistor 4204. The gates of the NMOS transistor 4203 and the PMOS transistor 4204 serve as an input node that is the first node FN6 of the off-chip buffer 61b, and the drains of the NMOS transistor 4203 and the PMOS transistor 4204 serve as an output node that is the second node SN6 of the off-chip buffer 61b.


Alternatively, the off-chip buffer 61b can be a multi-stage cascade off-chip driver including several stages of inverters. For example, referring to FIG. 282, the off-chip buffer 61b can be a two-stage cascade off-chip driver. The first stage 426a of the two-stage cascade off-chip driver is an inverter composed of an NMOS transistor 4201 and a PMOS transistor 4202, and the second stage 426b (the last stage) of the two-stage cascade off-chip driver is an inverter composed of the NMOS transistor 4203 and the PMOS transistor 4204. The size of the NMOS transistor 4203 is larger than that of the NMOS transistor 4201, and the size of the PMOS transistor 4204 is larger than that of the PMOS transistor 4202. The gates of the NMOS transistor 4201 and the PMOS transistor 4202 serve as an input node that is the first node FN6 of the off-chip buffer 61b. The drains of the NMOS transistor 4203 and the PMOS transistor 4204 serve as an output node that is the second node SN6 of the off-chip buffer 61b. The drains of the NMOS transistor 4201 and the PMOS transistor 4202 are connected to the gates of the NMOS transistor 4203 and the PMOS transistor 4204.


Referring to FIG. 276, the off-chip circuit 57c of the circuits 800 may include an off-chip buffer 61c and an off-chip ESD (electro static discharge) circuit 59c. The off-chip buffer 61c has a first node FN7 and a second node SN7, and the off-chip ESD circuit 59c has a node En connected to the second node SN7. The off-chip buffer 61c can be an off-chip driver which can be an inverter composed of an NMOS transistor 4303 and a PMOS transistor 4304. The gates of the NMOS transistor 4303 and the PMOS transistor 4304 serve as an input node that is the first node FN7 of the off-chip buffer 61c. The drains of the NMOS transistor 4303 and the PMOS transistor 4304 serve as an output node that is the second node SN7 of the off-chip buffer 61c.


Alternatively, the off-chip buffer 61c can be a multi-stage cascade off-chip driver including several stages of inverters. For example, referring to FIG. 283, the off-chip buffer 61c can be a two-stage cascade off-chip driver. The first stage 427a of the two-stage cascade off-chip driver is an inverter composed of an NMOS transistor 4301 and a PMOS transistor 4302, and the second stage 427b (the last stage) of the two-stage cascade off-chip driver is an inverter composed of the NMOS transistor 4303 and the PMOS transistor 4304. The size of the NMOS transistor 4303 is larger than that of the NMOS transistor 4301, and the size of the PMOS transistor 4304 is larger than that of the PMOS transistor 4302. The gates of the NMOS transistor 4301 and the PMOS transistor 4302 serve as an input node that is the first node FN7 of the off-chip buffer 61c. The drains of the NMOS transistor 4303 and the PMOS transistor 4304 serve as an output node that is the second node SN7 of the off-chip buffer 61c. The drains of the NMOS transistor 4301 and the PMOS transistor 4302 are connected to the gates of the NMOS transistor 4303 and the PMOS transistor 4304.


Referring to FIG. 276, the off-chip circuit 57d of the circuits 800 may include an off-chip buffer 61d and an off-chip ESD (electro static discharge) circuit 59d. The off-chip buffer 61d has a first node FN8 and a second node SN8, and the off-chip ESD circuit 59d has a node En connected to the first node FN8. The off-chip buffer 61d can be an off-chip receiver which can be an inverter composed of an NMOS transistor 4305 and a PMOS transistor 4306. The gates of the NMOS transistor 4305 and the PMOS transistor 4306 serve as an input node that is the first node FN8 of the off-chip buffer 61d. The drains of the NMOS transistor 4305 and the PMOS transistor 4306 serve as an output node that is the second node SN8 of the off-chip buffer 61d.


Alternatively, the off-chip buffer 61d can be a multi-stage cascade off-chip receiver including several stages of inverters. For example, referring to FIG. 284, the off-chip buffer 61d can be a two-stage cascade off-chip receiver. The first stage 428a of the two-stage cascade off-chip receiver is an inverter composed of the NMOS transistor 4305 and the PMOS transistor 4306, and the second stage 428b (the last stage) of the two-stage cascade off-chip receiver is an inverter composed of an NMOS transistor 4307 and a PMOS transistor 4308. The size of the NMOS transistor 4307 is larger than that of the NMOS transistor 4305, and the size of the PMOS transistor 4308 is larger than that of the PMOS transistor 4306. The gates of the NMOS transistor 4305 and the PMOS transistor 4306 serve as an input node that is the first node FN8 of the off-chip buffer 61d. The drains of the NMOS transistor 4307 and the PMOS transistor 4308 serve as an output node that is the second node SN8 of the off-chip buffer 61d. The drains of the NMOS transistor 4305 and the PMOS transistor 4306 are connected to the gates of the NMOS transistor 4307 and the PMOS transistor 4308.



FIG. 285 is another example of a circuit diagram. The circuit diagram shown in FIG. 285 is similar to that shown in FIG. 276 except that the inter-chip buffers 701a, 702a, 703a and 704a shown in FIG. 285 are designed with inter-chip tri-state buffers each including a tri-state driver and a tri-state receiver, instead of the inter-chip receivers and drivers, and the off-chip buffers 61a, 61b, 61c and 61d shown in FIG. 285 are designed with off-chip tri-state buffers each including a tri-state driver and a tri-state receiver, instead of the off-chip receivers and drivers. In FIG. 285, the inter-chip buffer 701a of the circuits 700 can be an inter-chip tri-state buffer having a first I/O (input/output) node serving as the first node FN1 of the inter-chip buffer 701a, and having a second I/O node serving as the second node SN1 of the inter-chip buffer 701a. The inter-chip buffer 702a of the circuits 700 can be an inter-chip tri-state buffer having a first I/O node serving as the first node FN2 of the inter-chip buffer 702a, and having a second I/O node serving as the second node SN2 of the inter-chip buffer 702a. The inter-chip buffer 703a of the circuits 800 can be an inter-chip tri-state buffer having a first I/O node serving as the first node FN3 of the inter-chip buffer 703a, and having a second I/O node serving as the second node SN3 of the inter-chip buffer 703a. The inter-chip buffer 704a of the circuits 800 can be an inter-chip tri-state buffer having a first I/O node serving as the first node FN4 of the inter-chip buffer 704a, and having a second I/O node serving as the second node SN4 of the inter-chip buffer 704a. The off-chip buffer 61a of the circuits 700 can be an off-chip tri-state buffer having a first I/O node serving as the first node FN5 of the off-chip buffer 61a, and having a second I/O node serving as the second node SN5 of the off-chip buffer 61a. The off-chip buffer 61b of the circuits 700 can be an off-chip tri-state buffer having a first I/O node serving as the first node FN6 of the off-chip buffer 61b, and having a second I/O node serving as the second node SN6 of the off-chip buffer 61b. The off-chip buffer 61c of the circuits 800 can be an off-chip tri-state buffer having a first I/O node serving as the first node FN7 of the off-chip buffer 61c, and having a second I/O node serving as the second node SN7 of the off-chip buffer 61c. The off-chip buffer 61d of the circuits 800 can be an off-chip tri-state buffer having a first I/O node serving as the first node FN8 of the off-chip buffer 61d, and having a second I/O node serving as the second node SN8 of the off-chip buffer 61d.


Referring to FIG. 276 or 285, each of the internal circuits 200c, 200d, 200g and 200h can be a NOR gate, a NAND gate, an AND gate, an OR gate, an operational amplifier, a flash memory cell, a dynamic-random-access-memory (DRAM) cell, a static-random-access-memory (SRAM) cell, a non-volatile memory cell, an erasable programmable read-only memory (EPROM) cell, a read-only memory (ROM) cell, a magnetic random access memory (MRAM) cell, a sense amplifier, an analog-to-digital (A/D) converter, a digital-to-analog (D/A) converter, an inverter, an adder, a multiplexer, a diplexer, a multiplier, a complementary-metal-oxide-semiconductor (CMOS) device, a bi-polar CMOS device, a bipolar circuit, or an analog circuit. Each of the internal circuits 200c, 200d, 200g and 200h may include a NMOS transistor (n-type metal-oxide-semiconductor transistor) having a ratio of a physical channel width thereof to a physical channel length thereof ranging from, e.g., about 0.1 and 20, ranging from, e.g., about 0.1 and 10, or ranging from, e.g., about 0.2 and 2. Alternatively, each of the internal circuits 200c, 200d, 200g and 200h may include a PMOS transistor (p-type metal-oxide-semiconductor transistor) having a ratio of a physical channel width thereof to a physical channel length thereof ranging from, e.g., about 0.2 and 40, ranging from, e.g., about 0.2 and 20, or ranging from, e.g., about 0.4 and 4. Each of the inter-chip ESD circuits 701b, 702b, 703b and 704b and each of the off-chip ESD circuits 59a, 59b, 59c and 59d may include one or more ESD (electro static discharge) units each composed of two reverse-biased diodes or of a PMOS transistor and an NMOS transistor.


The first node FN1 of the inter-chip buffer 701a can be connected to the node En of the inter-chip ESD circuit 701b, to a first terminal F1 of the testing interface circuit 333a through a metal interconnect 740b of the circuits 700, and to the contact point P1 of the circuits 700 through the metal interconnect 740b. The second node SN1 of the inter-chip buffer 701a can be connected to the internal circuit 200c through a metal interconnect 740a of the circuits 700.


The first node FN2 of the inter-chip buffer 702a can be connected to the internal circuit 200d through a metal interconnect 740c of the circuits 700. The second node SN2 of the inter-chip buffer 702a can be connected to the node En of the inter-chip ESD circuit 702b, to a first terminal F2 of the testing interface circuit 333b through a metal interconnect 740d of the circuits 700, and to the contact point P2 of the circuits 700 through the metal interconnect 740d.


The first node FN3 of the inter-chip buffer 703a can be connected to the internal circuit 200g through a metal interconnect 740e of the circuits 800. The second node SN3 of the inter-chip buffer 703a can be connected to the node En of the inter-chip ESD circuit 703b, to a first terminal F3 of the testing interface circuit 333c through a metal interconnect 740f of the circuits 800, and to the contact point P3 of the circuits 800 through the metal interconnect 740f.


