This invention relates to a mounting structure of the chip comprising a substrate, a chip which is realized by the semiconductor device and which is disposed on the upper surface of the substrate, and the adhesive agent for bonding the substrate and the chip. In addition, this invention relates to a module comprising the mounting structure of chip.
Japanese patent application publication No. 2006-133123A discloses a prior module. The prior module comprises a substrate, an acceleration sensor, and an adhesive agent. The substrate has a rectangular shape. The substrate is provided at its upper surface with four arrangement portions. The adhesive agents are disposed on the four arrangement portions. The acceleration sensor is, so called, the chip. The acceleration sensor has a size which is smaller than a size of the substrate. The acceleration sensor is, so called, the semiconductor device. The acceleration sensor is shaped to have a rectangular shape. The acceleration sensor has a rectangular shape. The acceleration sensor is provided at its four corners of the lower surface with adhesive portions. The acceleration sensor is attached to the upper surface of the substrate such that each the arrangement spot and each the adhesive portion is bonded by the adhesive agent. That is, the acceleration sensor has a mounting structure that the four corners of the acceleration sensor and the substrate are bonded by the adhesive agent.
The acceleration sensor is assembled as follows. Firstly, the adhesive agent is applied to the four arrangement spots of the substrate. Subsequently, the acceleration sensor is disposed on the upper surface of the substrate through each the adhesive agent such that each the arrangement spot is faced to the adhesive portion. The substrate, the adhesive agents, and the acceleration sensor are heated at, for example, 150 degree C. When the adhesive agents are heated, the acceleration sensor and the substrate are bonded by the adhesive agent. Then, the substrate, the adhesive agent, and the acceleration sensor are cooled to room temperature. In this manner, the acceleration sensor is assembled.
However, when the substrate, the adhesive agent, and the acceleration sensor are heated to 150 degree C., the substrate is changed into a warpage condition from a normal condition. Then, the acceleration sensor and the substrate which has the warpage are bonded by the adhesive agent. Subsequently, when the substrate having the warpage, the adhesive agent, and the acceleration sensor are cooled to the room temperature, the substrate is changed into the normal condition from the warpage condition. However, the acceleration sensor and the warped substrate are bonded by the adhesive agent. Therefore, when the substrate is changed into the normal condition from the warpage condition, the acceleration sensor receives the stress.
This invention is produced to solve the above problem. A first objective of this invention is to produce a mounting structure of chip which is configured to reduce the stress applied to the chip. In addition, a second objective of this invention is to produce the module having the mounting structure of chip of the above.
In order to solve the above problem, this invention discloses a mounting structure of chip which comprises a substrate having a base, a first chip disposed on an upper surface of the base, and adhesive agents which is configured to bond the first chip to the base. The adhesive agents are disposed on the upper surface of the base. The first chip is shaped to have a rectangular shape, whereby the first chip has a width and a length. The first chip is bonded at its lower surface to the base by the adhesive agents. The adhesive agents comprise only the first adhesive agent, the second adhesive agent, and the third adhesive agents. The first adhesive agent, the second adhesive agent, and the third adhesive agents are disposed on the three spots of the upper surface of the base, respectively. The three spots of the upper surface of the base are not arranged in a row. Therefore, when the three spots of the upper surface of the base are connected by the connecting lines, the connecting lines form the triangle. Therefore, the three spots of the upper surface of the base have arrangement such that the three spots are located in the vertexes of the triangle which is formed by the connecting lines which connects the three spots with each other. The first chip is bonded to the base by only the first adhesive agent, the second adhesive agent, and the third adhesive agent.
When the first chip is mounted on the substrate, the substrate is deformed according to the increase of the temperature. Then, the substrate is changed into normal condition when the substrate is cooled to the room temperature. However, the above configuration makes it possible to prevent the first chip from receiving the stress due to the deformation caused by the temperature variation of the substrate.
