The subject matter of the present application relates to microelectronic packages and assemblies incorporating microelectronic packages.
Semiconductor chips are commonly provided as individual, prepackaged units. A standard chip has a flat, rectangular body with a large front face having contacts connected to the internal circuitry of the chip. Each individual chip typically is contained in a package having external terminals connected to the contacts of the chip. In turn, the terminals, i.e., the external connection points of the package, are configured to electrically connect to a circuit panel, such as a printed circuit board. In many conventional designs, the chip package occupies an area of the circuit panel considerably larger than the area of the chip itself. As used in this disclosure with reference to a flat chip having a front face, the “area of the chip” should be understood as referring to the area of the front face.
In “flip chip” designs, the front face of the chip confronts the face of a package dielectric element, i.e., substrate of the package, and the contacts on the chip are bonded directly to contacts on the face of the substrate by solder bumps or other connecting elements. In turn, the substrate can be bonded to a circuit panel through the external terminals that overlie the substrate. The “flip chip” design provides a relatively compact arrangement; each package occupies an area of the circuit panel equal to or slightly larger than the area of the chip's front face, such as disclosed, for example, in certain embodiments of commonly-assigned U.S. Pat. Nos. 5,148,265; 5,148,266; and 5,679,977, the disclosures of which are incorporated herein by reference. Certain innovative mounting techniques offer compactness approaching or equal to that of conventional flip-chip bonding. Packages that can accommodate a single chip in an area of the circuit panel equal to or slightly larger than the area of the chip itself are commonly referred to as “chip-scale packages.”
Size is a significant consideration in any physical arrangement of chips. The demand for more compact physical arrangements of chips has become even more intense with the rapid progress of portable electronic devices. Merely by way of example, devices commonly referred to as “smart phones” integrate the functions of a cellular telephone with powerful data processors, memory and ancillary devices such as global positioning system receivers, electronic cameras, and local area network connections along with high-resolution displays and associated image processing chips. Such devices can provide capabilities such as full internet connectivity, entertainment including full-resolution video, navigation, electronic banking and more, all in a pocket-size device. Complex portable devices require packing numerous chips into a small space. Moreover, some of the chips have many input and output connections, commonly referred to as “I/Os.” These I/Os must be interconnected with the I/Os of other chips. The components that form the interconnections should not greatly increase the size of the assembly. Similar needs arise in other applications as, for example, in data servers such as those used in internet search engines where increased performance and size reduction are needed.
Semiconductor chips containing memory storage arrays, particularly dynamic random access memory chips (DRAMs) and flash memory chips are commonly packaged in single-chip or multiple-chip packages and assemblies. Each package has many electrical connections for carrying signals, power and ground between terminals and the chips therein. The electrical connections can include different kinds of conductors such as horizontal conductors, e.g., traces, beam leads, etc., which extend in a horizontal direction relative to a contact-bearing surface of a chip, vertical conductors such as vias, which extend in a vertical direction relative to the surface of the chip, and wire bonds that extend in both horizontal and vertical directions relative to the surface of the chip.
The transmission of signals within packages to chips of multi-chip packages poses particular challenges, especially for signals common to two or more chips in the package such as clock signals, and address and strobe signals for memory chips. Within such multi-chip packages, the lengths of the connection paths between the terminals of the package and the chips can vary. The different path lengths can cause the signals to take longer or shorter times to travel between the terminals and each chip. Travel time of a signal from one point to another is called “propagation delay” and is a function of the conductor length, the conductor's structure, and other dielectric or conductive structure in close proximity therewith.
Differences in the times at which two different signals reach a particular location can also be called “skew”. The skew in the arrival times of a particular signal at two or more locations is a result of both propagation delay and the times at which the particular signal starts to travel towards the locations. Skew may or may not impact circuit performance. Skew often has little impact on performance when all signals in a synchronous group of signals are skewed together, in which case all signals needed for operation arrive together when needed. However, this is not the case when different signals of a group of synchronous signals needed for operation arrive at different times. In this case the skew impacts performance because the operation cannot be performed unless all needed signals have arrived. The embodiments described herein can include features that minimize skew that are disclosed in the copending U.S. Provisional Patent Application No. 61/506,889 (TESSERA 3.8-664), the disclosure of which is incorporated by reference herein.
Conventional microelectronic packages can incorporate a microelectronic element that is configured to predominantly provide memory storage array function, i.e., a microelectronic element that embodies a greater number of active devices to provide memory storage array function than any other function. The microelectronic element may be or include a DRAM chip, or a stacked electrically interconnected assembly of such semiconductor chips. Typically, all of the terminals of such package are placed in sets of columns adjacent to one or more peripheral edges of a package substrate to which the microelectronic element is mounted.
In light of the foregoing, certain improvements can be made to multi-chip microelectronic packages and assemblies in order to improve electrical performance. These attributes of the present invention can be achieved by the construction of the microelectronic packages and assemblies as described hereinafter.
In accordance with an aspect of the invention, a microelectronic package can include a substrate having first and second opposed surfaces, at least two pairs of microelectronic elements, each pair of microelectronic elements including an upper microelectronic element and a lower microelectronic element, a plurality of terminals exposed at the second surface, and electrical connections extending from at least some of contacts of each lower microelectronic element to at least some of the terminals. The pairs of microelectronic elements can be fully spaced apart from one another in a horizontal direction parallel to the first surface of the substrate. Each lower microelectronic element can have a front surface facing the first surface of the substrate and a plurality of contacts at the front surface. The front surfaces of the lower microelectronic elements can be arranged in a single plane parallel to the first surface. A surface of each of the upper microelectronic elements can at least partially overlie a rear surface of the lower microelectronic element in its pair. The microelectronic elements can together be configured to predominantly provide memory storage array function. The terminals can be configured for connecting the microelectronic package to at least one component external to the microelectronic package.
In a particular embodiment, at least some of the plurality of contacts of the lower microelectronic element of first and second ones of the pairs of microelectronic elements can be arranged in a respective column of contacts defining respective first and second axes. The first and second axes can be transverse to one another. In one example, the first and second axes can be orthogonal to one another. In an exemplary embodiment, at least some of the plurality of contacts of the lower microelectronic element of first and second ones of the pairs of microelectronic elements can be arranged in a respective column of contacts defining respective first and second axes. The first and second axes can be parallel to one another. In a particular example, the at least two pairs of microelectronic elements can include four pairs of microelectronic elements.
In one embodiment, at least some of the plurality of contacts of each of the lower microelectronic elements can be arranged in a column of contacts defining respective first, second, third, and fourth axes. The first and third axes can be parallel to one another. The second and fourth axes can be transverse to the first and third axes. In a particular embodiment, the lower microelectronic element of at least one of the pairs of the microelectronic elements can be a first lower microelectronic element disposed adjacent a second lower microelectronic element. The front surface of the second lower microelectronic element can be arranged in the single plane parallel to the first surface. The upper microelectronic element that at least partially overlies the first lower microelectronic element can also at least partially overlie the second lower microelectronic element.
