Semiconductor chips are commonly provided in packages which facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. These packages typically have an external structure with exposed terminals on a bottom face of the structure. The terminals are exposed at the bottom surface of the chip carrier. In the surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with the corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. These packages also may include an overmolding or encapsulant covering the chip and also covering the upper of the chip carrier.
Chips used for generating or processing radio frequency (“RF”) signals, commonly referred to as “RF chips” are used in wireless devices such as cellular telephones and wireless data communication devices. There have been increasing needs for packages especially suited for use with RF chips with increasing adoption of wireless devices. RF chips typically generate substantial amounts of heat during operation. Moreover, RF chips require low impedance connections to external circuitry and in some cases require connections capable of handling appreciable electrical current. Moreover, packages for RF chips desirably incorporate electrical shielding which prevents unwanted propagation of electrical magnetic fields between the RF chip and the surroundings. For example, a radio frequency power amplifier chip used in a transmitter can generate significant spurious RF emissions. Other elements of the circuit must be protected from these emissions. Conversely, a radio frequency amplifier used in a receiver should be isolated from RF emissions generated by other components.
It is desirable to package RF chips in a unit containing other components such as, for example, inductors, couplers, chokes, capacitors and resistors separate from the RF chip itself. The entire package should be as small as possible to facilitate miniaturization of the overall wireless device. Also, such packages should be manufacturable at low cost and with high reliability. All of these factors, taken together, have presented a considerable challenge heretofore.
One aspect of the invention provides a microelectronic package including at least one lower chip, most preferably a radio frequency chip and a connecting element extending above the lower chip. The package desirably also includes at least one upper chip disposed above the connecting element. The connecting element extends horizontally outwardly, beyond the lower chip or chips. Most preferably, the connecting element includes one or more dielectric layers and one or more layers of traces extending along the dielectric layer or layers. For example, the connecting element may be a single layer or multi-layer rigid circuit board or a flexible circuit panel, commonly referred to as a “tape.”
The package most preferably also includes an assembly of components referred to herein as a bottom plane element including a plurality of terminals and a thermal conductor. Preferably, the thermal conductor is an element having an area substantially larger than the area of each of the terminals. The thermal conductor most desirably is at least partially aligned with the at least one lower chip, so that the lower chip or chips overlie the thermal conductor and are in heat transfer relation therewith. The terminals most preferably are -substantially co-planar with the thermal conductor, such that all of these components lie at a vertical level lower than lower chip or chips. The terminals and thermal connector are exposed at the bottom surface of the package so that these elements can be bonded to corresponding elements of a circuit board or other external substrate when the package is mounted.
In a particularly preferred arrangement, the lower chip or chips are active semiconductor chips, most preferably RF chips such as RF power amplifier chips, whereas the upper chip or chips include one or more integrated passive chips. Such an integrated passive chip incorporates numerous passive components such as resistors, capacitors and inductors. In preferred structures according to this aspect of the invention, the terminals are disposed adjacent the periphery of the package, outside the area occupied by the lower semi-conductor chip or chips. Leads extend from these terminals upwardly to the connecting element. Thus, the connecting element carries signals horizontally in a plane above the lower chips and the leads carry the signals down to the terminals. Stated another way, the chip carrier handles the horizontal translation or “fan out” of signal traces from the contacts of the lower chips to the periphery of the connecting element. The upper chip or chips can be of any size. Typically, all of the passive components to be incorporated in an integrated passive chip can be provided in an integrated passive chip of relatively small size. In a particularly preferred arrangement, the thermal conductor, terminals and leads are fabricated as elements of a unitary lead frame. Thus, the leads can be robust, thick structures which provide low impedance connections between the terminals and the connecting element. Moreover, the routing on the connecting element can be relatively uncomplicated and can provide room for relatively large, broad traces. As further discussed below, the upper chip or chips can be mounted directly above the lower chip or chips and hence communication between the upper and lower chips can be handled by very short lines as, for example, by direct vertical connections between aligned contacts of the upper and lower chips. The preferred connecting elements are substantially less expensive per unit area than the chips themselves. Therefore, use of a connecting element other than the chips themselves to provide horizontal translation of the signals substantially reduces the cost of the package.
A package according to a further embodiment of the invention includes a connecting element incorporating a dielectric element and traces extending along the dielectric element, the connecting element having top and bottom surfaces. The package includes at least one lower chip mounted to the bottom surface of the connecting element, at least one lower chip having a surface remote from the connector defining a lower datum at a level below the connector. The package according to this aspect of the invention includes a plurality of active terminals disposed at or below the lower datum and also includes a plurality of active leads in the form of elongated strips extending between the active terminals and the connecting element. The active leads are connected to at least some of the traces. Most desirably, at least some of the active leads are thicker than the traces on the connecting element. Such a structure can be fabricated by providing the active leads as elements of a lead frame. A package according to this aspect of the invention may also include one or more upper chips mounted to the top surface of the connecting element and desirably also includes an encapsulant surrounding the active leads and be at least one or lower chip.