The first chip further comprises a plurality of the first pad electrodes. The first pad electrodes are disposed on the upper surface of the first chip. “The first adhesive agent and the second adhesive agent” are located in one lengthwise end of the first chip, and “the third adhesive agent” is located in a remaining lengthwise end of the first chip, the remaining lengthwise end of the first chip is opposite of the one lengthwise end of the first chip. The first adhesive agent is located in one width end of the first chip and the second adhesive agent is located in a remaining width end of the first chip, the remaining width end of the first chip is opposite to the one width end of the first chip. All the first pad electrodes are arranged in the width direction on the upper surface of the first chip such that all said first pad electrode is located between the first adhesive agent and the second adhesive agent. In addition, all the first pad electrodes are located in the one lengthwise end of the first chip, the one lengthwise end of the first chip is located away from the third adhesive agent.
In this case, it is possible to make a bonding of the bonding wires to the first pad electrodes, respectively.
In addition, the first chip further comprises a plurality of the first pad electrodes. A plurality of the first pad electrodes are disposed on the upper surface of the first chip. “The first adhesive agent and the second adhesive agent” are located in one lengthwise end of the first chip, and the third adhesive agent is located in a remaining lengthwise end of the first chip. The remaining lengthwise end of the first chip is opposite of the one lengthwise end of the first chip. The first adhesive agent is located in one width end of the lower surface of the first chip and the second adhesive agent is located in a remaining width end of the lower surface of the first chip. The remaining width end of the lower surface of the first chip is opposite of the one width end of the lower surface of the first chip. A plurality of the first pad electrodes comprises a first electrode row and a second electrode row. The first electrode row, the first adhesive agent, and the second adhesive agent are arranged in the width direction of the first chip. The second electrode row, the first adhesive agent, and the third adhesive agent are arranged in the length direction of the first chip.
In this case, it is possible to make a stable bonding of each the bonding wire with respect to each the first pad electrode.
It is preferred that the module has above mentioned mounting structure of chip. The module comprises a second chip, a fourth adhesive agent, a fifth adhesive agent, and a sixth adhesive agent in addition to the substrate, the first chip, the first adhesive agent, the second adhesive agent, and the third adhesive agent. The fourth adhesive agent, the fifth adhesive agent, and the sixth adhesive agent are disposed on only the three spots of the upper surface of the first chip, respectively. The three spots of the upper surface of the first chip are not arranged in a straight line. Therefore, the connecting lines which connect the three spots of the upper surface of the first chip with each other forms a triangle. Therefore, the three spots of the upper surface of the first chip have an arrangement such that the three spots are located in the vertexes of the triangle which is formed by the connecting line which connects the three points with each other. The first chip has a plurality of the first pad electrodes. The pad electrodes are disposed on the upper surface of the first chip. The second chip is bonded to the first chip by the fourth adhesive agent, the fifth adhesive agent, and the sixth adhesive agent such that all the first pad electrode are exposed to the upper direction.
The second chip has a linear coefficient of expansion which is different from a linear coefficient of expansion of the first chip. Therefore, the second chip is greatly deformed according to the temperature increase of the second chip when the second chip is mounted on the first chip. In addition, when the second chip is cooled to the room temperature, the second chip is changed into the flat condition. However, this configuration makes it possible to bond the second chip to the first chip under a condition where the second chip has an inclination with respect to the first chip. The inclination releases the stress due to the deformation caused by the temperature variation of the second chip.
The first adhesive agent is preferably aligned with the fourth adhesive agent in the thickness direction of the first chip. Similarly, it is preferred that the second adhesive agent is aligned with the fifth adhesive agent. Similarly, the sixth adhesive agent is preferably aligned with the sixth adhesive agent.
In this case, it is possible to stably adhere the second chip to the upper surface of the first chip.
The substrate preferably comprises a step and a peripheral wall. The step extends in the upper direction from the outer end of the base. The step has “a step upper surface”. The step upper surface has a first height from the upper surface of the base. The peripheral wall extends to the upper direction from an entire circumference of the base and the step such that the peripheral wall surrounds the base and the step. The second chip has a rectangular shape, whereby the second chip has a width and a length. The second chip has one lengthwise end and a remaining lengthwise end opposite of the one lengthwise end. The one lengthwise end of the lengthwise end of the second chip is defined as the overlapping portion. The remaining lengthwise end of the second chip is bonded to the first chip by the fourth adhesive agent and the fifth adhesive agent. The overlapping portion has a lower surface having a second height from the upper surface of the base. The second height is greater than the first height. The second chip is disposed on the upper surface of the first chip such that the overlapping portion is overlapped with the step upper surface. The module further comprises the seventh adhesive agent. The seventh adhesive agent is disposed between “the lower surface of the overlapping portion” and the step upper surface. The seventh adhesive agent is configured to bond the lower surface of the overlapping portion to the step upper surface.