In an exemplary embodiment, the terminals can be arranged in an area array. The terminals can have exposed contact surfaces that are coplanar with one another. In a particular example, the electrical connections can include flip-chip connections extending between contacts of each of the lower microelectronic elements and conductive bond pads exposed at the first surface of the substrate. In one embodiment, each of the lower microelectronic elements can overlie at least one aperture extending between the first and second surfaces of the substrate. The electrical connections can include leads having at least portions aligned with the at least one aperture. In a particular embodiment, each of the upper microelectronic elements can overlie at least one aperture extending between the first and second surfaces of the substrate. The electrical connections can include leads having at least portions aligned with the at least one aperture.
In one example, at least some of the leads can include wire bonds extending through at least one of the apertures. In an exemplary embodiment, all of the leads can be wire bonds extending through at least one of the apertures. In one embodiment, at least some of the leads can include lead bonds. In a particular example, each upper microelectronic element can have a plurality of contacts exposed at the front surface thereof and arranged in at least one column of contacts disposed adjacent to an edge of the front surface. Each column of contacts can be disposed beyond an edge of the corresponding one of the lower microelectronic elements.
In a particular embodiment, the microelectronic package can include four pairs of microelectronic elements. The contacts of each microelectronic element can include eight data I/O contacts. Alternatively, the contacts of each microelectronic element can include nine data I/O contacts. In one embodiment, the microelectronic package can include nine microelectronic elements. The contacts of each microelectronic element can include eight data I/O contacts. In an exemplary embodiment, the microelectronic package can include two pairs of microelectronic elements. The contacts of each microelectronic element can include eight data I/O contacts. Alternatively, the contacts of each microelectronic element include sixteen data I/O contacts.
In one example, the microelectronic package can also include a buffer element electrically connected to at least some of the terminals and one or more of the microelectronic elements in the microelectronic package. The buffer element can be configured to regenerate at least one signal received at one or more of the terminals of the microelectronic package. In a particular embodiment, the buffer element can be mounted to the first surface of the substrate. In an exemplary embodiment, the buffer element can be mounted to the second surface of the substrate. In one embodiment, the at least one signal can include all of the address signals transferred to the microelectronic package. In a particular example, the at least one signal can include all of the command signals, address signals, bank address signals, and clock signals transferred to the microelectronic package, the command signals being write enable, row address strobe, and column address strobe signals, and the clock signals being sampling clocks used for sampling the address signals.
In an exemplary embodiment, the at least one signal can include all of the data signals received by the microelectronic package. In one embodiment, the microelectronic package can also include a nonvolatile memory element mounted to the substrate and configured to store identifying information. The nonvolatile memory element can be electrically connected to one or more of the microelectronic elements. In a particular example, the microelectronic package can also include a temperature sensor. In a particular embodiment, the microelectronic element can also include a decoupling capacitor element mounted to the substrate. The decoupling capacitor element can be electrically connected to one or more of the microelectronic elements. In one embodiment, the substrate can be an element consisting essentially of a material having a CTE in a plane of the substrate less than 12 ppm/° C. In a particular embodiment, the substrate can include a dielectric element consisting essentially of a material having a CTE in a plane of the substrate less than 30 ppm/° C.
In one example, the microelectronic elements can be configured to function together as an addressable memory module. The microelectronic package can be configured to store part of data received in each of the microelectronic elements. In one embodiment, the microelectronic package can be configured to function as a dual in-line memory module. In an exemplary embodiment, the microelectronic package can have the same command and signal interface and is configured to transfer the same amount of data as a dual in-line memory module. In a particular embodiment, each of the microelectronic elements can be configured to predominantly provide memory storage array function. In one example, each of the microelectronic elements can include a dynamic random access memory (“DRAM”) integrated circuit chip. In a particular example, each of the microelectronic elements can be functionally and mechanically equivalent to the other ones of the microelectronic elements.
In a particular embodiment, the second surface of the substrate can have a central region occupying a central portion thereof. At least some of the terminals can be first terminals disposed in the central region. In one embodiment, the at least two pairs of microelectronic elements can include four pairs of microelectronic elements. Each pair of microelectronic elements can at least partially overlie an aperture extending between the first and second surfaces of the substrate. Each aperture can have a length defining respective first, second, third, and fourth axes. The first and third axes can be parallel to one another. The second and fourth axes can be transverse to the first and third axes. The central region can be bounded by the first, second, third, and fourth axes.
In an exemplary embodiment, each said aperture can be an outer aperture. Each pair of microelectronic elements can at least partially overlie an inner aperture extending between the first and second surfaces of the substrate adjacent a corresponding one of the outer apertures. Each inner aperture can have a length defining an axis that is closer to a centroid of the substrate than the axis defined by the length of the corresponding one of the outer apertures. In one embodiment, the first terminals can be configured to carry all of the address signals transferred to the microelectronic package.
In a particular example, the first terminals can be configured to carry at least some of the command signals, address signals, bank address signals, and clock signals transferred to the microelectronic package, the command signals being write enable, row address strobe, and column address strobe signals, and the clock signals being sampling clocks used for sampling the address signals. The first terminals can be shared by at least two of the microelectronic elements. In one example, the first terminals can be shared by each of the microelectronic elements. In an exemplary embodiment, the microelectronic package can also include a heat spreader in thermal communication with at least one of the microelectronic elements. In a particular embodiment, the heat spreader can at least partially overlie a rear surface of each of the upper microelectronic elements. In one embodiment, the heat spreader can at least partially overlie the rear surface of each of the lower microelectronic elements.
In accordance with an aspect of the invention, a microelectronic assembly can include a plurality of microelectronic packages as described above. The microelectronic assembly can also include a circuit panel having panel contacts. The terminals of the package can be bonded to the panel contacts. In one embodiment, the circuit panel can have a common electrical interface for transport of signals to and from each of the microelectronic packages. In an exemplary embodiment, each of the microelectronic packages can be configured to have the same functionality as a dual in-line memory module. In a particular example, the circuit panel can be a motherboard. In one example, the circuit panel can be a module configured to be attached to a motherboard.
In a particular embodiment, the microelectronic assembly can also include a buffer element mounted to the circuit panel and electrically connected to at least some of the microelectronic packages. The buffer element can be configured to regenerate at least one signal received at one or more of the terminals of the microelectronic packages. In one example, the at least one signal can include all of the command signals, address signals, bank address signals, and clock signals transferred to the microelectronic assembly, the command signals being write enable, row address strobe, and column address strobe signals, and the clock signals being sampling clocks used for sampling the address signals. In an exemplary embodiment, the at least one signal can include all of the data signals received by the microelectronic assembly.
In accordance with an aspect of the invention, a module can include a plurality of microelectronic assemblies as described above. Each microelectronic assembly can be electrically coupled to a second circuit panel for transport of signals to and from each of the microelectronic assemblies. Further aspects of the invention can provide systems that incorporate microelectronic assemblies according to the foregoing aspects of the invention, composite chips according to the foregoing aspects of the invention, or both in conjunction with other electronic components electrically connected thereto. For example, the system can be disposed in and/or mounted to a single housing, which can be a portable housing. Systems according to preferred embodiments in this aspect of the invention can be more compact than comparable conventional systems.