The first node FN4 of the inter-chip buffer 704a can be connected to the node En of the inter-chip ESD circuit 704b, to a first terminal F4 of the testing interface circuit 333d through a metal interconnect 740h of the circuits 800, and to the contact point P4 of the circuits 800 through the metal interconnect 740h. The second node SN4 of the inter-chip buffer 704a can be connected to the internal circuit 200h through a metal interconnect line 740g of the circuits 800.


The first node FN5 of the off-chip buffer 61a can be connected to the node En of the off-chip ESD circuit 59a, and to the contact point P5 of the circuits 700 through a metal interconnect 740j of the circuits 700. The second node SN5 of the off-chip buffer 61a can be connected to a second terminal S1 of the testing interface circuit 333a through a metal interconnect 740i of the circuits 700.


The first node FN6 of the off-chip buffer 61b can be connected to a second terminal S2 of the testing interface circuit 333b through a metal interconnect 740k of the circuits 700. The second node SN6 of the off-chip buffer 61b can be connected to the node En of the off-chip ESD circuit 59b and to the contact point P6 of the circuits 700 through a metal interconnect 740m of the circuits 700.


The first node FN7 of the off-chip buffer 61c can be connected to a second terminal S3 of the testing interface circuit 333c through a metal interconnect 740n of the circuits 800. The second node SN7 of the off-chip buffer 61c can be connected to the node En of the off-chip ESD circuit 59c and to the contact point P7 of the circuits 800 through a metal interconnect 740p of the circuits 800.


The first node FN8 of the off-chip buffer 61d can be connected to the node En of the off-chip ESD circuit 59d and to the contact point P8 of the circuits 800 through a metal interconnect 740r of the circuits 800. The second node SN8 of the off-chip buffer 61d can be connected to a second terminal S4 of the testing interface circuit 333d through a metal interconnect 740q of the circuits 800.


The metal interconnects 740a, 740b, 740c, 740d, 740i, 740j, 740k, and 740m of the circuits 700 can be provided by the layers 26 and 34 and the via plugs 26a and 34a of the chip 68 while the circuits 700 are provided in the chip 68; alternatively, the metal interconnects 740a, 740b, 740c, 740d, 740i, 740j, 740k, and 740m of the circuits 700 can be provided by the layers 106 and 114 and the via plugs 106a and 114a of the chip 72 while the circuits 700 are provided in the chip 72; alternatively, the metal interconnects 740a, 740b, 740c, 740d, 740i, 740j, 740k, and 740m of the circuits 700 can be provided by the layers 17 and 19 and the via plugs 17a and 19a of the chip 118 while the circuits 700 are provided in the chip 118.


The metal interconnects 740e, 740f, 740g, 740h, 740n, 740p, 740q, and 740r of the circuits 800 can be provided by the layers 26 and 34 and the via plugs 26a and 34a of the chip 68 while the circuits 800 are provided in the chip 68; alternatively, the metal interconnects 740e, 740f, 740g, 740h, 740n, 740p, 740q, and 740r of the circuits 800 can be provided by the layers 106 and 114 and the via plugs 106a and 114a of the chip 72 while the circuits 800 are provided in the chip 72; alternatively, the metal interconnects 740e, 740f, 740g, 740h, 740n, 740p, 740q, and 740r of the circuits 800 can be provided by the layers 17 and 19 and the via plugs 17a and 19a of the chip 118 while the circuits 800 are provided in the chip 118.


The small inter-chip buffers 701a, 702a, 703a and 704a are designed in the circuits 700 and 800 for signal, clock or data transmission between the circuits 700 and 800. The total number of inter-chip buffers including the inter-chip buffers 701a and 702a on the chip having the circuits 700 may be equal to or more than, e.g., 512, and preferably equal to or more than, e.g., 1024. The total number of inter-chip buffers including the inter-chip buffers 703a and 704a on the chip having the circuits 800 may be equal to or more than, e.g., 512, and preferably equal to or more than, e.g., 1024.


The large off-chip buffers 61a, 61b, 61c and 61d, such as off-chip drivers, off-chip receivers or off-chip tri-sate buffers, are designed in the circuits 700 and 800 for circuit testing and/or for signal, clock or data transmission from/to an external circuit of the system-in package or multichip module, such as mother board, metal substrate, glass substrate, ceramic substrate or the previously described carrier 176, through the previously described solder bumps or balls 126, through the previously described metal bumps 672, or through the previously described wirebonded wires 184. The testing circuit is either (i) the wafer level testing performed before the chip having the circuits 700 or 800 is sawed or diced apart from a wafer, or (ii) the package level testing (the final testing) after the chip having the circuits 700 and the chip having the circuits 800 are connected to each other.


The testing interface circuits 333a and 333b are designed in the circuits 700, and the testing interface circuits 333c and 333d are designed in the circuits 800. The output capacitance at the first terminal F1 or F4 of the testing interface circuit 333a or 333d shown in FIG. 276 as seen from the inter-chip buffer 701a or 704a is less than 2 pF, exemplary less than 1 pF or less than 0.2 pF. The output loading capacitance of the first terminal F1 or F4 of the testing interface circuit 333a or 333d shown in FIG. 276 is less than 2 pF, exemplary less than 1 pF or less than 0.2 pF. The input capacitance at the first terminal F2 or F3 of the testing interface circuit 333b or 333c shown in FIG. 276 as seen from the inter-chip buffer 702a or 703a is less than 2 pF, exemplary less than 1 pF or less than 0.2 pF. The input loading capacitance of the first terminal F2 or F3 of the testing interface circuit 333b or 333c shown in FIG. 276 is less than 2 pF, exemplary less than 1 pF or less than 0.2 pF. The input or output capacitance at the first terminal F1, F2, F3 or F4 of the testing interface circuit 333a, 333b, 333c or 333d shown in FIG. 285 as seen from the inter-chip buffer 701a, 702a, 703a or 704a is less than 2 pF, exemplary less than 1 pF or less than 0.2 pF. The input or output loading capacitance of the first terminal F1, F2, F3 or F4 of the testing interface circuit 333a, 333b, 333c or 333d shown in FIG. 285 is less than 2 pF, exemplary less than 1 pF or less than 0.2 pF. Each of the test interface circuits 333a, 333b, 333c and 333d shown in FIG. 276 or 285 can be a scan test circuit, and the scan test circuit can be used for scan testing performed at the wafer level testing, via the contact point P5, P6, P7 or P8 connecting to a testing probe, before the chip having the circuits 700 or 800 is sawed or diced apart from a wafer or at the package level testing (the final testing) after the chip having the circuits 700 and the chip having the circuits 800 are connected to each other using the previously described process. The scan test circuit is used to test flip flops by input the scan-in signal or output the scan-out signal.


Referring to FIG. 276 or 285, the metal interconnects 350 can be used for clock lines or interconnects, or for signal lines or interconnects, such as bit lines, bit interconnects, address lines or address interconnects.


The total number of bit lines or bit interconnects, provided by the two metal interconnects 350, in parallel data communication between the chip having the circuits 700 and the chip having the circuit 800 can be two, for example, as shown in FIG. 276 or 285. In this case, the bit width of the parallel data communication between the chip having the circuits 700 and the chip having the circuits 800 is two. Alternatively, the total number of the bit lines or bit interconnects in parallel data communication between the chip having the circuits 700 and the chip having the circuit 800 can be equal to or more than 4, 8, 16, 32, 64, 128, 256, 512 or 1024; that means the bit width of the parallel data communication can be equal to or more than 4, 8, 16, 32, 64, 128, 256, 512 or 1024. Note that, in these alternatives, only two bit lines or bit interconnects 350 (and their corresponding inter-chip buffers 701a, 702a, 703a and 704a) are shown in FIG. 276 or 285, and other bit lines or bit interconnects (and their corresponding inter-chip buffers) are not shown in FIG. 276 or 285, but they (and their corresponding inter-chip buffers) are designed as same as the two bit lines or bit interconnects 350 (and their corresponding inter-chip buffers 701a, 702a, 703a and 704a) shown in FIG. 276 or 285. Each of the metal interconnects 350 used for the bit lines or bit interconnects connects the inter-chip buffer 701a or 702a of the circuits 700 to the inter-chip buffer 703a or 704a of the circuits 800. As an example of a case of bit width of 1024, there are 1024 inter-chip buffers, such as 701a or 702a, of the chip having the circuits 700, connected to 1024 bit lines or bit interconnects, such as 350, and then connected to 1024 inter-chip buffers, such as 703a or 704a, of the chip having the circuits 800. Accordingly, the total number of the inter-chip buffers 701a and 702a connected with the bit lines or bit interconnects in parallel data communication between the chip having the circuits 700 and the chip having the circuits 800 is equal to the total number of the bit lines or bit interconnects, and is also equal to the total number of the inter-chip buffers 703a and 703a connected with the bit lines or bit interconnects. The data communication of the bit lines or bit interconnects, like the metal interconnects 350, between the chip having the circuits 700 and the chip having the circuits 800 may have a data bit width equal to or more than e.g., 2, 4, 8, 16, 32, 64, 128, 256, 512 or 1024, and preferably equal to or more than 512 or 1024.


Referring to FIG. 276 or 285, the small inter-chip ESD circuits 701b, 702b, 703b and 704b are used for the small inter-chip buffers 701a, 702a, 703a and 704a between the chip having the circuits 700 and the chip having the circuits 800 for electrostatic charge protection during the chip packaging or assembly manufacturing process. Alternatively, no ESD circuit can be required for the small inter-chip buffers 701a, 702a, 703a and 704a between the chip having the circuits 700 and the chip having the circuits 800, that is, the inter-chip ESD circuits 701b, 702b, 703b and 704b can be omitted. In other words, there is no ESD circuit connected to the metal interconnects 740b, 740d, 740f and 740h.