In this case, it is possible to make a stable wire bonding with respect to the upper surface of the second chip.
It is preferred that the four adhesive agent is located in one width end of the second chip, and the fifth adhesive agent is located in a remaining width end of the second chip. The remaining width end of the second is opposite of the one width end of the second chip.
In this case, it is possible to make a stable wire bonding with respect to the upper surface of the second chip.
The seventh adhesive agent is preferably located in the one width end of the second chip and the remaining width end of the second chip such that the seventh adhesive agent is located in two corners of the second chip.
In this case, it is possible to make a stable wire bonding with respect to the upper surface of the second chip.
The substrate preferably comprises the connecting electrodes. The connecting electrodes are disposed on the three spots of the substrate. The first chip has a plurality of the terminal electrodes. The terminal electrodes are located in the lower surface of the first chip such that the terminal electrodes are located in positions corresponding to the connecting electrodes. The first adhesive agent, the second adhesive agent, and the third adhesive agent are defined by the bumps. Each the terminal electrode is coupled to each the connecting electrode through the bump.
When the first chip is mounted on the substrate, the temperature of the substrate is varied. However, the above configuration makes it possible to prevent the deformation of the first chip due to the stress.
It is preferred that the first chip is a MEMS device. The MEMS device comprises a movable portion. The MEMS device has a plurality of the first pad electrodes. Each the first pad electrode is spaced from the movable portion.
In addition, it is preferred that the first chip is an acceleration sensor. The acceleration sensor has a frame, a weight, a diaphragm, a piezoresistance, and a plurality of the first pad electrodes. The weight is disposed in an inside of the frame. The diaphragm is configured to couple the upper end of the weight with an upper end of the frame such that the weight is spaced from the frame by a predetermined gap. The diaphragm has flexibility. The piezoresistance is provided to the diaphragm. The piezoresistance is varied its resistance value according to a flexure due to the swinging of the weight. The piezoresistance is electrically connected to a plurality of the first pad electrodes.
According to the above features, it is possible to prevent the deformation of the movable portion of MEMS device and the acceleration sensor.
It is preferred that the first adhesive agent, the second adhesive agent, and the third adhesive agent further comprise encapsulation resins, respectively. The encapsulation resin is configured to encapsulate the bump.
According to this configuration, it is possible to ensure the connection of the first chip with respect to the substrate.
It is preferred that the substrate is provided with projections. The projection is formed to be projected toward an upper direction from the upper surface of the base. The projections are located in three spots of the upper surface of the base, respectively. The projections are covered by the adhesive agent.
In this case, it is possible to leave a space having a predetermined distance between an entire of the lower surface of the first chip and the entire of the upper surface of the base.
It is preferred that the first adhesive agent, the second adhesive agent, and the third adhesive agent comprise the silicone series resins, respectively.
In this case, it is possible to prevent the stress caused in the substrate from being transferred to the first chip.
Further, it is preferred that the first adhesive agent, the second adhesive agent, and the third adhesive agent are made of resin with spacer having spherical shapes.
In this case, it is possible to leave the space having a predetermined distance between an entire of the lower surface of the first chip from an entire of the upper surface of the base.
The spacer is preferably made of glass or plastic.
This configuration makes it possible to stably leave the space having a predetermined distance from the substrate to the first chip.
The first adhesive agent, the second adhesive agent, and the third adhesive agent are preferably disposed in outer circumference of the first chip.
In this case, it is possible to bond the first chip to the substrate, stably.
It is preferred that the seventh adhesive agent is made of silicone series resin.