Certain embodiments of the invention provide a package or microelectronic assembly in which a microelectronic element, e.g., a semiconductor chip, or stacked arrangement of semiconductor chips, is configured to predominantly provide a memory storage array function. In such microelectronic element, the number of active devices, e.g., transistors, therein that are configured, i.e., constructed and interconnected with other devices, to provide memory storage array function, is greater than the number of active devices that are configured to provide any other function. Thus, in one example, a microelectronic element such as a DRAM chip may have memory storage array function as its primary or sole function. Alternatively, in another example, such microelectronic element may have mixed use and may incorporate active devices configured to provide memory storage array function, and may also incorporate other active devices configured to provide another function such as processor function, or signal processor or graphics processor function, among others. In this case, the microelectronic element may still have a greater number of active devices configured to provide the memory storage array function than any other function of the microelectronic element.
Embodiments of the invention herein provide packages that have more than one semiconductor chip, i.e., a microelectronic element therein. A multiple chip package can reduce the amount of area or space required to connect the chips therein to a circuit panel, e.g., printed wiring board to which the package may be electrically and mechanically connected through an array of terminals, such as a ball grid array, land grid array or pin grid array, among others. Such connection space is particularly limited in small or portable computing devices, e.g., handheld devices such as “smartphones” or tablets that typically combine the function of personal computers with wireless connectivity to the broader world. Multi-chip packages can be particularly useful for making large amounts of relatively inexpensive memory available to a system, such as advanced high performance dynamic random access memory (“DRAM”) chips, e.g., in DDR3 type DRAM chips and its follow-ons.
The amount of area of the circuit panel needed to connect the multi-chip package thereto can be reduced by providing common terminals on the package through which at least some signals travel on their way to or from two or more chips within the package. However, doing so in a way that supports high performance operation presents challenges. To avoid undesirable effects such as undesirable reflections of the signal due to unterminated stubs, the traces, vias, and other conductors on a circuit panel that electrically connect the terminals at the exterior of the package with the global wiring on the circuit panel must not be too long. Heat dissipation also presents a challenge for advanced chips, such that it is desirable for at least one of the large flat surfaces of each chip to be coupled to a heat spreader or be exposed to or in thermal communication with a flow or air within an installed system. The packages described below can help to further these goals.
In
A statement that one feature is disposed at a greater height “above a surface” than another feature means that the one feature is at a greater distance in the same orthogonal direction away from the surface than the other feature. Conversely, a statement that one feature is disposed at a lesser height “above a surface” than another feature means that the one feature is at a smaller distance in the same orthogonal direction away from the surface than the other feature.
At least one aperture 26 can extend between the first and second surfaces 21, 22 of the substrate 20. As can be seen in
In an exemplary embodiment, the terminals 25 can include substantially rigid posts made from an electrically conductive material such as copper, copper alloy, gold, nickel, and the like. The terminals 25 can be formed, for example, by plating an electrically conductive material into openings in a resist mask, or by forming posts made, for example, of copper, copper alloy, nickel, or combinations thereof. Such posts can be formed, for example, by subtractively patterning a metal sheet or other metal structure into posts what extend away from the substrate 20 as terminals for electrically interconnecting the microelectronic package 10 with an external component such as the circuit panel 860 described below, for example. The terminals 25 can be substantially rigid posts having other configurations, as described for example in U.S. Pat. No. 6,177,636, the disclosure of which is hereby incorporated herein by reference. In one example, the terminals 25 can have exposed contact surfaces that are coplanar with one another.
The microelectronic package 10 can include joining elements 11 attached to the terminals 25 for connection with an external component. The joining elements 11 can be, for example, masses of a bond metal such as solder, tin, indium, a eutectic composition or combination thereof, or another joining material such as a conductive paste or a conductive adhesive. In a particular embodiment, the joints between the terminals 25 and contacts of an external component (e.g., the circuit panel 860 shown in
As used in this disclosure, a statement that an electrically conductive element is “exposed at” a surface of a structure indicates that the electrically conductive element is available for contact with a theoretical point moving in a direction perpendicular to the surface toward the surface from outside the structure. Thus, a terminal or other conductive element which is exposed at a surface of a structure can project from such surface; can be flush with such surface; or can be recessed relative to such surface and exposed through a hole or depression in the structure.
The terminals 25 can include first terminals 25a exposed in a central region 23 of the second surface 22 of the substrate 20 and second terminals 25b exposed in a peripheral region 28 of the second surface outside the central region. The arrangement shown in
The first terminals 25a can be configured to carry all of the command signals, address signals, bank address signals, and clock signals transferred to the microelectronic package 10 from an external component. For example, in a microelectronic element that includes a dynamic memory storage array, e.g., for a dynamic random access memory (“DRAM”), the command signals are write enable, row address strobe, and column address strobe signals used by a microelectronic element within the microelectronic package 10, when such microelectronic element is a dynamic random access memory storage device. Other signals such as ODT (one die termination), chip select, clock enable, are not part of the command signals that need to be carried by the first terminals 25a.
The clock signals can be sampling clocks used for sampling the address signals. At least some of the second terminals 25b can be configured to carry signals other than the command signals, address signals, and clock signals that are carried by the first terminals 25a. Signals or reference potentials such as chip select, reset, power supply voltages, e.g., Vdd, Vddq, and ground, e.g., Vss and Vssq, can be carried by the second terminals 25b; none of these signals or reference potentials needs to be carried by the first terminals 25a.
In a particular example, such as the example shown in
The microelectronic package 10 can also include a plurality of microelectronic elements 30 each having a front surface 31 facing the first surface 21 of the substrate 20. In one example, each of the microelectronic elements 30 can be bare chips or microelectronic units each incorporating a memory storage element such as a dynamic random access memory (“DRAM”) storage array or that is configured to predominantly function as a DRAM storage array (e.g., a DRAM integrated circuit chip). As used herein, a “memory storage element” refers to a multiplicity of memory cells arranged in an array, together with circuitry usable to store and retrieve data therefrom, such as for transport of the data over an electrical interface. In a particular example, the microelectronic package 10 can be included in a single in-line memory module (“SIMM”) or a dual in-line memory module (“DIMM”).
In a particular example, a microelectronic element 30 that includes a memory storage element can have at least a memory storage array function, but the microelectronic element may not be a full-function memory chip. Such a microelectronic element may not have a buffering function itself, but it may be electrically connected to other microelectronic elements in a stack of microelectronic elements, wherein at least one microelectronic element in the stack has a buffering function (the buffering microelectronic element could be a buffer chip, a full-function memory chip, or a controller chip).
In other examples, one or more of the microelectronic elements in any of the packages described herein can embody a greater number of active devices to provide memory storage array function than any other function, e.g., as flash memory, DRAM or other type of memory, and can be arranged in a package together with another microelectronic element or “logic chip” that is configured to predominantly provide logic function. In a particular embodiment, the logic chip can be a programmable or processor element such as a microprocessor or other general purpose computing element. The logic chip can be a microcontroller element, graphics processor, floating point processor, co-processor, digital signal processor, etc. In a particular embodiment, the logic chip can predominantly perform hardware state machine functions, or otherwise be hard-coded to serve a particular function or purpose. Alternatively, the logic chip can be an application specific integrated circuit (“ASIC”) or field programmable gate array (“FPGA”) chip. In such variation, the package then may be a “system in a package” (“SIP”).