The large off-chip ESD circuits 59a, 59b, 59c and 59d required for the large off-chip buffers 61a, 61b, 61c, and 61d are designed in both the circuits 700 and 800 for the circuit testing and/or for signal, clock or data transmission from/to an external circuit of the system-in package or multichip module, such as mother board, metal substrate, glass substrate, ceramic substrate or the previously described carrier 176, through the previously described solder bumps or balls 126, through the previously described metal bumps 672, or through the previously described wirebonded wires 184. The circuit testing is either (i) the wafer level testing performed before the chip having the circuits 700 or 800 is sawed or diced apart from a wafer, or (ii) the package level testing (the final testing) after the chip having the circuits 700 and the chip having the circuits 800 are connected to each other. The large off-chip ESD circuits 59a, 59b, 59c and 59d are used for electrostatic charge protection during the circuit testing, such as the wafer level testing or the package level testing (the final testing).


The size of the small inter-chip ESD circuit 701b, 702b, 703b or 704b can be less than the size of the large off-chip ESD circuit 59a, 59b, 59c or 59d, respectively. For example, the size of the inter-chip ESD circuit 701b, 702b, 703b or 704b can be defined as the loading or capacitance of the inter-chip ESD circuit 701b, 702b, 703b or 704b, and the size of the off-chip ESD circuit 59a, 59b, 59c or 59d can be defined as the loading or capacitance of the off-chip ESD circuit 59a, 59b, 59c or 59d. In a case, each of the small inter-chip ESD circuits 701b, 702b, 703b and 704b has a size (loading or capacitance) less than 2 pF (pico Farads), such as between 0.01 and 2 pF, exemplary less than 0.5 pF, such as between 0.01 and 0.5 pF, and each of the large off-chip ESD circuits 59a, 59b, 59c and 59d has a size (loading or capacitance) larger than 2 pF, such as between 2 and 100 pF, exemplary larger than 5 pF, such as between 5 and 100 pF. In another case, each of the small inter-chip ESD circuits 701b, 702b, 703b and 704b has a size (loading or capacitance) less than 1 pF, such as between 0.01 and 1 pF, and each of the large off-chip ESD circuits 59a, 59b, 59c and 59d has a size (loading or capacitance) larger than 1 pF, such as between 1 and 100 pF.


Alternatively, the size of the small inter-chip ESD circuit 701b, 702b, 703b or 704b or the size of the large off-chip ESD circuit 59a, 59b, 59c or 59d can be defined as below. An ESD (electro static discharge) circuit, such as the inter-chip ESD circuit 701b, 702b, 703b or 704b or the off-chip ESD circuit 59a, 59b, 59c or 59d, may include one or more ESD units, and each of the ESD units may include a P+ active region and an N+ active region connected to the P+ active region and to an I/O (input/output) contact point or testing contact point, such as the contact point P1, P2, P3, P4, P5, P6, P7 or P8 shown in FIG. 276 or 285, of a chip. The area of the P+ active region plus the area of the N+ active region equals the active area of each of the ESD units. The total of the active areas of the ESD units equals the active area of the ESD circuit. If the ESD circuit is composed of only one ESD unit, the active area of the ESD circuit equals the active area of the only one ESD unit. If the ESD circuit is composed of multiple ESD units, the active area of the ESD circuit equals the total of the active areas of the ESD units connected in parallel. The active area of the ESD circuit can be used to define the size of the ESD circuit. FIGS. 286-291 show how to calculate the active area of an ESD unit of a chip and define the size of an ESD circuit composed of one or more the ESD units.


Referring to FIG. 286, an electro static discharge (ESD) unit 759 of a chip can be composed of two reverse-biased diodes 5931 and 5932. FIG. 288 shows a cross-sectional view of the ESD unit 759 shown in FIG. 286, and FIG. 289 is a top perspective view showing the topography of the ESD unit 759 derived from the top surface Z-Z′ of a p-type silicon substrate 401 shown in FIG. 288.


Referring to FIGS. 286, 288 and 289, the ESD unit 759 includes two P+ active regions 757a and 757b and two N+ active regions 758a and 758b. The P+ active region 757a is in an N-well 755 in the p-type silicon substrate 401, and the N+ active region 758a is in the p-type silicon substrate 401. The P+ active region 757a is connected to an I/O contact point or testing contact point, such as the contact point P1, P2, P3 or P4 of the circuits 700 shown in FIG. 276 or 285 or the contact point P5, P6, P7 or P8 of the circuits 800 shown in FIG. 276 or 285, of the chip through a metal interconnect 763a of the chip. The N+ active region 758a is connected to the P+ active region 757a and to the I/O contact point or testing contact point of the chip through the metal interconnect 763a. The metal interconnect 763a includes a fine-line metal layer 660a formed on a dielectric layer 330 over the p-type silicon substrate 401, a first via plug 661 formed on a contact region 764a of the P+ active region 757a and in the dielectric layer 330, and a second via plug 661 formed on a contact region 764b of the N+ active region 758a and in the dielectric layer 330. The P+ active region 757b is in the p-type silicon substrate 401, and the N+ active region 758b is in the N-well 755 in the p-type silicon substrate 401. The P+ active region 757b is connected to a ground bus through a metal interconnect 763b, and the N+ active region 758b is connected to a power bus through a metal interconnect 763c. The metal interconnect 763b contains a fine-line metal layer 660b formed on the dielectric layer 330 over the p-type silicon substrate 401, and a third via plug 661 formed on a contact region 764c of the P+ active region 757b and in the dielectric layer 330. The metal interconnect 763c contains a fine-line metal layer 660c formed on the dielectric layer 330 over the p-type silicon substrate 401, and a fourth via plug 661 formed on a contact region 764d of the N+ active region 758b and in the dielectric layer 330.


Referring to FIG. 289, the P+ active region 757a, connected to the I/O contact point or testing contact point of the chip, has an area AR1, from a top view, enclosed by a field oxide 762 in the p-type silicon substrate 401. The N+ active region 758a, connected to the I/O contact point or testing contact point of the chip, has an area AR2, from a top view, enclosed by the field oxide 762 in the p-type silicon substrate 401. The active area of the ESD unit 759 equals the area AR1 plus the area AR2.


Alternatively, referring to FIG. 287, the ESD unit 759 of the chip can be composed of a PMOS transistor 681 and an NMOS transistor 682. FIG. 290 shows a cross-sectional view of the ESD unit 759 shown in FIG. 287, and FIG. 291 is a top perspective view showing the topography of the ESD unit 759 derived from the top surface Z-Z′ of the p-type silicon substrate 401 shown in FIG. 290.


Referring to FIGS. 287, 290 and 291, the PMOS transistor 681 of the ESD unit 759 includes a gate 761a and two P+ active regions 757a and 757c at two opposite sides of the gate 761a, and the NMOS transistor 682 of the ESD unit 759 includes a gate 761b and two N+ active regions 758a and 758c at two opposite sides of the gate 761b. The P+ active region 757a is in an N-well 755 in the p-type silicon substrate 401, and the N+ active region 758a is in the p-type silicon substrate 401. The P+ active region 757a is connected to an I/O contact point or testing contact point, such as the contact point P1, P2, P3 or P4 of the circuits 700 shown in FIG. 276 or 285 or the contact point P5, P6, P7 or P8 of the circuits 800 shown in FIG. 276 or 285, of the chip through a metal interconnect 763a of the chip. The N+ active region 758a is connected to the P+ active region 757a and to the I/O contact point or the testing contact point of the chip through the metal interconnect 763a. The metal interconnect 763a contains a fine-line metal layer 660a formed on a dielectric layer 330 over the p-type silicon substrate 401, a first via plug 661 formed on a contact region 764a of the P+ active region 757a and in the dielectric layer 330, and a second via plug 661 formed on a contact region 764b of the N+ active region 758a and in the dielectric layer 330. The P+ active region 757b is in the p-type silicon substrate 401, and the N+ active region 758b is in the N-well 755 in the p-type silicon substrate 401. The P+ active region 757c is in the N-well 755 in the p-type silicon substrate 401, and the N+ active region 758c is in the p-type silicon substrate 401. The N+ active region 758c is connected to a ground bus of the chip through a metal interconnect 763b of the chip and to the P+ active region 757b through the metal interconnect 763b, and the P+ active region 757b is connected to the ground bus through the metal interconnect 763b. The P+ active region 757c is connected to a power bus of the chip through a metal interconnect 763c of the chip and to the N+ active region 758b through the metal interconnect 763c, and the N+ active region 758b is connected to the power bus through the metal interconnect 763c. The metal interconnect 763b contains a fine-line metal layer 660b formed on the dielectric layer 330 over the p-type silicon substrate 401, a third via plug 661 formed on a contact region 764c of the P+ active region 757b and in the dielectric layer 330, and a fourth via plug 661 formed on a contact region 764e of the N+ active region 758c and in the dielectric layer 330. The metal interconnect 763c contains a fine-line metal layer 660c formed on the dielectric layer 330 over the p-type silicon substrate 401, a fifth via plug 661 formed on a contact region 764d of the N+ active region 758b, and a sixth via plug 661 formed on a contact region 764f of the P+ active region 757c. The gate 761a has a contact region 764g connected to the power bus of the chip and to the contact regions 764d and 764f through the metal interconnect 763c. The gate 761b has a contact region 764h connected to the ground bus of the chip and to the contact regions 764c and 764e through the metal interconnect 763b.


Referring to FIG. 291, the P+ active region 757a, connected to the I/O contact point or testing contact point of the chip, has an area AR3, from a top view, enclosed by the boundary defined by a sidewall 748 of the gate 761a and the border between a field oxide 762 and the P+ active region 757a. The N+ active region 758a, connected to the I/O contact point or testing contact point of the chip, has an area AR4, from a top view, enclosed by the boundary defined by a sidewall 749 of the gate 761b and the border between the field oxide 762 and the N+ active region 758a. The active area of the ESD unit 759 equals the area AR3 plus the area AR4.


Based on the previously described definition or calculation illustrated in FIGS. 286-291, the active area of each of ESD units of an ESD circuit can be calculated, and the total of active areas of the ESD units equals the active area of the ESD circuit. If the ESD circuit is composed of only one ESD unit, the active area of the ESD circuit equals the active area of the only one ESD unit. If the ESD circuit is composed of multiple ESD units, the active area of the ESD circuit equals the total of the active areas of the ESD units connected in parallel.