With this configuration, it is possible to prevent the stress caused in the substrate from being applied to the first chip.
It is preferred that at least one of the first adhesive agent, the second adhesive agent, and the third adhesive agent is a plurality of bumps.
It is preferred that the bump is located in the outer circumference of the first chip.
In this case, it is possible to stably adhere the first chip to the substrate.
It is preferred that the bump is made of a solder.
The bump made of the solder is soft, compared with the bump made of Au. Therefore, the bump made of the solder has a high absorbing effect of the stress. Therefore, it is possible to prevent the stress caused in the substrate from being applied to the first chip.
It is preferred that the bump is made of an electrical conductive paste of silicone series.
The bump made of the electrical conductive paste of silicone series is soft, compared with the bump made of metal. Therefore, the bump made of the electrical conductive paste has a high stress absorbing effect. That is, this configuration makes it possible to prevent the stress caused by the deformation due to the temperature variation of the substrate from being applied to the first chip.
It is preferred that each one of the first adhesive agent, the second adhesive agent, and the third adhesive agent covers the lower side of the side surface of the first chip.
In addition, the first chip is preferably realized by the acceleration sensor. According to aforementioned feature, the second chip is preferably realized by the IC chip. The acceleration sensor has a frame, the weight, the diaphragm, the piezoresistance, the input terminal, and a plurality of the output terminals. The weight is disposed in an inside of the frame. The diaphragm is shaped to connect “an upper end of the weight” with “an upper end of the frame”. The diaphragm has flexibility. The piezoresistance is disposed on the diaphragm. The piezoresistance is configured to vary its resistance value according to the flexure caused by the swinging of the weight. The piezoresistance receives the voltage from the voltage source in the outside through the input terminal. The piezoresistnace is configured to output the voltage signal which indicates the variation of the resistance value of the piezoresistance. The IC chip has an input terminal. The IC chip is configured to make an arithmetic processing of processing the voltage signal received in the input terminal, and calculate the acceleration. The IC chip is configured to output the acceleration through the third pad electrodes.
Hereinafter, an explanation of the module having the mounting structure of the chip in the first embodiment is made with attached drawings.
The substrate 3 is made of material such as a ceramic and a glass epoxy resin. The substrate 3 is provided at its surface with a wiring which is omitted in the illustration. In this embodiment, the substrate 3 comprises a base 31. The base 31 has “a base upper surface 3a”. The base upper surface 3a is provided with a first arrangement spot 301, a second arrangement spot 302, and a third arrangement spot 303. As will be understood from
The adhesive agent 2 is made of silicone series resin. The adhesive agents 2 comprises only the first adhesive agent 221, the second adhesive agent 222, and the third adhesive agent 223. In addition, it is preferred that the adhesive agent 2 further comprises a spherical-shaped spacer. In this case, the base 31 and the acceleration sensor 1 are arranged to leave the distance which is determined by the diameter of the spherical shaped spacer. Consequently, the acceleration sensor 1 is spaced from a base 31 to leave a predetermined distance. In addition, it is possible to effectively prevent the stress caused to the base from being applied to the acceleration sensor 1. In addition, the spacer is preferably made of glass or plastic. In this case, it is possible to improve the accuracy of dimension of the spacer. Therefore, it is possible to uniform the distance between the acceleration sensor 1 and the base 31, accurately. Furthermore, it is preferred that the adhesive agent 2 further comprise the spacer having a dimension of 3 micrometers to 30 micrometers. In addition, it is preferred that the adhesive agent 2 comprises the silicone resin which contains 1 percent to 20 percents of spacer.
The acceleration sensor defines the first chip. The acceleration sensor 1 has a rectangular shape. Therefore, the acceleration sensor 1 has an upper surface and a lower surface. The acceleration sensor 1 has a width and a length. The acceleration sensor 1 has a frame 11, a diaphragm 10, a weight 12, resistors Rx1, Rx2, Rx3, Rx4, resistors Ry1, Ry2, Ry3, Ry4, resistors Rz1, Rz2, Rz3, Rz4, and the first pad electrode 19.