In another variation, a microelectronic element in any of the packages described herein can have both logic and memory function embedded therein, such as a programmable processor having one or more associated memory storage arrays embedded therewith in the same microelectronic element. Such microelectronic element is sometimes referred to as a “system-on-a-chip” (“SOC”), in that logic such as a processor is embedded together with other circuitry such as a memory storage array or circuitry for performing some other function that may be a specialized function.
In a particular example, each of the microelectronic elements 30 can be functionally and mechanically equivalent to the other ones of the microelectronic elements, such that each microelectronic element can have the same pattern of electrically conductive contacts 35 at the front surface 31 with the same function, although the particular dimensions of the length, width, and height of each microelectronic element can be different than that of the other microelectronic elements.
Each microelectronic element 30 can have a plurality of electrically conductive contacts 35 exposed at the front surface 31 thereof. The contacts 35 of each microelectronic element 30 can be arranged in one or more columns disposed in a central region 36 of the front surface 31 that occupies a central portion of an area of the front surface. The central region 36, for example, may occupy an area of the front surface 31 that includes a middle third of the shortest distance between opposed peripheral edges 32a, 32b of the microelectronic element 30. As shown in
In a particular embodiment, the microelectronic package 10 can have four microelectronic elements 30, the contacts 35 of each microelectronic element including eight data I/O contacts. In another embodiment, the microelectronic package 10 can have four microelectronic elements 30, the contacts 35 of each microelectronic element including sixteen data I/O contacts. In a particular example, the microelectronic package 10 (and any of the other microelectronic packages described herein) can be configured to transfer, i.e., receive by the package, or transmit from the package thirty-two data bits in parallel in a clock cycle. In another example, the microelectronic package 10 (and any of the other microelectronic packages described herein) can be configured to transfer sixty-four data bits in parallel in a clock cycle. A number of other data transfer quantities are possible, among which only a few such transfer quantities will be mentioned without limitation. For example, the microelectronic package 10 (and any of the other microelectronic packages described herein) can be configured to transfer seventy-two data bits per clock cycle that can include a set of sixty-four underlying bits that represent data and eight bits that are error correction code (“ECC”) bits for the sixty-four underlying bits. Ninety-six data bits, 108 bits (data and ECC bits), 128 data bits, and 144 bits (data and ECC bits) are other examples of data transfer widths per cycle that the microelectronic package 10 (and any of the other microelectronic packages described herein) can be configured to support.
In the embodiment of
In the particular example shown in
Electrical connections between the contacts 35 and the terminals 25 can include optional leads, e.g., wire bonds 40, or other possible structure in which at least portions of the leads are aligned with at least one of the apertures 26. For example, as seen in
In one example, one or more additional chips 30′ can be mounted to the substrate 20 having a surface 31′ facing the first surface 21 (
One or more of the additional chips 30′ can be a buffering chip that can be configured to help provide signal isolation for each of the microelectronic elements 30 with respect to components external to the microelectronic package 10. In one example, such a buffering chip or buffer element can be electrically connected to at least some of the terminals 25 and one or more of the microelectronic elements 30 in the microelectronic package 10, the buffer element configured to regenerate at least one signal received at one or more of the terminals of the microelectronic package 10. In one embodiment, wherein the microelectronic package 10 is a registered DIMM, the at least one signal can include all of the command signals, address signals, bank address signals, and clock signals transferred to the package, the command signals being write enable, row address strobe, and column address strobe signals, and the clock signals being sampling clocks used for sampling the address signals. In a particular example, when the microelectronic package 10 is a load-reduced DIMM (“LRDIMM”), the at least one signal can include all of the data signals received by the microelectronic package.
In a particular embodiment, one or more of the additional chips 30′ can be a decoupling capacitor. One or more decoupling capacitors can be disposed between the microelectronic elements 30 instead of or in addition to the aforementioned buffering chips. Such decoupling capacitors can be electrically connected to internal power and ground buses inside the microelectronic package 10.
In one embodiment, one of the additional chips 30′ can be a nonvolatile memory element such as an electrical erasable programmable read only memory (“EEPROM”) mounted to the substrate 20 and configured to permanently store identifying information of the microelectronic package 10, such as the data width and depth of the microelectronic package. Such a nonvolatile memory element can be electrically connected to one or more of the microelectronic elements 30.
In one example, one of the additional chips 30′ can be a temperature sensor. Such a temperature sensor can be electrically connected to one or more of the microelectronic elements 30. In one example, the temperature sensor can include a diode and can be mounted to the substrate 20. In a particular embodiment, one of the additional chips 30′ can be a serial presence detect element mounted to the substrate 20.
The microelectronic package 10 can further include an adhesive 12 between the front surface 31 of the microelectronic elements 30 and the first surface 21 of the substrate 20. The microelectronic package 10 can also include an encapsulant (not shown) that can optionally cover, partially cover, or leave uncovered the rear surfaces 32 of the microelectronic elements 30. For example, in the package shown in
In variations of the embodiments described above it is possible for the contacts of microelectronic elements to not be disposed in central regions of the surfaces thereof. Rather, the contacts may be disposed in one or more rows adjacent an edge of such microelectronic element. In another variation, the contacts of a microelectronic element can be disposed adjacent two opposed edges of such microelectronic element. In yet another variation, the contacts of a microelectronic element can be disposed adjacent any two edges, or be disposed adjacent more than two edges of such microelectronic element. In such cases, locations of apertures in the substrate can be modified to correspond to such locations of the contacts disposed adjacent such edge or edges of the microelectronic element.
In
In
In
In one embodiment, the microelectronic package 510 can have eight microelectronic elements 530 (including four lower microelectronic elements 530a and four upper microelectronic elements 530b), each microelectronic element including eight data I/O contacts. In another embodiment, the microelectronic package 510 can have eight microelectronic elements 530 (including four lower microelectronic elements 530a and four upper microelectronic elements 530b), each microelectronic element including nine data I/O contacts.