Accordingly, the active area of each of the inter-chip ESD circuits 701b, 702b, 703b and 704b and the active area of each of the off-chip ESD circuits 59a, 59b, 59c and 59d can be calculated. For example, the small inter-chip ESD circuit 701b, 702b, 703b or 704b may have an active area less than 1300 square millimeters, such as between 6.5 and 1300 square millimeters, exemplary less than 325 square millimeters, such as between 6.5 and 325 square millimeters, and the large off-chip ESD circuit 59a, 59b, 59c or 59d may have an active area larger than 1300 square millimeters, such as between 1300 and 65,000 square millimeters, exemplary larger than 3250 square millimeters, such as between 3250 and 65,000 square millimeters. Alternatively, the small inter-chip ESD circuit 701b, 702b, 703b or 704b may have an active area less than 650 square millimeters, and the large off-chip ESD circuit 59a, 59b, 59c or 59d may have an active area larger than 650 square millimeters.


The size of the large off-chip ESD circuit 59a of the circuits 700, defined as the total of the active areas of the one or more ESD units in the large off-chip ESD circuit 59a or the loading or capacitance of the large off-chip ESD circuit 59a, can be larger than the size of the small inter-chip ESD circuit 701b of the circuits 700, defined as the total of the active areas of the one or more ESD units in the small inter-chip ESD circuit 701b or the loading or capacitance of the small inter-chip ESD circuit 701b, by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 50 times.


The size of the large off-chip ESD circuit 59b of the circuits 700, defined as the total of the active regions of the one or more ESD units in the large off-chip ESD circuit 59b or the loading or capacitance of the large off-chip ESD circuit 59b, can be larger than the size of the small inter-chip ESD circuit 702b of the circuits 700, defined as the total of the active regions of the one or more ESD units in the small inter-chip ESD circuit 702b or the loading or capacitance of the small inter-chip ESD circuit 702b, by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 50 times.


The size of the large off-chip ESD circuit 59c of the circuits 800 defined as the total of the active regions of the one or more ESD units in the large off-chip ESD circuit 59c or the loading or capacitance of the large off-chip ESD circuit 59c, can be larger than the size of the small inter-chip ESD circuit 703b of the circuits 800, defined as the total of the active regions of the one or more ESD units in the small inter-chip ESD circuit 703b or the loading or capacitance of the small inter-chip ESD circuit 703b, by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 50 times.


The size of the large off-chip ESD circuit 59d of the circuits 800 defined as the total of the active regions of the one or more ESD units in the large off-chip ESD circuit 59d or the loading or capacitance of the large off-chip ESD circuit 59d, can be larger than the size of the small inter-chip ESD circuit 704b of the circuits 800, defined as the total of the active regions of the one or more ESD units in the small inter-chip ESD circuit 704b or the loading or capacitance of the small inter-chip ESD circuit 704b, by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 50 times.


Referring to FIG. 276, the size of the inter-chip buffer 702a or 703a can be characterized by the load or loading of the inter-chip buffer 702a or 703a. The load or loading of the inter-chip buffer 702a or 703a is total equivalent capacitance load of the inter-chip buffer 702a or 703a. The load or loading (capacitance) of the inter-chip buffer 702a or 703a, such as the load or loading (capacitance) of the last stage inverter 585b or 586b, with drains of the NMOS transistor 752a or 753a and the PMOS transistor 752b or 753b connected to the contact point P2 or P3, of the two-stage cascade inter-chip driver shown in FIG. 278 or 279, can be less than 10 pF, such as between 0.01 pF and 10 pF or between 0.1 pF and 5 pF, less than 2 pF, such as between 0.001 pF and 2 pF, or less than 1 pF, such as between 0.01 pF and 1 pF. The size of the inter-chip buffer 701a or 704a can be characterized by an input capacitance (loading) of the inter-chip buffer 701a or 704a, and the input capacitance (loading) of the inter-chip buffer 701a or 704a may be less than 10 pF, such as between 0.01 pF and 10 pF or between 0.1 pF and 5 pF, less than 2 pF, such as between 0.001 pF and 2 pF, or less than 1 pF, such as between 0.01 pF and 1 pF.


Referring to FIG. 285, the size of the inter-chip buffer 701a, 702a, 703a or 704a can be characterized by the load or loading of the inter-chip buffer 701a, 702a, 703a or 704a. The load or loading of the inter-chip buffer 701a, 702a, 703a or 704a is total equivalent capacitance load of the inter-chip buffer 701a, 702a, 703a or 704a. The load or loading (capacitance) of the inter-chip buffer 701a, 702a, 703a or 704a, such as the load or loading (capacitance) of a last stage tri-state driver, with drains of an NMOS transistor and a PMOS transistor connected to the contact point P1, P2, P3 or P4, of a multi-stage cascade tri-state buffer, can be less than 10 pF, such as between 0.01 pF and 10 pF or between 0.1 pF and 5 pF, less than 2 pF, such as between 0.001 pF and 2 pF, or less than 1 pF, such as between 0.01 pF and 1 pF.


Referring to FIG. 276, the size of the off-chip buffer 61b or 61c can be characterized by the load or loading of the off-chip buffer 61b or 61c. The load or loading of the off-chip buffer 61b or 61c is total equivalent capacitance load of the off-chip buffer 61b or 61c. The load or loading (capacitance) of the off-chip buffer 61b or 61c, such as the load or loading (capacitance) of the last stage driver 426b or 427b, with drains of the NMOS transistor 4203 or 4303 and the PMOS transistor 4204 or 4304 connected to the contact point P6 or P7, of the multi-stage cascade off-chip driver shown in FIG. 282 or 283, can be larger than 10 pF, such as between 10 pF and 100 pF, larger than 2 pF, such as between 2 and 100 pF, or larger than 1 pF, such as between 1 pF and 100 pF. The size of the off-chip buffer 61a or 61d can be characterized by an input capacitance (loading) of the off-chip buffer 61a or 61d, and the input capacitance (loading) of the off-chip buffer 61a or 61d may be larger than 10 pF, such as between 10 pF and 100 pF, larger than 2 pF, such as between 2 and 100 pF, or larger than 1 pF, such as between 1 pF and 100 pF.


Referring to FIG. 285, the size of the off-chip buffer 61a, 61b, 61c or 61d can be characterized by the load or loading of the off-chip buffer 61a, 61b, 61c or 61d. The load or loading of the off-chip buffer 61a, 61b, 61c or 61d is total equivalent capacitance load of the off-chip buffer 61a, 61b, 61c or 61d. The load or loading (capacitance) of the off-chip buffer 61a, 61b, 61c or 61d, such as the load or loading (capacitance) of a last stage tri-state driver, with drains of an NMOS transistor and a PMOS transistor connected to the contact point P5, P6, P7 or P8, of a multi-stage cascade tri-state buffer, can be larger than 10 pF, such as between 10 pF and 100 pF, larger than 2 pF, such as between 2 and 100 pF, or larger than 1 pF, such as between 1 pF and 100 pF.


The load or loading (capacitance) of the off-chip buffer 61b shown in FIG. 276 or 285 is larger than the load or loading (capacitance) of the inter-chip buffer 702a shown in FIG. 276 or 285 by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times. The load or loading (capacitance) of the off-chip buffer 61c shown in FIG. 276 or 285 is larger than the load or loading (capacitance) of the inter-chip buffer 703a shown in FIG. 276 or 285 by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


Referring to FIG. 276 or 285, the size of the inter-chip buffer 702a or 703a can be characterized by a peak drive current of the inter-chip buffer 702a or 703a, and the size of the off-chip buffer 61b or 61c can be characterized by a peak drive current of the off-chip buffer 61b or 61c. The peak drive current of the off-chip buffer 61b or 61c is larger than the peak drive current of the inter-chip buffer 702a or 703a by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


For example, regarding to the inter-chip buffer 702a shown in FIG. 276, when the PMOS transistor 752b is on and the NMOS transistor 752a is off, the previously described load or loading driven by the inter-chip buffer 702a is charged with a charging current. When the NMOS transistor 752a is on and the PMOS transistor 752b is off, the load or loading the previously described load or loading driven by the inter-chip buffer 702a is discharged with a discharging current. The peak charging or discharging current (a function of bias-voltages) of the NMOS transistor 752a or PMOS transistor 752b can be used to define the peak drive current of the inter-chip buffer 702a. Regarding to the off-chip buffer 61b shown in FIG. 276, when the PMOS transistor 4204 is on and the NMOS transistor 4203 is off, the previously described load or loading driven by the off-chip buffer 61b is charged with a charging current. When the NMOS transistor 4203 is on and the PMOS transistor 4204 is off, the previously described load or loading driven by the off-chip buffer 61b is discharged with a discharging current. The peak charging or discharging current (a function of bias-voltages) of the NMOS transistor 4203 or PMOS transistor 4204 can be used to define the peak drive current of the off-chip buffer 61b. The peak drive current of the off-chip buffer 61b is larger than the peak drive current of the inter-chip buffer 702a by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


Referring to FIG. 276 or 285, the size of the inter-chip buffer 702a or 703a can be characterized by an on-resistance of a transistor in the last stage driver of the inter-chip buffer 702a or 703a, and the size of the off-chip buffer 61b or 61c can be characterized by an on-resistance of a transistor in the last stage driver of the off-chip buffer 61b or 61c. The on-resistance of the off-chip buffer 61b or 61c is larger than the on-resistance of the inter-chip buffer 702a or 703a by more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


For example, regarding to the inter-chip buffer 702a shown in FIG. 276, when the PMOS transistor 752b is on and the NMOS transistor 752a is off, the previously described load or loading driven by the inter-chip buffer 702a is charged, and the PMOS transistor 752b is equivalent to a resister with an on-resistance. When the NMOS transistor 752a is on and the PMOS transistor 752b is off, the previously described load or loading driven by the inter-chip buffer 702a is discharged, and the NMOS transistor 752a is equivalent to a resister with resistance of an on-resistance. The on-resistance (a function of bias-voltages) of the NMOS transistor 752a or PMOS transistor 752b can be used to characterize the size of the inter-chip buffer 702a. Regarding to the off-chip buffer 61b shown in FIG. 276, when the PMOS transistor 4204 is on and the NMOS transistor 4203 is off, the previously described load or loading driven by the off-chip buffer 61b is charged, and the PMOS transistor 4204 is equivalent to a resister with an on-resistance. When the NMOS transistor 4203 is on and the PMOS transistor 4204 is off, the previously described load or loading driven by the off-chip buffer 61b is discharged, and the NMOS transistor 4203 is equivalent to a resister with an on-resistance. The on-resistance (a function of bias-voltages) of the NMOS transistor 4203 or PMOS transistor 4204 can be used to characterize the size of the off-chip buffer 61b.