As shown in
The diaphragm 10 is made of silicon. As will be understood from
As will be understood from
As shown in
In addition, the diaphragm 10 is provided at its periphery of the upper surface with a fifth side 145, a sixth side 146, a seventh side 147, and a eighth side 148. The fifth side 145 and the seventh side 147 extend in parallel with each other. The fifth side 145 is opposite of the first side 141 in the acceleration sensor. The fifth side 145 is aligned with the first side 141 in the thickness direction of the acceleration sensor 1. The sixth side 146 is opposite of the second side 142 in the thickness direction of the acceleration sensor 1. The sixth side 146 is aligned with the second side 142 in the thickness direction of the acceleration sensor 1. The seventh side 147 is opposite of the third side 143 in the thickness direction of the acceleration sensor 1. The seventh side 147 is aligned with the third side 143 in the thickness direction of the acceleration sensor 1. The eighth side 148 is opposite of the fourth side 144 in the thickness direction of the acceleration sensor 1. The eights side 148 is aligned with the fourth side 144 in the thickness direction of the acceleration sensor 1.
The first pad electrodes 19 are arranged along the fifth side 145 on the upper surface of the diaphragm 10 such that the first pad electrodes 19 are located between the first arrangement spot 301 and the second arrangement spot 302. That is, all the first pad electrodes 19, the first arrangement spot 301, and the second arrangement spot 302 are arranged in the Y-direction of the acceleration sensor 1. The first pad electrode 19 comprises the input terminal VDD, the output terminals X1 to Z2, and the ground GND.
As shown in
When the acceleration sensor 1 is swung, the weight 12 is swung in the lateral direction defined by X-direction, the front-back direction defined by the Y-direction, and the upper-lower direction defined by the Z-direction. When the weight 12 is swung, each the beam 131 is flexed. When the beam 131 is flexed, the stretching stress and the compression stress are caused to the beam 131. The stretching stress and the compression stress are applied to each the resistor Rx1 to Rz4. Each the resistor Rx1 to Rz4 is realized by the piezoresistance. Therefore, the resistance values of the resistors Rx1 to Rz4 is increased when the resistors Rx1 to Rz4 receives the stretching stress. In contrast, the resistance value of the resistors Rx1 to Rz4 is decreased when the resistors Rx1 to Rz4 receive the compression stress. In this manner, the resistance value of the bridge circuit Bx, By, and Bz are varied. The bridge circuit Bx, By, and Bz receives the voltage through the input terminal VDD. Therefore, the output voltage of the bridge circuit Bx, By, and Bz is varied according to the resistance value of the bridge circuit Bx, By, and Bz. The variation of the output voltage is detected by the voltage detection circuit. Then, the module detects the acceleration on the basis of the detection result.
The acceleration sensor 1 is mounted on the base 31 as follows. At first, the adhesive agents 2 are applied to the first arrangement spot 301, the second arrangement spot 302, and the third arrangement spot 303 on the base upper surface 3a. Then, the acceleration sensor 1 is disposed on the adhesive agents 2. Consequently, the first arrangement spot 301 is faced to the first adhesion spot 101. The second arrangement spot 302 is faced to the second adhesion spot 102. The third arrangement spot 303 is faced to the third adhesion spot 103. Consequently, the substrate 3, the adhesive agent 2, and the acceleration sensor 1 are arranged in the manner shown in
In this manner, the mounting structure of chip in this embodiment makes it possible to prevent the semiconductor device such as the acceleration sensor from being made deformation due to the warpage of the substrate. Therefore, it is possible to obtain the acceleration sensor which is free from the effect of the stress after the chip is mounted on the substrate.
In addition, all the first pad electrodes 19 are arranged along the fifth side 145 such that all the first pad electrodes 19 are located between the first adhesion spot 101 and the second adhesion spot 102. That is, the first pad electrodes 19 are arranged along the fifth side 145 such that the first pad electrodes 19 are located between the first adhesive agent 221 and the second adhesive agent 222. The first pad electrodes 19 are arranged along the fifth side 145 which is spaced away from the third adhesive agent 223. Consequently, even if the stress is applied to the first pad electrodes 19 from the upside, the acceleration sensor 1 is stably supported by the substrate 3. Therefore, it is possible to establish the bonding of the first pad electrodes by the bonding wire.