In a particular example, at least some of the electrically conductive contacts 535 exposed at the front surface 531 of the lower microelectronic element 530a of adjacent pairs of microelectronic elements can be arranged in respective columns of contacts defining first and second axes 529a and 529a′. As shown in
In one embodiment, each pair of microelectronic elements 507 can at least partially overlie an outer aperture 526a extending between the first and second surfaces 521, 522 of the substrate 520. Each outer aperture 526a can have a length defining an outer axis 509a. The four outer axes 509a can be arranged in a pinwheel configuration as described above, wherein the outer axes 509a can be arranged in two parallel pairs of outer axes, each pair being transverse to the other pair. A central region 523 occupying a central portion of the second surface 522 of the substrate 520 can be bounded by the four outer axes 509a, as shown in
In an exemplary embodiment, each pair of microelectronic elements 507 can also at least partially overlie an inner aperture 526b extending between the first and second surfaces 521, 522 of the substrate 520 adjacent a corresponding one of the outer apertures 526a in the same pair of microelectronic elements, as shown in
As shown in
A spacer 514 can be positioned between the front surface 531 of the upper microelectronic elements 530b and a portion of the first surface 521 of the substrate 520, with or without an adhesive 512 located between the spacer and the first surface of the substrate. Such a spacer 514 can be made, for example, from a dielectric material such as silicon dioxide, a semiconductor material such as silicon, or one or more layers of adhesive. If the spacer 514 includes adhesives, the adhesives can connect the upper microelectronic elements 530b to the substrate 520. In one embodiment, the spacer 514 can have substantially the same thickness T1 in a vertical direction V substantially perpendicular to the first surface 521 of the substrate 520 as the thickness T2 of the lower microelectronic elements 530a between the front and rear surfaces 531, 532 thereof. In a particular embodiment, for example, when the spacer 514 is made of an adhesive material, the spacer 514 can be used without an adhesive 512 such as the adhesive 12 described above.
Referring now to
In a particular embodiment, the circuit panel 860 can have a plurality of parallel exposed edge contacts 850 adjacent an insertion edge 851 of at least one of the first and second surfaces 861, 862 for mating with corresponding contacts of a socket (shown in
The exposed edge contacts 850 and the insertion edge 851 can be sized for insertion into a corresponding socket (
In
In
The microelectronic packages and microelectronic assemblies described above with reference to
The system 900 can include a plurality of sockets 905, each socket including a plurality of contacts 907 at one or both sides of the socket, such that each socket 905 can be suitable for mating with corresponding exposed edge contacts or exposed module contacts of a corresponding module or component 906. In the exemplary system 900 shown, the system can include a circuit panel or motherboard 902 such as a flexible printed circuit board, and the circuit panel can include numerous conductors 904, of which only one is depicted in
In a particular embodiment, the system 900 can also include a processor such as the semiconductor chip 908, such that each module or component 906 can be configured to transfer a number N of data bits in parallel in a clock cycle, and the processor can be configured to transfer a number M of data bits in parallel in a clock cycle, M being greater than or equal to N.
In one example, the system 900 can include a processor chip 908 that is configured to transfer thirty-two data bits in parallel in a clock cycle, and the system can also include four modules 906 such as the module 10 described with reference to
In another example, the system 900 can include a processor chip 908 that is configured to transfer sixty-four data bits in parallel in a clock cycle, and the system can also include four modules 906 such as the component 1000 described with reference to
In the example depicted in
Modules or components 906 and components 908 and 910 can be mounted in a common housing 901, schematically depicted in broken lines, and can be electrically interconnected with one another as necessary to form the desired circuit. The housing 901 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 910 can be exposed at the surface of the housing. In embodiments where a structure 906 includes a light-sensitive element such as an imaging chip, a lens 911 or other optical device also can be provided for routing light to the structure. Again, the simplified system shown in
In any or all of the microelectronic packages described in the foregoing, the rear surface of one or more of the microelectronic elements can be at least partially exposed at an exterior surface of the microelectronic package after completing fabrication. Thus, in the microelectronic package 10 described above with respect to
In any of the embodiments described above, the microelectronic package may include a heat spreader partly or entirely made of any suitable thermally conductive material. Examples of suitable thermally conductive material include, but are not limited to, metal, graphite, thermally conductive adhesives, e.g., thermally-conductive epoxy, a solder, or the like, or a combination of such materials. In one example, the heat spreader can be a substantially continuous sheet of metal.
In one embodiment, the heat spreader can include a metallic layer disposed adjacent to one or more of the microelectronic elements. The metallic layer may be exposed at the rear surface of the microelectronic element. Alternatively, the heat spreader can include an overmold or an encapsulant covering at least the rear surface of the microelectronic element. In one example, the heat spreader can be in thermal communication with at least one of the front surface and rear surface of each of the microelectronic elements such as the lower and/or upper microelectronic elements 530a, 530b shown in