Referring to FIG. 276 or 285, the size of the inter-chip buffer 701a, 702a, 703a or 704a or the size of the off-chip buffer 61a, 61b, 61c or 61d can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor. FIG. 292 or 293 shows how to define or calculate a physical channel width and a physical channel length of an NMOS transistor or PMOS transistor.



FIG. 292 or 293 shows a top view of a MOS transistor (metal-oxide-semiconductor transistor) that can be a PMOS transistor or an NMOS transistor. Referring to FIG. 292, a MOS transistor of a chip includes an active region 600, diffusion region, in a semiconductor substrate of the chip, a field oxide region 602 in the semiconductor substrate and around the active region 600, a gate 604 on the field oxide region 602 and across the active region 600, and a gate oxide (not shown) between the active region 600 and the gate 604. The active region 600 can be defined as a source 606 at a side of the gate 604, and a drain 608 at the other side of the gate 604. The material of the gate 604 may be poly silicon, metal silicide or composite layer of above materials, and the metal silicide may be NiSi, CoS, TiSi2 or WSi. Alternatively, the material of the gate 604 may be a metal, such as W, WN, TiN, Ta, TaN, Mo, or alloy or composite layer of above materials. The material of the gate oxide may be silicon oxide or high k oxide, such as Hf containing oxide. The Hf containing oxide may be HfO2, HfSiON or HfSiO. The reference mark of W is defined as the physical channel width of the MOS transistor, the length of the gate 604 crossing over the diffusion region 600; the reference mark of L is defined as the physical channel length of the MOS transistor, the width of the gate 604 over the diffusion region 600.


Referring to FIG. 293, alternatively, a MOS transistor may include a gate 604 with multiple portions 6041-604n over one or more diffusion regions 600. The reference marks of W1-Wn are defined as the physical channel width of each portion 6041-604n of the gate 604, the length of each portion 6041-604n of the gate 604 crossing over the diffusion region(s) 600; the reference mark of L is defined as the physical channel length of one of the portions 6041-604n of the gate 604, the width of one of the portions 6041-604n of the gate 604 over the diffusion region(s) 600. In this case, the physical channel width of the MOS transistor is the summation of the physical channel widths W1-Wn of each portions 6041-604n of the gate 604, and the physical channel length of the MOS transistor is the physical channel length L of one of the portions 6041-604n of the gate 604.


Accordingly, the definition of the physical channel width and physical channel length of the MOS transistor as illustrated in FIG. 292 or 293 can be applicable to various features/structures described herein.


The size of the inter-chip buffer 702a shown in FIG. 276 can be characterized by a ratio of a physical channel width to a physical channel length of the NMOS transistor 752a or PMOS transistor 752b. As shown, the drains of the NMOS transistor 752a and the PMOS transistor 752b can be connected to the contact point P2 of the circuits 700 through the metal interconnect line 740d. If the inter-chip buffer 702a is the two-stage cascade inter-chip driver shown in FIG. 278, the size of the inter-chip buffer 702a can be characterized by the ratio of the physical channel width to the physical channel length of the NMOS transistor 752a or PMOS transistor 752b in the last stage driver 585b, and the drains of the NMOS transistor 752a and the PMOS transistor 752b are connected to the contact point P2 of the circuits 700 through the metal interconnect 740d. The ratio of the physical channel width to the physical channel length of the NMOS transistor 752a can be, e.g., between 1 and 50, and in exemplary embodiments the ratio can be between 1 and 20. The ratio of the physical channel width to the physical channel length of the PMOS transistor 752b can be a suitable value, e.g., between 1 and 100, in exemplary embodiments the ratio can be between 1 and 40.


The size of the inter-chip buffer 703a shown in FIG. 276 can be characterized by a ratio of a physical channel width to a physical channel length of the NMOS transistor 753a or PMOS transistor 753b. As shown, the drains of the NMOS transistor 753a and the PMOS transistor 753b can be connected to the contact point P3 of the circuits 800 through the metal interconnect 740f. If the inter-chip buffer 703a is the two-stage cascade inter-chip driver shown in FIG. 279, the size of the inter-chip buffer 703a can be characterized by the ratio of the physical channel width to the physical channel length of the NMOS transistor 753a or PMOS transistor 753b in the last stage driver 586b, and the drains of the NMOS transistor 753a and the PMOS transistor 753b are connected to the contact point P3 of the circuits 800 through the metal interconnect 740f. The ratio of the physical channel width to the physical channel length of the NMOS transistor 753a can be, e.g., between 1 and 50, and in exemplary embodiments, the ratio can be between 1 and 20. The ratio of the physical channel width to the physical channel length of the PMOS transistor 753b can be, e.g., between 1 and 100, and in exemplary embodiments, the ratio can be between 1 and 40.


The size of the off-chip buffer 61b shown in FIG. 276 can be characterized by a ratio of a physical channel width to a physical channel length of the NMOS transistor 4203 or PMOS transistor 4204. As shown, the drains of the NMOS transistor 4203 and the PMOS transistor 4204 can be connected to the contact point P6 of the circuits 700 through the metal interconnect 740m. If the off-chip buffer 61b is the two-stage cascade off-chip driver shown in FIG. 282, the size of the off-chip buffer 61b can be characterized by the ratio of the physical channel width to the physical channel length of the NMOS transistor 4203 or PMOS transistor 4204 in the last stage driver 426b, and the drains of the NMOS transistor 4203 and the PMOS transistor 4204 are connected to the contact point P6 of the circuits 700 through the metal interconnect 740m. The ratio of the physical channel width to the physical channel length of the NMOS transistor 4203 can be, e.g., larger than 30, such as between 30 and 20,000, and in exemplary embodiments the ratio can be larger than 50, such as between 50 and 300. The ratio of the physical channel width to the physical channel length of the PMOS transistor 4204 can be, e.g., larger than 60, such as between 60 and 40,000, and in exemplary embodiments the ratio can be larger than 100, such as between 100 and 600. For exemplary embodiments, the ratio of the physical channel width to the physical channel length of the NMOS transistor 4203 may be larger than the ratio of the physical channel width to the physical channel length of the NMOS transistor 752a by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times. Moreover, for exemplary embodiments, the ratio of the physical channel width to the physical channel length of the PMOS transistor 4204 may be larger than the ratio of the physical channel width to the physical channel length of the PMOS transistor 752b by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


The size of the off-chip buffer 61c shown in FIG. 276 can be characterized by a ratio of a physical channel width to a physical channel length of the NMOS transistor 4303 or PMOS transistor 4304. As shown, the drains of the NMOS transistor 4303 and the PMOS transistor 4304 can be connected to the contact point P7 of the circuits 800 through the metal interconnect 740p. If the off-chip buffer 61c is the two-stage cascade off-chip driver shown in FIG. 283, the size of the off-chip buffer 61c can be characterized by the ratio of the physical channel width to the physical channel length of the NMOS transistor 4303 or PMOS transistor 4304 in the last stage driver 427b, and the drains of the NMOS transistor 4303 and the PMOS transistor 4304 are connected to the contact point P7 of the circuits 800 through the metal interconnect 740p. The ratio of the physical channel width to the physical channel length of the NMOS transistor 4303 can be, e.g., larger than 30, such as between 30 and 20,000, and in exemplary embodiments the ratio can be larger than 50, such as between 50 and 300. The ratio of the physical channel width to the physical channel length of the PMOS transistor 4304 can be, e.g., larger than 60, such as between 60 and 40,000, and in exemplary embodiments the ratio can be larger than 100, such as between 100 and 600. The ratio of the physical channel width to the physical channel length of the NMOS transistor 4303 may be larger than the ratio of the physical channel width to the physical channel length of the NMOS transistor 753a by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times. The ratio of the physical channel width to the physical channel length of the PMOS transistor 4304 may be larger than the ratio of the physical channel width to the physical channel length of the PMOS transistor 753b by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


The size of the inter-chip buffer 701a or 702a shown in FIG. 285 can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor of the tri-state driver of the inter-chip tri-state buffer. As shown, the tri-state driver can be connected to the contact point P1 or P2 of the circuits 700 through the metal interconnect 740b or 740d. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver can be, e.g., between 1 and 50, and in exemplary embodiments between 1 and 20. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver can be, e.g., between 1 and 100, and in exemplary embodiments between 1 and 40.


If the inter-chip buffer 701a or 702a shown in FIG. 285 is a multi-stage tri-state buffer, the size of the inter-chip buffer 701a or 702a can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor in the last stage tri-state driver of the multi-stage tri-state buffer. As shown, the last stage tri-state driver can be connected to the contact point P1 or P2 of the circuits 700 through the metal interconnect 740b or 740d. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the last stage tri-state driver can be, for example, between 1 and 50, and in exemplary embodiments the ratio can be between 1 and 20. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the last stage tri-state driver can be between 1 and 100, and in exemplary embodiments the ratio can be between 1 and 40.


The size of the inter-chip buffer 703a or 704a shown in FIG. 285 can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor of the tri-state driver of the inter-chip tri-state buffer. As shown, the tri-state driver can be connected to the contact point P3 or P4 of the circuits 800 through the metal interconnect 740f or 740h. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver is between 1 and 50, and in exemplary embodiments between 1 and 20. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver is between 1 and 100, and in exemplary embodiments can be between 1 and 40.


If the inter-chip buffer 703a or 704a shown in FIG. 285 is a multi-stage tri-state buffer, the size of the inter-chip buffer 703a or 704a can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor in the last stage tri-state driver of the multi-stage tri-state buffer. As shown, the last stage tri-state driver can be connected to the contact point P3 or P4 of the circuits 800 through the metal interconnect 740f or 740h. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the last stage tri-state driver can be, e.g., between 1 and 50, and in exemplary embodiments can be between 1 and 20. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the last stage tri-state driver can be, e.g., between 1 and 100, and in exemplary embodiments can be between 1 and 40.


The size of the off-chip buffer 61a or 61b shown in FIG. 285 can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor of a tri-state driver of the off-chip tri-state buffer. As shown, the tri-state driver can be connected to the contact point P5 or P6 of the circuits 700 through the metal interconnect 740j or 740m. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver can be, e.g., larger than 30, such as between 30 and 20,000, and in exemplary embodiments the ratio can be larger than 50, such as between 50 and 300. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver can be, e.g., larger than 60, such as between 60 and 40,000, and in exemplary embodiments can be larger than 100, such as between 100 and 600.