In addition, the adhesive agent 2 is made of silicone-series resin. The silicone-series resin has a low coefficient of elasticity. Therefore, the adhesive agent 2 made of the silicone series resin absorbs the stress applied to the acceleration sensor 1 from the substrate.
In addition, the adhesive agents 2 are disposed on the three spots of the substrate such that the adhesive agents 2 cover the lower side of the outer circumference of the acceleration sensor. Therefore, it is possible to prevent the acceleration sensor 1 from being come off when the acceleration sensor 1 receives the force in the front-back direction and the lateral direction.
In addition, the arrangement of the adhesive agent 2 is not limited to the arrangement in the first embodiment and the modification of the first embodiment. The arrangement of the adhesive agent 2 of (a) to (I) shown in
The explanation of the above embodiment is made with using the first chip which is defined by the acceleration sensor 1 of piezoresistance type. However, the first chip is not limited to the acceleration sensor of the piezoresistance type. That is, the mounting structure of chip of the above may be applied to “a MEMS device such as acceleration sensor of capacitance type, a gyro sensor, a pressure sensor, a micro-actuator, a micro-relay, a micro-valve, an infrared sensor”, and “the module such as IC chip”.
An explanation of the module with mounting structure of chip in the second embodiment of this invention is made with attached drawings. In addition, the components of this embodiment equivalent to the components of the first embodiments are symbolized by the same reference numerals of the first embodiment, whereby the explanations are omitted.
The substrate 3B is made of material such as a ceramic and a glass epoxy resin. The substrate 3 is formed to have the base 31, the step 32, and the peripheral wall 33. The step 32 extends toward the upper direction from the periphery of the base 31. The peripheral wall 33 extends toward the upper direction from the periphery of the base 31 and the step 32. Consequently, the substrate 3B has a box shape and is provided at its upper surface with an opening. The peripheral wall 33 is provided at its upper end with the adhesive agents 34. The lid is attached to the peripheral wall 33 through the adhesive agent 34. The step 32 has an upper surface which is defined as “a step upper surface 32f”. “The step upper surface 32f” has a first height from “the base upper surface 3a”. The step upper surface 32f is provided with a plurality of the wirings 35.
The adhesive agent 2 comprises the silicone series resin 2a mixed with the spacers 2b having the spherical shapes.
The acceleration sensor 1 is cooperative with the IC chip 200 to construct the semiconductor device. As will be understood from
The adhesive agent 20 is made of silicone series resin 20a mixed with the spacers 20b having spherical shapes. The adhesive agent 20 comprises the fourth adhesive agent 224, the fifth adhesive agent 225, and the sixth adhesive agent 226. The adhesive agents 20 are only applied to the fourth spot 104, the fifth spot 105, and the sixth spot 106.
The IC chip 200 is defined as the second chip. IC chip 200 has a rectangular shape. IC chip 200 has “an IC chip lower surface 20u which is faced to the sensor upper surface 2S” and “an IC chip upper surface 20S which is opposite of the IC chip lower surface 20u”. The IC chip 200 is provided at its IC chip lower surface 20u with the fourth adhesion spot 304, the fifth adhesion spot 305, and the sixth adhesion spot 306. The IC chip 200 is disposed on the upper surface of the acceleration sensor 1 such that all the first pad electrodes 19 are exposed to the upper direction of the acceleration sensor 1. In addition, the IC chip 200 is disposed on the upper side of the acceleration sensor 1. Consequently, the fourth arrangement spot 104 is faced to the fourth adhesion spot 304. The fifth arrangement spot 105 is faced to the fifth adhesion spot 305. The sixth arrangement spot 106 is faced to the sixth adhesion spot 306. Consequently, the lower surface of the IC chip 200 is located at a second height from the base upper surface 3a. The second height is set to be greater than the first height.