In a particular embodiment, a pre-formed heat spreader made of metal or other thermally conductive material may be attached to or disposed on the rear surface of one or more of the microelectronic elements with a thermally conductive material such as thermally conductive adhesive or thermally conductive grease. The adhesive, if present, can be a compliant material that permits relative movement between the heat spreader and the microelectronic element to which it is attached, for example, to accommodate differential thermal expansion between the compliantly attached elements. The heat spreader may be a monolithic structure. Alternatively, the heat spreader may include multiple spreader portions spaced apart from one another. In a particular embodiment, the heat spreader may be or include a layer of solder joined directly to at least a portion of a rear surface of one or more of microelectronic elements such as the lower and/or upper microelectronic elements 530a, 530b shown in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.
The present application is a continuation of U.S. patent application Ser. No. 13/346,185 filed Jan. 9, 2012, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/506,889 filed Jul. 12, 2011, and U.S. Provisional Patent Application Nos. 61/542,488, 61/542,495, and 61/542,553, all filed Oct. 3, 2011, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3670208 | Hovnanian et al. | Jun 1972 | A |
4747081 | Heilveil et al. | May 1988 | A |
5148265 | Khandros et al. | Sep 1992 | A |
5148266 | Khandros et al. | Sep 1992 | A |
5163024 | Heilveil et al. | Nov 1992 | A |
5210639 | Redwine et al. | May 1993 | A |
5480840 | Barnes et al. | Jan 1996 | A |
5679977 | Khandros et al. | Oct 1997 | A |
5691570 | Kozuka | Nov 1997 | A |
5751553 | Clayton | May 1998 | A |
5777391 | Nakamura et al. | Jul 1998 | A |
5821614 | Hashimoto et al. | Oct 1998 | A |
5899705 | Akram | May 1999 | A |
5929517 | Distefano et al. | Jul 1999 | A |
5936305 | Akram | Aug 1999 | A |
5973403 | Wark | Oct 1999 | A |
6086386 | Fjelstad et al. | Jul 2000 | A |
6130116 | Smith et al. | Oct 2000 | A |
6159837 | Yamaji et al. | Dec 2000 | A |
6197665 | DiStefano et al. | Mar 2001 | B1 |
6252264 | Bailey et al. | Jun 2001 | B1 |
6255899 | Bertin et al. | Jul 2001 | B1 |
6261867 | Robichaud et al. | Jul 2001 | B1 |
6297960 | Moden et al. | Oct 2001 | B1 |
6323436 | Hedrick et al. | Nov 2001 | B1 |
6343019 | Jiang et al. | Jan 2002 | B1 |
6376769 | Chung | Apr 2002 | B1 |
6380318 | Saito et al. | Apr 2002 | B1 |
6384473 | Peterson et al. | May 2002 | B1 |
6426560 | Kawamura et al. | Jul 2002 | B1 |
6433422 | Yamasaki | Aug 2002 | B1 |
6445594 | Nakagawa et al. | Sep 2002 | B1 |
6452266 | Iwaya et al. | Sep 2002 | B1 |
6461895 | Liang et al. | Oct 2002 | B1 |
6462423 | Akram et al. | Oct 2002 | B1 |
6521981 | Miyazaki et al. | Feb 2003 | B2 |
6560134 | Brox et al. | May 2003 | B2 |
6577004 | Rumsey et al. | Jun 2003 | B1 |
6611057 | Mikubo et al. | Aug 2003 | B2 |
6617695 | Kasatani | Sep 2003 | B1 |
6619973 | Perino et al. | Sep 2003 | B2 |
6620648 | Yang | Sep 2003 | B2 |
6633078 | Hamaguchi et al. | Oct 2003 | B2 |
6658530 | Robertson et al. | Dec 2003 | B1 |
6661089 | Huang | Dec 2003 | B2 |
6692987 | Lim et al. | Feb 2004 | B2 |
6707141 | Akram | Mar 2004 | B2 |
6720666 | Lim et al. | Apr 2004 | B2 |
6742098 | Halbert et al. | May 2004 | B1 |
6744137 | Kinsman | Jun 2004 | B2 |
6765288 | Damberg | Jul 2004 | B2 |
6781220 | Taube et al. | Aug 2004 | B2 |
6821815 | Smith et al. | Nov 2004 | B2 |
6836007 | Michii et al. | Dec 2004 | B2 |
6876088 | Harvey | Apr 2005 | B2 |
6894379 | Feurle | May 2005 | B2 |
6894381 | Hetzel et al. | May 2005 | B2 |
6906415 | Jiang et al. | Jun 2005 | B2 |
6943057 | Shim et al. | Sep 2005 | B1 |
6977440 | Pflughaupt et al. | Dec 2005 | B2 |
6982485 | Lee et al. | Jan 2006 | B1 |
7061092 | Akram et al. | Jun 2006 | B2 |
7061105 | Masuda et al. | Jun 2006 | B2 |
7061121 | Haba | Jun 2006 | B2 |
7091064 | Jiang | Aug 2006 | B2 |
7122897 | Aiba et al. | Oct 2006 | B2 |
7123497 | Matsui et al. | Oct 2006 | B2 |
7138709 | Kumamoto | Nov 2006 | B2 |
7141879 | Wakamiya et al. | Nov 2006 | B2 |
7145226 | Kumamoto | Dec 2006 | B2 |
7151319 | Iida et al. | Dec 2006 | B2 |
7164149 | Matsubara | Jan 2007 | B2 |
7170158 | Choi et al. | Jan 2007 | B2 |
7262507 | Hino et al. | Aug 2007 | B2 |
7272888 | DiStefano | Sep 2007 | B2 |
7294928 | Bang et al. | Nov 2007 | B2 |
7324352 | Goodwin | Jan 2008 | B2 |
7368319 | Ha et al. | May 2008 | B2 |
7372169 | Chang | May 2008 | B2 |
7389937 | Ito | Jun 2008 | B2 |
7405471 | Kledzik et al. | Jul 2008 | B2 |
7414312 | Nguyen et al. | Aug 2008 | B2 |
7420284 | Miyazaki et al. | Sep 2008 | B2 |
7476975 | Ogata | Jan 2009 | B2 |
7518226 | Cablao et al. | Apr 2009 | B2 |
7535110 | Wu et al. | May 2009 | B2 |
7550842 | Khandros et al. | Jun 2009 | B2 |
7589409 | Gibson et al. | Sep 2009 | B2 |
7633146 | Masuda et al. | Dec 2009 | B2 |
7633147 | Funaba et al. | Dec 2009 | B2 |
7642635 | Kikuchi et al. | Jan 2010 | B2 |
7692931 | Chong et al. | Apr 2010 | B2 |
7763964 | Matsushima | Jul 2010 | B2 |
7763969 | Zeng et al. | Jul 2010 | B2 |
RE41478 | Nakamura et al. | Aug 2010 | E |
RE41721 | Nakamura et al. | Sep 2010 | E |
RE41722 | Nakamura et al. | Sep 2010 | E |
7795721 | Kurita | Sep 2010 | B2 |
RE41972 | Lenander et al. | Nov 2010 | E |
7855445 | Landry et al. | Dec 2010 | B2 |
7989940 | Haba et al. | Aug 2011 | B2 |
RE42972 | Nakamura et al. | Nov 2011 | E |
8072037 | Murphy et al. | Dec 2011 | B2 |
8138015 | Joseph et al. | Mar 2012 | B2 |
8254155 | Crisp et al. | Aug 2012 | B1 |
8278764 | Crisp et al. | Oct 2012 | B1 |
8338963 | Haba et al. | Dec 2012 | B2 |
8345441 | Crisp et al. | Jan 2013 | B1 |
8378478 | Desai et al. | Feb 2013 | B2 |
8405207 | Crisp et al. | Mar 2013 | B1 |
8436457 | Crisp et al. | May 2013 | B2 |
8436477 | Crisp et al. | May 2013 | B2 |
8441111 | Crisp et al. | May 2013 | B2 |
8502390 | Crisp et al. | Aug 2013 | B2 |
8513813 | Crisp et al. | Aug 2013 | B2 |
8513817 | Haba et al. | Aug 2013 | B2 |
8525327 | Crisp et al. | Sep 2013 | B2 |
8610260 | Crisp et al. | Dec 2013 | B2 |
8629545 | Crisp et al. | Jan 2014 | B2 |