If the off-chip buffer 61a or 61b shown in FIG. 285 is a multi-stage tri-state buffer, the size of the off-chip buffer 61a or 61b can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor in the last stage tri-state driver of the multi-stage tri-state buffer. As shown, the last stage tri-state driver can be connected to the contact point P5 or P6 of the circuits 700 through the metal interconnect 740j or 740m. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the last stage tri-state driver can be, for example, larger than 30, such as between 30 and 20,000, and in exemplary embodiments the ratio can be larger than 50, such as between 50 and 300. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the last stage tri-state driver can be larger than 60, such as between 60 and 40,000, and in exemplary embodiments can be larger than 100, such as between 100 and 600.


The ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver (at the last stage) of the off-chip tri-state buffer 61a or 61b shown in FIG. 285 may be larger than the ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver (at the last stage) of the inter-chip tri-state buffer 701a or 702a shown in FIG. 285 by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver (at the last stage) of the off-chip tri-state buffer 61a or 61b shown in FIG. 285 may be larger than the ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver (at the last stage) of the inter-chip tri-state buffer 701a or 702a shown in FIG. 285 by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


The size of the off-chip buffer 61c or 61d shown in FIG. 285 can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor of a tri-state driver of the off-chip tri-state buffer. As shown, the tri-state driver can be connected to the contact point P7 or P8 of the circuits 800 through the metal interconnect 740p or 740r. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver can be, e.g., larger than 30, such as between 30 and 20,000, and in exemplary embodiments can be larger than 50, such as between 50 and 300. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver can be, e.g., larger than 60, such as between 60 and 40,000, and in exemplary embodiments the ratio can be larger than 100, such as between 100 and 600.


If the off-chip buffer 61c or 61d shown in FIG. 285 is a multi-stage tri-state buffer, the size of the off-chip buffer 61c or 61d can be characterized by a ratio of a physical channel width to a physical channel length of an NMOS transistor or PMOS transistor in the last stage tri-state driver of the multi-stage tri-state buffer. As shown, the last stage tri-state driver can be connected to the contact point P7 or P8 of the circuits 800 through the metal interconnect 740p or 740r. The ratio of the physical channel width to the physical channel length of the NMOS transistor of the last stage tri-state driver can be, e.g., larger than 30, such as between 30 and 20,000, and in exemplary embodiments the ratio can be larger than 50, such as between 50 and 300. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the last stage tri-state driver can be, e.g., larger than 60, such as between 60 and 40,000, and in exemplary embodiments can be larger than 100, such as between 100 and 600.


The ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver (at the last stage) of the off-chip tri-state buffer 61c or 61d shown in FIG. 285 may be larger than the ratio of the physical channel width to the physical channel length of the NMOS transistor of the tri-state driver (at the last stage) of the inter-chip tri-state buffer 703a or 704a shown in FIG. 285 by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times. The ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver (at the last stage) of the off-chip tri-state buffer 61c or 61d shown in FIG. 285 may be larger than the ratio of the physical channel width to the physical channel length of the PMOS transistor of the tri-state driver (at the last stage) of the inter-chip tri-state buffer 703a or 704a shown in FIG. 285 by, e.g., more than 3 times, 10 times, 25 times or 50 times, such as between 3 and 100 times.


Referring to FIG. 294, alternatively, the internal circuit 200c of the circuits 700 can be connected to the second node SN5 of the off-chip buffer 61a through the metal interconnect 740a of the circuits 700 without passing through any inter-chip circuit and any testing interface circuit of the circuits 700. The internal circuit 200g of the circuits 800 can be connected to the first node FN7 of the off-chip buffer 61c through the metal interconnect 740e of the circuits 800 without passing through any inter-chip circuit and any testing interface circuit of the circuits 800. Comparing to the circuit diagram of FIG. 276, the inter-chip circuits 200a and 200e and the testing interface circuits 333a and 333c can be omitted. The element in FIG. 294 indicated by a same reference number as indicates the element in FIG. 276 has a same material and spec as the element illustrated in FIG. 276.


Referring to FIG. 295, alternatively, the internal circuit 200c of the circuits 700 can be connected to the second node SN5 of the off-chip buffer 61a through the metal interconnect 740a of the circuits 700 without passing through any inter-chip circuit and any testing interface circuit of the circuits 700. The internal circuit 200g of the circuits 800 can be connected to the first node FN7 of the off-chip buffer 61c through the metal interconnect 740e of the circuits 800 without passing through any inter-chip circuit and any testing interface circuit of the circuits 800. Comparing to the circuit diagram of FIG. 285, the inter-chip circuits 200a and 200e and the testing interface circuits 333a and 333c can be omitted. The element in FIG. 295 indicated by a same reference number as indicates the element in FIGS. 276 and 285 has a same material and spec as the element illustrated in FIGS. 276 and 285.



FIG. 296 is an example of a schematic top perspective view showing the arrangement of the chips 68, the dummy substrate 62, the metal plugs 5p (including the metal plugs 5a-5f) and the metal interconnects 1 (including the metal interconnects 1a and 1b) of the previously described system-in package or multichip module 555, 555b, 555c, 555e, 555g, 555h, 555s, 555u, 555v, 555w, 555y, 555z, 556a, 556c, 556d, 556e, 556g, or 556h that is shown with a cross sectional view cut along the line Q-Q in FIG. 296. Referring to FIG. 296, the chips 68 are placed in the openings 62a that are formed in the dummy substrate 62, and the encapsulation/gap filling material 64 is formed in the gaps 4 each having the transverse distance or spacing D1 and in the gaps 8 each having the transverse distance or spacing D2. Hollow circles enclosing no oblique lines indicate the metal plugs 5p, like the previously described metal plug 5a, formed in and through the dummy substrate 62 and connected to the overlying metal interconnects 1, like the previously described metal interconnect 1a, contacting the underlying contact points of the conductive layer 18 of the carrier 11. Circles enclosing triangles indicate the metal plugs 5p, like the previously described metal plug 5b, formed in and through the chips 68 and connected to the overlying metal interconnects 1, like the previously described metal interconnect 1a, contacting the underlying contact points of the conductive layer 18 of the carrier 11. Circles enclosing oblique lines indicate the metal plugs 5p, like the previously described metal plug 5c, 5d or 5f, formed in the chips 68 and connected to the overlying metal interconnects 1, like the previously described metal interconnect 1a or 1b, contacting the underlying interconnects or metal traces, like the previously described interconnect or metal trace 35d, 35c or 35b, in the chips 68. Circles enclosing cross lines indicate the metal plugs 5p, like the previously described metal plug 5e, formed in and through the chips 68 and connected to the overlying metal interconnects 1, like the previously described metal interconnect 1b, connecting the interconnects or metal traces, like the previously described interconnect or metal trace 35a, on the supporters, like the previously described supporter 801, in the chips 68 down to the underlying contact points of the conductive layer 18 of the carrier 11.



FIG. 297 is an example of a schematic top perspective view showing the arrangement of the chips 72, the dummy substrate 165, the metal plugs 6p (including the metal plugs 6a-6e) and the metal interconnects 2 (including the metal interconnects 2a and 2b) of the previously described system-in package or multichip module 555, 555b, 555c, 555e, 555g, 555h, 555j, 555m, 555n, 555o, 555q, 555r, 555s, 555u, 555v, 555w, 555y, 555z, 556a, 556c, 556d, 556e, 556g, or 556h that is shown with a cross sectional view cut along the line Q-Q in FIG. 297. Referring to FIG. 297, the chips 72 are placed in the openings 165a that are formed in the dummy substrate 165, and the encapsulation/gap filling material 98 is formed in the gaps 4a each having the transverse distance or spacing D4 and in the gaps 8a each having the transverse distance or spacing D5. Hollow circles enclosing no oblique lines indicate the metal plugs 6p, like the previously described metal plug 6a, formed in and through the dummy substrate 165 and connected to the overlying metal interconnects 2, contacting the underlying metal interconnects 1, like the previously described metal interconnect 1b. Circles enclosing triangles indicate the metal plugs 6p, like the previously described metal plug 6b, formed in and through the chips 72 and connected to the overlying metal interconnects 2, like the previously described metal interconnect 2a, contacting the underlying metal interconnects 1, like the previously described metal interconnect 1a. Circles enclosing oblique lines indicate the metal plugs 6p, like the previously described metal plug 6c or 6d, formed in the chips 72 and connected to the overlying metal interconnects 2, like the previously described metal interconnect 2a, contacting the underlying interconnects or metal traces, like the previously described interconnect or metal trace 55c or 55b, in the chips 72. Circles enclosing cross lines indicate the metal plugs 6p, like the previously described metal plug 6e, formed in and through the chips 72 and connected to the overlying metal interconnects 2, like the previously described metal interconnect 2b, connecting the interconnects or metal traces, like the previously described interconnect or metal trace 55a, on the supporters, like the previously described supporter 802, in the chips 72 down to the underlying metal interconnects 1, like the previously described metal interconnect 1b.



FIG. 298 is an example of a schematic top perspective view showing the arrangement of the chips 118, the dummy substrate 165, the metal plugs 7p (including the metal plugs 7a-7f) and the metal interconnects 3 (including the metal interconnects 3a, 3b and 3c) of the previously described system-in package or multichip module 555, 555b, 555c, 555e, 555g, 555h, 555j, 555m, 555n, 555o, 555q, 555r, 555s, 555u, 555v, 555w, 555y, 555z, 556a, 556c, 556d, 556e, 556g, or 556h that is shown with a cross sectional view cut along the line Q-Q in FIG. 298. Referring to FIG. 298, the chips 118 are placed in the openings 158a that are formed in the dummy substrate 158, and the encapsulation/gap filling material 138 is formed in the gaps 4b each having the transverse distance or spacing D7 and in the gaps 8b each having the transverse distance or spacing D8. Hollow circles enclosing no oblique lines indicate the metal plugs 7p, like the previously described metal plug 7a, formed in and through the dummy substrate 158 and connected to the overlying metal interconnects 3, like the previously described metal interconnect 3c, contacting the underlying metal interconnects 2. Circles enclosing triangles indicate the metal plugs 7p, like the previously described metal plug 7b, formed in and through the chips 118 and connected to the overlying metal interconnects 3, like the previously described metal interconnect 3a, contacting the underlying metal interconnects 2, like the previously described metal interconnect 2a. Circles enclosing oblique lines indicate the metal plugs 7p, like the previously described metal plug 7c, 7d or 7f, formed in the chips 118 and connected to the overlying metal interconnects 3, like the previously described metal interconnect 3a or 3b, contacting the underlying interconnects or metal traces, like the previously described interconnect or metal trace 75d, 75c or 75b, in the chips 118. Circles enclosing cross lines indicate the metal plugs 7p, like the previously described metal plug 7e, formed in and through the chips 118 and connected to the overlying metal interconnects 3, like the previously described metal interconnect 3c, connecting the interconnects or metal traces, like the previously described interconnect or metal trace 75a, on the supporters, like the previously described supporter 803, in the chips 118 down to the underlying metal interconnects 2, like the previously described metal interconnect 2b.