The IC chip 200 has one longitudinal end defined as the first end and the other longitudinal end defined as the second end. The first end of the IC chip 200 is defined as an overlapping portion 200P. The second end of the IC chip 200 has the fourth adhesion spot 304 and the fifth adhesion spot 305. The fourth adhesion spot 304 is disposed in one width end of the lower surface of the IC chip 200 and the fifth adhesion spot 305 is disposed in the other width end of the lower surface of the IC chip 200. Therefore, the overlapping portion 200P has the lower surface which is located at a second height from the base upper surface 3a. The IC chip 200 is disposed on the same side of the acceleration sensor 1 as the upper surface of upper surface of the acceleration sensor 1 such that the overlapping portion 200P is overlapped with the step upper surface 32f. The IC chip 200 has a length which is greater than a length of the acceleration sensor 1.
The IC chip 200 is provided at its IC chip upper surface 20S with “a plurality of the second pad electrodes 202” and “a plurality of the third pad electrodes 203”. All the second pad electrodes 202 are disposed along one side of the IC chip upper surface 20S such that all the second pad electrodes 202 are located between the fourth adhesion spot 304 and the fifth adhesion spot 305. The second pad electrodes 202 are electrically connected to the first pad electrodes 19 through the bonding wires 15, respectively. The second electrode pads 202 are connected to the third electrode pads 203, respectively, through the wirings not shown in the illustration. The third pad electrodes 203 are arranged in a plurality of the sides of the IC chip upper surface 20S such that the third pad electrodes 203 are arranged in parallel with a plurality of the wirings 35 of the substrate 3B. The third pad electrodes 203 are electrically connected to the wirings 35, respectively, through the bonding wires 215. The wiring 35 is connected to the voltage source disposed in the outside. In this manner, the acceleration sensor 1 is connected to the power source provided in the outside. In addition, the IC chip is configured to calculate the acceleration on the basis of the voltage signal sent from the second pad electrodes 202. The IC chip is configured to output a signal indicative of the acceleration to the through the third pad electrode.
The above acceleration sensor 1 and the IC chip 200 are mounted on the substrate 32 as follows. Firstly, as shown in
Subsequently, as shown in
The modules are operated as follows. The module receives the voltage from the voltage source in the outside of the module. When the voltage source applies the voltage, the voltage is applied to the input terminal VDD of the first pad electrodes 19 through the third pad electrodes. Consequently, each the piezoresistances Rx1 to Rz4 receives the voltage. Each the piezoresistances outputs the voltage signal from the output terminal X1 to Z2 of the first pad electrodes 19. IC chip 200 receives the output signal through the wire 15 and the second pad electrode 202. The IC chip 200 comprises the voltage detection circuit. The IC chip 200 calculates the acceleration on the basis of the output signal, and outputs the signal indicative of the acceleration through the third pad electrode 203, the wire 215, and the wiring 35.
As explained above, the module with the mounting structure of chip of the above comprises the semiconductor device comprising the acceleration sensor 1 and the IC chip 200. The semiconductor device is mounted on the base 31 through the first adhesive agent 221, the second adhesive agent 222, and the third adhesive agent 223 on the base upper surface 3a. The IC chip 200 is mounted on the acceleration sensor 1 through the fourth adhesive agent 224, the fifth adhesive agent 225, and the sixth adhesive agent 226 on the upper surface of the acceleration sensor 1. The first adhesive agent 221 is aligned with the fourth adhesive agent 224 in the thickness direction of the acceleration sensor 1. The second adhesive agent 222 is aligned with the fifth adhesive agent 225 in the thickness direction of the acceleration sensor 1. The third adhesive agent 223 is aligned with the sixth adhesive agent 226 in the thickness direction of the acceleration sensor 1. Therefore, the adhesive agents 2 are aligned with the adhesive agents 20, respectively, in the thickness direction of the acceleration sensor 1. Therefore, it is possible to prevent the deformation of the acceleration sensor 1 due to the warpage caused in a situation where the acceleration sensor 1 is mounted on the substrate 1. Therefore, the mounting structure of chip in this embodiment makes it possible to produce the semiconductor device which is free from the stress after mounting on the substgrate.