8653646 | Crisp et al. | Feb 2014 | B2 |
8659139 | Crisp et al. | Feb 2014 | B2 |
8659140 | Crisp et al. | Feb 2014 | B2 |
8659141 | Crisp et al. | Feb 2014 | B2 |
8659142 | Crisp et al. | Feb 2014 | B2 |
8659143 | Crisp et al. | Feb 2014 | B2 |
8670261 | Crisp et al. | Mar 2014 | B2 |
8823165 | Haba et al. | Sep 2014 | B2 |
20010002727 | Shiraishi et al. | Jun 2001 | A1 |
20010013662 | Kudou et al. | Aug 2001 | A1 |
20010022740 | Nuxoll et al. | Sep 2001 | A1 |
20010038106 | Coteus et al. | Nov 2001 | A1 |
20020000583 | Kitsukawa et al. | Jan 2002 | A1 |
20020016056 | Corisis | Feb 2002 | A1 |
20020027019 | Hashimoto | Mar 2002 | A1 |
20020030261 | Rolda et al. | Mar 2002 | A1 |
20020043719 | Iwaya et al. | Apr 2002 | A1 |
20020053727 | Kimura | May 2002 | A1 |
20020053732 | Iwaya et al. | May 2002 | A1 |
20020066950 | Joshi | Jun 2002 | A1 |
20020105096 | Hirata et al. | Aug 2002 | A1 |
20020130412 | Nagai et al. | Sep 2002 | A1 |
20020171142 | Kinsman | Nov 2002 | A1 |
20030064547 | Akram et al. | Apr 2003 | A1 |
20030089978 | Miyamoto et al. | May 2003 | A1 |
20030089982 | Feurle | May 2003 | A1 |
20030107118 | Pflughaupt et al. | Jun 2003 | A1 |
20030107908 | Jang et al. | Jun 2003 | A1 |
20030205801 | Baik et al. | Nov 2003 | A1 |
20030211660 | Lim et al. | Nov 2003 | A1 |
20040016999 | Misumi | Jan 2004 | A1 |
20040061211 | Michii et al. | Apr 2004 | A1 |
20040061577 | Breisch et al. | Apr 2004 | A1 |
20040090756 | Ho et al. | May 2004 | A1 |
20040112088 | Ueda et al. | Jun 2004 | A1 |
20040145042 | Morita et al. | Jul 2004 | A1 |
20040145054 | Bang et al. | Jul 2004 | A1 |
20040164382 | Gerber et al. | Aug 2004 | A1 |
20040168826 | Jiang et al. | Sep 2004 | A1 |
20040184240 | Su | Sep 2004 | A1 |
20040201111 | Thurgood | Oct 2004 | A1 |
20050116358 | Haba | Jun 2005 | A1 |
20050194672 | Gibson et al. | Sep 2005 | A1 |
20050206585 | Stewart et al. | Sep 2005 | A1 |
20050243590 | Lee et al. | Nov 2005 | A1 |
20050258532 | Yoshikawa et al. | Nov 2005 | A1 |
20060004981 | Bains | Jan 2006 | A1 |
20060081983 | Humpston et al. | Apr 2006 | A1 |
20060087013 | Hsieh | Apr 2006 | A1 |
20060091518 | Grafe et al. | May 2006 | A1 |
20060170093 | Pendse | Aug 2006 | A1 |
20060207788 | Yoon et al. | Sep 2006 | A1 |
20060290005 | Thomas et al. | Dec 2006 | A1 |
20070025131 | Ruckerbauer et al. | Feb 2007 | A1 |
20070108592 | Lai et al. | May 2007 | A1 |
20070120245 | Yoshikawa et al. | May 2007 | A1 |
20070143553 | LaBerge | Jun 2007 | A1 |
20070187836 | Lyne | Aug 2007 | A1 |
20070241441 | Choi et al. | Oct 2007 | A1 |
20070260841 | Hampel et al. | Nov 2007 | A1 |
20080012110 | Chong et al. | Jan 2008 | A1 |
20080052462 | Blakely et al. | Feb 2008 | A1 |
20080061423 | Brox et al. | Mar 2008 | A1 |
20080088033 | Humpston et al. | Apr 2008 | A1 |
20080098277 | Hazelzet | Apr 2008 | A1 |
20080150155 | Periaman et al. | Jun 2008 | A1 |
20080182443 | Beaman et al. | Jul 2008 | A1 |
20080185705 | Osborn et al. | Aug 2008 | A1 |
20080191338 | Park et al. | Aug 2008 | A1 |
20080230888 | Sasaki | Sep 2008 | A1 |
20080256281 | Fahr et al. | Oct 2008 | A1 |
20080265397 | Lin et al. | Oct 2008 | A1 |
20090065948 | Wang | Mar 2009 | A1 |
20090108425 | Lee et al. | Apr 2009 | A1 |
20090140442 | Lin | Jun 2009 | A1 |
20090200680 | Shinohara et al. | Aug 2009 | A1 |
20090250255 | Shilling et al. | Oct 2009 | A1 |
20090250822 | Chen et al. | Oct 2009 | A1 |
20090294938 | Chen | Dec 2009 | A1 |
20090314538 | Jomaa et al. | Dec 2009 | A1 |
20100052111 | Urakawa | Mar 2010 | A1 |
20100102428 | Lee et al. | Apr 2010 | A1 |
20100182040 | Feng et al. | Jul 2010 | A1 |
20100244272 | Lee et al. | Sep 2010 | A1 |
20100244278 | Shen | Sep 2010 | A1 |
20100295166 | Kim | Nov 2010 | A1 |
20100301466 | Taoka et al. | Dec 2010 | A1 |
20100327457 | Mabuchi | Dec 2010 | A1 |
20110042824 | Koide | Feb 2011 | A1 |
20110084758 | Shibata et al. | Apr 2011 | A1 |
20110110165 | Gillingham et al. | May 2011 | A1 |
20110140247 | Pagaila et al. | Jun 2011 | A1 |
20110193178 | Chang et al. | Aug 2011 | A1 |
20110193226 | Kirby et al. | Aug 2011 | A1 |
20110254156 | Lin | Oct 2011 | A1 |
20120018863 | Oganesian et al. | Jan 2012 | A1 |
20120020026 | Oganesian et al. | Jan 2012 | A1 |
20120153435 | Haba et al. | Jun 2012 | A1 |
20120155049 | Haba et al. | Jun 2012 | A1 |
20120206181 | Lin et al. | Aug 2012 | A1 |
20120217645 | Pagaila | Aug 2012 | A1 |
20120313239 | Zohni | Dec 2012 | A1 |
20120313253 | Nakadaira et al. | Dec 2012 | A1 |
20130009308 | Kwon | Jan 2013 | A1 |
20130015590 | Haba et al. | Jan 2013 | A1 |
20130082394 | Crisp et al. | Apr 2013 | A1 |
20130083583 | Crisp et al. | Apr 2013 | A1 |
20130168843 | Zohni | Jul 2013 | A1 |
20130286707 | Crisp et al. | Oct 2013 | A1 |
20130307138 | Crisp et al. | Nov 2013 | A1 |
20140042644 | Haba et al. | Feb 2014 | A1 |
20140055941 | Crisp et al. | Feb 2014 | A1 |
20140055942 | Crisp et al. | Feb 2014 | A1 |
20140055970 | Crisp et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1205977 | May 2002 | EP |
64-001257 | Jan 1989 | JP |
2002-076252 | Mar 2002 | JP |
2004-063767 | Feb 2004 | JP |
2008-198841 | Aug 2008 | JP |
3143893 | Aug 2008 | JP |
2010-098098 | Apr 2010 | JP |
2001-0002214 | Jan 2001 | KR |
2005-0119414 | Dec 2005 | KR |
2006-0120365 | Nov 2006 | KR |
2007-0088177 | Aug 2007 | KR |
2009-0008341 | Jan 2009 | KR |
2009-0086314 | Aug 2009 | KR |
312044 | Aug 1997 | TW |
428258 | Apr 2001 | TW |
429561 | Apr 2001 | TW |
478137 | Mar 2002 | TW |
567593 | Dec 2003 | TW |
M338433 | Aug 2008 | TW |
200842998 | Nov 2008 | TW |
200901194 | Jan 2009 | TW |
200926312 | Jun 2009 | TW |
M363079 | Aug 2009 | TW |
M398313 | Feb 2011 | TW |
201115659 | May 2011 | TW |
201208004 | Feb 2012 | TW |
M426922 | Apr 2012 | TW |
201222684 | Jun 2012 | TW |
201234556 | Aug 2012 | TW |
2010120310 | Oct 2010 | WO |
Entry |
---|
Elpida User's Manual, “Introduction to GDDR5 SGRAM”, Document No. E1600E10 (Ver. 1.0), Published Mar. 2010, Japan, URL: http:'www.elpida.com. |
Hynix, “2GB (64Mx32) GDDR5 SGRAM HRGQ2H24AFR”, Nov. 2011-Feb. 2012. |
International Search Report and Written Opinion dated Mar. 21, 2013 for Application No. PCT/US2012/000425. |
International Search Report and Written Opinion dated Mar. 21, 2013 for Application No. PCT/US2012/057911. |