The system-in package or multichip module shown in FIG. 82, 84, 103, 105, 128, 130, 136, 138, 181, 183, 207, 209, 250, 252, 270 or 272, or the multichip package shown in FIG. 83, 85, 88, 104, 106, 109, 129, 131, 132, 137, 139, 140, 182, 184, 185, 208, 210, 211, 251, 253, 254, 271, 273 or 274 can be used in a wide variety of electronic devices, including, but not limited to, e.g., a telephone, a cordless phone, a mobile phone, a smart phone, a netbook computer, a notebook computer, a digital camera, a digital video camera, a digital picture frame, a personal digital assistant (PDA), a pocket personal computer, a portable personal computer, an electronic book, a digital book, a desktop computer, a tablet or slate computer, an automobile electronic product, a mobile internet device (MID), a mobile television, a projector, a mobile projector, a pico projector, a smart projector, a three-dimensional (3D) video display, a 3D television (3D TV), a 3D video game player, a mobile computer device, a mobile compuphone (also called mobile phoneputer or mobile personal computer phone) which is a device or a system combining and providing functions of computers and phones, or a high performance and/or low power computer or server, for example, used for cloud computing.


The components, steps, features, benefits and advantages that have been discussed are merely illustrative. None of them, nor the discussions relating to them, are intended to limit the scope of protection in any way. Numerous other embodiments are also contemplated. These include embodiments that have fewer, additional, and/or different components, steps, features, benefits and advantages. These also include embodiments in which the components and/or steps are arranged and/or ordered differently.


In reading the present disclosure, one skilled in the art will appreciate that embodiments of the present disclosure, e.g., design of structure and/or control of methods described herein, can be implemented in hardware, software, firmware, or any combinations of such, and over one or more networks. Suitable software can include computer-readable or machine-readable instructions for performing methods and techniques (and portions thereof) of designing and/or controlling the implementation of tailored RF pulse trains. Any suitable software language (machine-dependent or machine-independent) may be utilized. Moreover, embodiments of the present disclosure can be included in or carried by various signals, e.g., as transmitted over a wireless RF or IR communications link or downloaded from the Internet.


Unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. They are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain. Furthermore, unless stated otherwise, the numerical ranges provided are intended to be inclusive of the stated lower and upper values. Moreover, unless stated otherwise, all material selections and numerical values are representative of preferred embodiments and other ranges and/or materials may be used.


The scope of protection is limited solely by the claims, and such scope is intended and should be interpreted to be as broad as is consistent with the ordinary meaning of the language that is used in the claims when interpreted in light of this specification and the prosecution history that follows, and to encompass all structural and functional equivalents thereof.

Claims
  • 1. A system-in package comprising: a carrier;a first chip over said carrier, wherein said first chip comprises a first semiconductor substrate having a thickness between 1 and 50 micrometers, a first metal layer under a bottom surface of said first semiconductor substrate, and a dielectric layer under said bottom surface of said first semiconductor substrate and over said first metal layer;a second chip over said carrier, wherein said second chip comprises a second semiconductor substrate, wherein said second semiconductor substrate has a top surface substantially coplanar with a top surface of said first semiconductor substrate, wherein said second chip is separated from said first chip;a gap filling material disposed in a gap between said first chip and said second chip;a first metal plug in said first chip, wherein said first metal plug passes through said first semiconductor substrate and said dielectric layer and contacts said first metal layer;a first insulating material enclosing said first metal plug, wherein said first insulating material is enclosed by said first semiconductor substrate;a first dielectric structure on said top surface of said first semiconductor substrate, on said top surface of said second semiconductor substrate, and on said gap filling material;a first metal interconnect in said first dielectric structure and over said first chip, wherein said first metal interconnect is connected to said first metal plug;a third chip over said first dielectric structure and over said first metal interconnect, wherein said third chip comprises a third semiconductor substrate having a thickness between 1 and 50 micrometers;a second metal plug in said third chip, wherein said second metal plug passes through said third chip and contacts said first metal interconnect;a second insulating material enclosing said second metal plug, wherein said second insulating material is enclosed by said third semiconductor substrate;a second dielectric structure on a top surface of said third semiconductor substrate; anda second metal interconnect in said second dielectric structure and over said third chip, wherein said second metal interconnect is connected to said second metal plug.
  • 2. The system-in package of claim 1, wherein said carrier comprises one of a silicon substrate, a glass substrate, a ceramic substrate, a metal substrate, and an organic polymer substrate.
  • 3. The system-in package of claim 1, wherein said first chip comprises one of a central-processing-unit (CPU) chip, a graphics-processing-unit (GPU) chip, a digital-signal-processing (DSP) chip, a flash memory chip, a dynamic-random-access-memory (DRAM) chip, a static-random-access-memory (SRAM) chip, a wireless local area network (WLAN) chip, a baseband chip, a logic chip, an analog chip, a power device, a regulator, a power management device, a global-positioning-system (GPS) chip, a Bluetooth chip, and a system-on chip (SOC) comprising one or more of a central-processing-unit (CPU) circuit block, a graphics-processing-unit (GPU) circuit block, a digital-signal-processing (DSP) circuit block, a memory circuit block, a baseband circuit block, a Bluetooth circuit block, a global-positioning-system (GPS) circuit block, a wireless local area network (WLAN) circuit block and a modem circuit block.
  • 4. The system-in package of claim 1, wherein said thickness of said first semiconductor substrate is between 2 and 20 micrometers.
  • 5. The system-in package of claim 1, wherein said second metal plug further contacts a second metal layer of said third chip, wherein said second metal layer is under said third semiconductor substrate.
  • 6. The system-in package of claim 1 further comprising a third metal plug in said second chip, wherein said third metal plug passes through said second semiconductor substrate and contacts a second metal layer of said second chip, wherein said second metal layer is under a bottom surface of said second semiconductor substrate, wherein said first metal interconnect is further over said second chip and connected to said third metal plug.
  • 7. The system-in package of claim 1, wherein said first metal plug passes through said first chip and contacts a contact point of said carrier.
  • 8. The system-in package of claim 1 further comprising a third metal plug in said first chip, a fourth metal plug in said second chip, and a third metal interconnect in said first dielectric structure and over said first and second chips, wherein said third metal plug passes through said first semiconductor substrate and contacts a second metal layer of said first chip, wherein said second metal layer is under said bottom surface of said first semiconductor substrate, wherein said fourth metal plug passes through said second semiconductor substrate and contacts a third metal layer of said second chip, wherein said third metal layer is under a bottom surface of said second semiconductor substrate, wherein said third metal interconnect connects said third metal plug and said fourth metal plug.
  • 9. The system-in package of claim 1, wherein said first chip has a different circuit design from a circuit design of said second chip.
  • 10. The system-in package of claim 1 further comprising a dummy substrate over said carrier and in said gap, wherein said dummy substrate has a top surface substantially coplanar with said top surface of said first semiconductor substrate, wherein said first dielectric structure is further on said top surface of said dummy substrate.
  • 11. The system-in package of claim 1 further comprising a metal bump connected to said second metal interconnect, wherein said metal bump comprises one of tin, copper, nickel, and gold.
  • 12. The system-in package of claim 1, wherein said first metal interconnect comprises one of a signal trace, a power trace, and a ground trace.
  • 13. The system-in package of claim 1, wherein said first insulating material comprises a sidewall dielectric layer on a sidewall of said first metal plug and on a top surface of said first metal layer, wherein said first metal plug is enclosed by said sidewall dielectric layer.
  • 14. The system-in package of claim 1, wherein said second insulating material comprises an insulating ring in said third semiconductor substrate, wherein said second metal plug passes through and is enclosed by said insulating ring.
  • 15. The system-in package of claim 1, wherein said second metal plug comprises an electroplated copper and a titanium-containing or tantalum-containing layer enclosing said electroplated copper.
  • 16. The system-in package of claim 1, wherein said first metal interconnect comprises an electroplated copper layer and a titanium-containing or tantalum-containing layer at multiple sidewalls and a bottom of said electroplated copper layer, wherein said electroplated copper layer is in said first dielectric structure and over said first chip.
  • 17. The system-in package of claim 1, wherein said first metal interconnect comprises an electroplated copper layer and a titanium-containing or tantalum-containing layer at a bottom of said electroplated copper layer but not at any sidewall of said electroplated copper layer, wherein said electroplated copper layer is in said first dielectric structure and over said first chip.
  • 18. The system-in package of claim 1 further comprising a third metal plug in said third chip, wherein said third metal plug passes through said third semiconductor substrate and contacts a second metal layer of said third chip, wherein said second metal layer is under a bottom surface of said third semiconductor substrate, wherein said second metal interconnect is further connected to said third metal plug.
  • 19. The system-in package of claim 18, wherein a total number of bit lines in parallel data communication between said first and third chips is more than 128, and one of said bit lines is provided by said first, second and third metal plugs and said first and second metal interconnects.
  • 20. The system-in package of claim 1, wherein said first metal interconnect has a top surface substantially coplanar with a top surface of said first dielectric structure.
RELATED APPLICATION

This application claims priority to U.S. provisional application No. 61/229,756, filed on Jul. 30, 2009, which is incorporated herein by reference in its entirety.