In addition, the adhesive agent 20 is made of silicone series resin. The silicone series resin has a low coefficient of elasticity. Therefore, the adhesive agent 20 made of silicone series resin makes it possible to prevent the transfer of the stress to the IC chip 200 through the acceleration sensor 1 from the substrate 3.
The acceleration sensor 1 and the IC chip 200 are mounted on the substrate 3 as follows. Firstly, as shown in
Subsequent to the above, as shown in
As explained above, the module with mounting structure of chip comprises the IC chip 200 which has an overlapping portion 200P. The IC chip 200 is disposed on the upper side of the substrate 3B and on the upper side of the acceleration sensor 1 such that the gap 41 is left between the overlapping portion 200P and the step upper surface 32f. In addition, the gap 41 is filled with the seventh adhesive agent 40. Therefore, it is possible to stably establish the wire bonding with respect to the second pad electrodes 202.
The module with mounting structure of chip in the third embodiment of this invention is explained with attached drawings. It is noted that the components in this embodiment in common with the components in the first embodiment are symbolized by the same reference numerals, whereby the explanation is omitted. As will be understood from
The substrate 3 further comprises a plurality of wirings 39. A plurality of the wirings 39 is disposed on the upper surface of the substrate 3. One end of each the wiring acts as a connecting electrode. The connecting electrodes are located in the first arrangement spot 301 or the second arrangement spot 302 or the third arrangement spot 303. In addition, the connecting electrodes are provided at its upper surface with bumps 400, respectively.
The bump 400 acts as the adhesive agent. The bump 400 is made of a solder. As will be understood from
The acceleration sensor 1B further comprises a plurality of terminal electrodes 190. The terminal electrodes 190 are located on the first adhesion spot 101, the second adhesion spot 102, and the third adhesion spot 103, respectively. Further, as shown in
The acceleration sensor 1 is mounted on the substrate 3 as follows. Firstly, as will be understood from
As mentioned above, the module with mounting structure of chip in this embodiment of this embodiment makes it possible to prevent the warpage of the substrate when mounting the first chip. Therefore, it is possible to prevent the deformation of the first chip. Consequently, it is possible to obtain the module with the first chip which is free from the stress after mounting on the substrate.
The acceleration sensor 1 is mounted on the substrate 3 as follows. Firstly, the bump 400 and the encapsulation resin 401 are formed on the lower surface of each the terminal electrode 190. Then, the acceleration sensor 1 is disposed on the upper surface of the substrate 3 such that “one end of each the wiring 39”, “each the bump 400”, and “each the terminal electrode 190” are aligned with each other in the thickness direction of “the substrate 3 and the acceleration sensor 1”. Then, the substrate 3, the bump 400, and the acceleration sensor 1 are heated to a predetermined temperature. When the substrate 3, the bump 400, and the acceleration sensor 1 are heated, as shown in
As explained above, the module with mounting structure of chip in this modification makes it possible to prevent the contact failure of the bump 400 with respect to one end of the wiring 39 when the substrate is changed from the warpage condition into the flat condition under a condition where the acceleration sensor 1 is mounted.
In addition, in the module of this embodiment, a plurality of the bumps 400 are disposed on the first arrangement spot 301, are disposed on the second arrangement spot 302, and are disposed on the third arrangement spot 303. However, it is preferred that at least one of the arrangement spots is provided with a plurality of the bumps 400. Consequently, it is possible to prevent the local deformation of the acceleration sensor 1.
In addition, this embodiment discloses the bump 400 which is made of the solder. However, the bump 400 is not limited its material to the solder. The bump made of metal material such as Au may be employed as the bump. Furthermore, it is possible to employ the bump made of the electrical conductive paste of silicone series resin may be employed as the bump. Especially, when the bump made of electrical conductive paste having the silicone series resin is employed, it is possible to reduce the effect to the acceleration sensor 1 due to the stress caused by the temperature variation of the substrate. In addition, when the bump made of the electrical conductive paste of silicone series resin is employed, it is possible to establish the stable connection of the bump with respect to the terminal electrode 190.
Needless to say, the features of the above embodiments and the modifications explained in the above may be combined arbitrarily.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/059347 | 5/21/2009 | WO | 00 | 2/1/2012 |