International Search Report and Written Opinion for Application No. PCT/US2012/046049 dated Jan. 10, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/046049 dated Nov. 29, 2012. |
International Search Report and Written Opinion for Application No. PCT/US2012/046249 dated Mar. 20, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/046255 dated Mar. 20, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057170 dated Mar. 22, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057179 dated Apr. 4, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057200 dated Mar. 1, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057204 dated Aug. 30, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057554 dated Feb. 28, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057563 dated Mar. 5, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057810 dated Jul. 23, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058273 dated Mar. 6, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058398 dated Jul. 4, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058407 dated Mar. 28, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058423 dated Mar. 20, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058434 dated Jun. 21, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058557 dated Mar. 12, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/056773 dated Dec. 4, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/057895 dated Jun. 10, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2012/058229 dated Jul. 3, 2013. |
International Search Report and Written Opinion for Application PCT/US2013/056777 dated Jan. 2, 2014. |
International Search Report for Application No. PCT/US2012/057173 dated Aug. 5, 2013. |
International Search Report for Application No. PCT/US2012/057905 dated Aug. 20, 2013. |
Kang, et al., 8Gb 3D DDR3 DRAM Using Through-Silicon-Via Technology, IEEE, International Solid-State Circuits Conference, 2009, pp. 130-132. |
Kang, et al., 8Gb 3D DDR3 DRAM Using Through-Silicon-Via Technology, IEEE, International Solid-State Circuits Conference, 2009, Samsung Electronics, Hwasung, Korea. |
Office Action from Taiwan for Application No. 101125197 dated May 19, 2014. |
Partial International Search Report dated Oct. 12, 2012 in International Patent Appl. No. PCT/US2012/046249. |
Partial International Search Report dated Oct. 12, 2012 in International Patent Appl. No. PCT/US2012/046255. |
Partial International Search Report dated Oct. 26, 2012 in International Patent Appl. No. PCT/US2012/046049. |
Partial Search Report for Application No. PCT/US2012/000425 dated Jan. 30, 2013. |
Partial Search Report for Application No. PCT/US2012/057170 dated Jan. 31, 2013. |
Partial Search Report for Application No. PCT/US2012/057554 dated Jan. 24, 2013. |
Partial Search Report for Application No. PCT/US2012/058273 dated Jan. 24, 2013. |
Partial Search Report for Application No. PCT/US2012/058557 dated Feb. 4, 2013. |
Sandforce, “SF-2200 & SF-2100 Client SSD Processors”, 2011. |
U.S. Appl. No. 61/477,877, filed Apr. 21, 2011. |
US Amendment for U.S. Appl. No. 13/439,299 dated Jan. 18, 2013. |
US Amendment for U.S. Appl. No. 13/440,199 dated Nov. 30, 2012. |
US Amendment for U.S. Appl. No. 13/440,280 dated Nov. 30, 2012. |
U.S. Appl. No. 13/080,876, filed Apr. 6, 2011. |
U.S. Appl. No. 13/306,300, filed Nov. 29, 2011. |
U.S. Appl. No. 13/337,565, filed Dec. 27, 2011. |
U.S. Appl. No. 13/337,575, filed Dec. 27, 2011. |
U.S. Appl. No. 13/346,185, filed Jan. 9, 2012. |
U.S. Appl. No. 13/439,228, filed Apr. 4, 2012. |
U.S. Appl. No. 13/439,273, filed Apr. 4, 2012. |
U.S. Appl. No. 13/439,299, filed Apr. 4, 2012. |
U.S. Appl. No. 13/439,354, filed Apr. 4, 2012. |
U.S. Appl. No. 13/440,199, filed Apr. 5, 2012. |
U.S. Appl. No. 13/440,280, filed Apr. 5, 2012. |
U.S. Appl. No. 13/440,290, filed Apr. 5, 2012. |
U.S. Appl. No. 13/440,299, filed Apr. 5, 2012. |
U.S. Appl. No. 13/440,515, filed Apr. 5, 2012. |
U.S. Appl. No. 13/839,402, filed Mar. 15, 2013. |
U.S. Appl. No. 13/840,353, filed Mar. 15, 2013. |
U.S. Appl. No. 13/840,542, filed Mar. 15, 2013. |
U.S. Appl. No. 13/841,052, filed Mar. 15, 2013. |
U.S. Appl. No. 13/306,068, filed Nov. 29, 2011. |
U.S. Appl. No. 13/346,201, filed Jan. 9, 2012. |
U.S. Appl. No. 13/354,747, filed Jan. 20, 2012. |
U.S. Appl. No. 13/354,772, filed Jan. 20, 2012. |
U.S. Appl. No. 13/439,286, filed Apr. 5, 2012. |
U.S. Appl. No. 13/439,317, filed Apr. 5, 2012. |
U.S. Appl. No. 13/440,212, filed Apr. 5, 2012. |
U.S. Appl. No. 13/440,313, filed Apr. 5, 2012. |
US Non Final Office Action dated Oct. 18, 2012 for U.S. Appl. No. 13/439,299. |
US Non-Final Office Action for U.S. Appl. No. 13/440,199 dated Aug. 31, 2012. |
US Non-Final Office Action for U.S. Appl. No. 13/440,280 dated Aug. 31, 2012. |
Taiwanese Allowance and Search Report for Application No. 101136592 dated Jun. 27, 2014. |
Taiwanese Office Action for Application No. 101136594 dated Aug. 13, 2014. |
Taiwanese Office Action for Application No. 101136595 dated Oct. 27, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2014/041709 dated Nov. 4, 2014. |
Taiwanese Office Action for Application No. 101136575 dated Oct. 28, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2013/056777 dated Jan. 21, 2015. |
Taiwanese Office Action for Application No. 101136585 dated Jan. 21, 2015. |
Taiwanese Notice of Allowance for Application No. 102130518 dated Mar. 31, 2015. |
Taiwanese Office Action for Application No. 101136606 dated Mar. 27, 2015. |
Taiwanese Office Action for Application No. 101136578 dated May 12, 2015. |
Taiwanese Office Action for Application No. 101136577 dated May 12, 2015. |
Taiwanese Office Action for Application No. 102130519 dated May 7, 2015. |
Written Opinion of the International Preliminary Examining Authority for Application No. PCT/US2014/041709 dated Jun. 1, 2015. |
Number | Date | Country | |
---|---|---|---|
20140367866 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61542488 | Oct 2011 | US | |
61542553 | Oct 2011 | US | |
61542495 | Oct 2011 | US | |
61506889 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13346185 | Jan 2012 | US |
Child | 14472991 | US |