US Referenced Citations (9)
Number Name Date Kind
6288449 Bhowmik et al. Sep 2001 B1
20050056903 Yamamoto et al. Mar 2005 A1
20050122698 Ho et al. Jun 2005 A1
20070120241 Trezza et al. May 2007 A1
20080124845 Yu et al. May 2008 A1
20080197469 Yang et al. Aug 2008 A1
20090023243 Koyanagi Jan 2009 A1
20090149023 Koyanagi Jun 2009 A1
20100290191 Lin et al. Nov 2010 A1
Foreign Referenced Citations (1)
Number Date Country
0635885 Jan 1995 EP
Non-Patent Literature Citations (54)
Entry
PCT International Search Report and Written Opinion for International Application No. PCT/US2010/042958 dated Dec. 15, 2010.
Mistry, K. et al. “A 45nm Logic Technology with High-k+ Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,” IEEE International Electron Devices Meeting (2007) pp. 247-250.
Edelstein, D.C., “Advantages of Copper Interconnects,” Proceedings of the 12th International IEEE VLSI Multilevel Interconnection Conference (1995) pp. 301-307.
Theng, C. et al. “An Automated Tool Deployment for ESD (Electro-Static-Discharge) Correct-by-Construction Strategy in 90 nm Process,” IEEE International Conference on Semiconductor Electronics (2004) pp. 61-67.
Gao, X. et al. “An improved electrostatic discharge protection structure for reducing triggering voltage and parasitic capacitance,” Solid-State Electronics, 27 (2003), pp. 1105-1110.
Yeoh, A. et al. “Copper Die Bumps (First Level Interconnect) and Low-K Dielectrics in 65nm High Volume Manufacturing,” Electronic Components and Technology Conference (2006) pp. 1611-1615.
Roesch, W. et al. “Cycling copper flip chip interconnects,” Microelectronics Reliability, 44 (2004) pp. 1047-1054.
Lee, Y-H. et al. “Effect of ESD Layout on the Assembly Yield and Reliability,” International Electron Devices Meeting (2006) pp. 1-4.
Yeoh, T-S. “ESD Effects on Power Supply Clamps,” Proceedings of the 6th International Symposium on Physical & Failure Analysis of Integrated Circuits (1997) pp. 121-124.
Edelstein, D. et al. “Full Copper Wiring in a Sub-0.25 pm CMOS ULSI Technology,” Technical Digest IEEE International Electron Devices Meeting (1997) pp. 773-776.
Venkatesan, S. et al. “A High Performance 1.8V, 0.20 pm CMOS Technology with Cooper Metallization,” Technical Digest IEEE International Electron Devices Meeting (1997) pp. 769-772.
Jenei, S. et al. “High Q Inductor Add-on Module in Thick Cu/SiLK™ single damascene,” Proceedings from the IEEE International Interconnect Technology Conference (2001) pp. 107-109.
Groves, R. et al. “High Q Inductors in a SiGe BiCMOS Process Utilizing a Thick Metal Process Add-on Module,” Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (1999) pp. 149-152.
Sakran, N. et al. “The Implementation of the 65nm Dual-Core 64b Merom Processor,” IEEE International Solid-State Circuits Conference, Session 5, Microprocessor, 5.6 (2007) pp. 106-107, p. 590.
Kumar, R. et al. “A Family of 45nm IA Processors,” IEEE International Solid-State Circuits Conference, Session 3, Microprocessor Technologies, 3.2 (2009) pp. 58-59.
Bohr, M. “The New Era of Scaling in an SoC World,” International Solid-State Circuits Conference (2009) Presentation Slides 1-66.
Bohr, M. “The New Era of Scaling in an SoC World,” International Solid-State Circuits Conference (2009) pp. 23-28.
Ingerly, D. et al. “Low-K Interconnect Stack with Thick Metal 9 Redistribution Layer and Cu Die Bump for 45nm High Volume Manufacturing,” International Interconnect Technology Conference (2008) pp. 216-218.
Kurd, N. et al. “Next Generation Intel® Micro-architecture (Nehalem) Clocking Architecture,” Symposium on VLSI Circuits Digest of Technical Papers (2008) pp. 62-63.
Maloney, T. et al. “Novel Clamp Circuits for IC Power Supply Protection,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, vol. 19, No. 3 (Jul. 1996) pp. 150-161.
Geffken, R. M. “An Overview of Polyimide Use in Integrated Circuits and Packaging,” Proceedings of the Third International Symposium on Ultra Large Scale Integration Science and Technology (1991) pp. 667-677.
Luther, B. et al. “Planar Copper-Polyimide Back End of the Line Interconnections for ULSI Devices,” Proceedings of the 10th International IEEE VLSI Multilevel Interconnection Conference (1993) pp. 15-21.
Master, R. et al. “Ceramic Mini-Ball Grid Array Package for High Speed Device,”Proceedings from the 45th Electronic Components and Technology Conference (1995) pp. 46-50.
Maloney, T. et al. “Stacked PMOS Clamps for High Voltage Power Supply Protection,” Electrical Overstress/Electrostatic Discharge Symposium Proceedings (1999) pp. 70-77.
Lin, M.S. et al. “A New System-on-a-Chip (SOC) Technology—High Q Post Passivation Inductors,” Proceedings from the 53rd Electronic Components and Technology Conference (May 30, 2003) pp. 1503-1509.
Megic Corp. “MEGIC way to system solutions through bumping and redistribution,”(Brochure) (Feb. 6, 2004) pp. 1-3.
Lin, M.S. “Post Passivation Technology™ MEGIC® Way to System Solutions,” Presentation given at TSMC Technology Symposium, Japan (Oct. 1, 2003) pp. 1-32.
Lin, M.S. et al. “A New IC Interconnection Scheme and Design Architecture for High Performance ICs at Very Low Fabrication Cost—Post Passivation Interconnection,” Proceedings of the IEEE Custom Integrated Circuits Conference (Sep. 24, 2003) pp. 533-536.
Chiang, C., Ph.D; “TSV-EDS Challenges & Solutions”; Synopsys, Inc.; Sep. 10, 2008; pp. 1-22.
De Moor, P., et al.; “Recent Advances in 3D Integrations at IMEC”; Mater. Res. Soc. Symp. Proc.; vol. 970; 2007; pp. 1-10.
Deptuch, G. et al.; “3D-IC Technology for Future Detectors”; Fermilab; Feb. 17, 2009; pp. 1-32.
Ehrmann, O.; “Future Directions in Hybridization of Pixel Detectors”; Fraunhofer Institut for Reliability and Microintegration IZM; Sep. 9-12, 2002; pp. 1-38.
Ehrmann, O.; “Wafer Level System Integration”; Fraunhofer Institut for Reliability and Microintegration IZM; pp. 1-42.
Fukushima, T. et al.; “New Three-Dimensional Integration Technology Using Self-Assembly Technique”; downloaded Feb. 28, 2010; IEEE Xplore; pp. 1-4.
Gruber, P. et al.; “3D Packaging Micro Bumping”; IBM T.J. Watson Research Center; Jul. 16, 2008; pp. 1-21.
Gupta, S. et al.; “Techniques for Producing 3D ICs with High-Density Interconnect”, Tezzaron Semiconductor Corporation; pp. 1-5.
Ishino, M. et al.; “Latest ASET Activities for System-Integration R&D in Japan”; ASET; Sep. 2001; pp. 1-26.
Iwasaki, T. et al.; Development of 30 Micron Pitch Bump Interconnections for COC-FCBGA; 2006; IEEE; pp. 1216-1222.
Kawano, M. et al.; “A 3D Packaging Technology for 4 Gbit Stacked DRAM With 3 Gbps Data Transfer”; NEC Electronics; downloaded Jul. 8, 2010 from IEEE Xplore; pp. 1-4.
Koyanagi, M. et al.; “Neuromorphic Vision Chip Fabricated Using Three-Dimensional Integration Technology”; IEEE International Solid-State Circuits Conference; 2001; pp. 1-3.
Koyanagi, M. et al.; “Three-Dimension Integration Technology Based on Wafer Bonding With Vertical Buried Interconnections”; downloaded Mar. 8, 2010; IEEE Xplore; pp. 2799-2808.
Kurino H., et al.; “Intelligent Image Sensor Chip With Three Dimensional Structure”; downloaded Jul. 8, 2010 from IEEE Xplore (IEDM 99); pp. 879-882.
Kurino, H. et al.; “Three-Dimensional Integration Technology for Real Time Micro-Vision System”; downloaded Dec. 17, 2009; IEEE Xplore; pp. 203-212.
Lee, K.W. et al.; Three-Dimensional Shared Memory Fabricated Using Wafer Stacking Technology; Dept. of Machine Intelligence and System Engineering; Tohoku University; downloaded Jul. 8, 2010 from IEEE Xplore; pp. 165-168.
Mitsuhashi, T. et al.; “Development of 3D-Packaging Process Technology for Stacked Memory Chips”; Mater. Res. Soc. Symp. vol. 970; 2007; pp. 1-8.
Ohdomari, I.; “Prospect for Future Applications of Si Nano-Technology”; Ambient SoC Symp.; pp. 1-56.
Ono, T., et al.; “Three-Dimensional Processor System Fabricated by Wafer Stacking Technology”; Dept. of Machine Intelligence and System Engineering; Tohoku University; 2002 Cool Chips V (Apr. 19, 2002) pp. 1-9.
Prismark Partners LLC; “3D Packaging: PoP, TSS/TSV, Face to Face Bonding”; Sep. 9, 2009; pp. 1-128.
Reif, R. et al. Fabrication Technologies for Three-Dimensional Integrated Circuites; downloaded Jul. 20, 2010; IEEE Xplore; pp. 1-5.
Sony, “Sony Leads the Industry in Mass Producing Devices that Achieve the Same Performance as Embedded DRAM LSIs in the Low-Cost SiP Process”; pp. 1-4.
Swinnen, B. et al; “Introduction to IMEC's Research Programs on 3D-Technology 3D-WLP/3D-SIC”; imec; 2007; pp. 1-72.
Yarema R.; “3D Technology Issues and On-Going Developments at FNAL”; ILC Vertec Workshop; Apr. 23, 2008; Mennagio, Italy; pp. 1-47.
Yarema, R.; “Development of 3D Integrated Circuits for HEP”; 12th LHC Electronics Workshop; Sep. 25-29, 2006; Valencia, Spain; pp. 1-51.
Hu C.K., et al., “Copper-Polyimide Wiring Technology for VLSI Circuits,” Materials Research Society Symposium Proceedings VLSI V, 1990, pp. 369-373.
Related Publications (1)
Number Date Country
20110026232 A1 Feb 2011 US
Provisional Applications (1)
Number Date Country
61229756 Jul 2009 US