Yet another aspect of the invention provides a unitary metallic lead frame incorporating a plate having top and bottom surfaces and having edges. The lead frame according to this aspect of the invention also includes one or more temporary elements and a plurality of active terminals spaced horizontally from the plate as, for example, in rows alongside one or more edges of the plate. Most preferably, the active terminals are connected to the plate only through the temporary elements. The lead frame also desirably includes a plurality of active leads projecting upwardly from the active terminals and projecting above the top surface of the plate. Most preferably, these active leads also extend inwardly toward the plate. Desirably, the temporary elements extend outwardly relative to the plate beyond the active terminals. For example, where the active terminals are disposed in rows extending alongside edges of the plate, the temporary elements may include strips extending beside the rows of active terminals so that each row of active terminals is disposed between one such strip and the plate. As explained below, these structures facilitate disconnection of the active terminals and active leads from the plate after assembly of the other components. Lead frames according to this aspect of the invention can be used in fabrication of packages as discussed above.
A further aspect of the invention provides methods of making microelectronic packages. Methods according to this aspect of the invention desirably include the steps of assembling a subassembly incorporating a connecting element having top and bottom surfaces, one or more lower chips mounted to the bottom surface with a bottom plane assembly including a thermal conductor and active terminals substantially coplanar with the thermal conductor. The assembly step desirably is performed so that the lower chips lie between the connecting element and the thermal conductor and hence the connecting element is disposed above the thermal conductor and above the one or more lower chips. The method further includes the step of electrically connecting the connecting element to the active terminals. Most preferably, the bottom plane assembly includes active leads projecting upwardly from the active terminals so that the connecting element is juxtaposed with the active leads in the assembling step. Stated another way, the bottom plane assembly desirably includes a structure, such as the aforementioned lead frame having active leads projecting upwardly from the plane of the thermal conductor and the assembling step is performed so as to drop the lower chips between the active leads, into proximity with the thermal conductor. The subassembly used in this process may also include one or more upper chips mounted to the top surface.
According to an aspect of the invention, a packaged chip is provided which includes a bottom package element and a top package element. Each of the package elements have an upwardly facing top surface and a downwardly facing bottom surface. Each package element further includes one or more dielectric layers and a plurality of conductive elements.
The top package element overlies the bottom package element so as to define an interior space between the top and bottom package elements. The conductive elements of the bottom package element include bottom terminals exposed at the bottom surface of the bottom package element. The conductive elements of the top package element include top terminals exposed at the top surface of the top package element.
One or more chips are disposed in the interior space and connected to at least some of the terminals of at least one of the package elements. The conductive elements of the top package element substantially block radiative propagation of radio frequency energy between the one or more chips and a space above the top package element.
According to a preferred aspect of the invention, at least some of the terminals of the top and bottom package elements are electrically connected to one another. Desirably, at least one chip is adapted to process radio frequency analog signals and may be a radio frequency power amplifier, for example.
According to a particular preferred aspect of the invention, a first chip and a second chip are included in the packaged chip, each chip having a front face with contacts thereon, a rear face and edges extending between the front and rear faces, the first and second chips being stacked in face-to-face arrangement with the rear face of the second chip facing toward one of the package elements.
According to a preferred arrangement, the faces of the second chip are larger than the faces of the first chip, and the second chip extends beyond the first chip in at least one horizontal direction.
According to another aspect of the invention, a packaged chip is provided which includes at least one chip having at least one edge, a bottom package element and a top package element. Each of the package elements have an upwardly facing top surface and a downwardly facing bottom surface. The top package element overlies the chip and the bottom package element so that the package elements define an interior space between them in which the chip is disposed.
According to such aspect of the invention, the conductive elements of the bottom package element include bottom terminals exposed at the bottom surface of the bottom package element. The conductive elements of the top package element include top terminals exposed at the top surface of the top package element.
The chip is connected to at least some of the terminals of at least one of the package elements. Leads extend from one or both of the package elements into or through the interior space. According to such aspect of the invention, at least some of the conductive elements of the top and bottom package elements are interconnected with one another through the leads.
In a preferred arrangement according to this aspect of the invention, the conductive elements on at least one of the package elements include traces and at least some of the leads are formed integrally with the traces. Alternatively, or in addition thereto, at least some of the leads include wire bonds. In an embodiment, the leads include bottom leads extending between the chip and the bottom package element and top leads extending between the chip and the top package element. Desirably, the leads further include interconnect leads directly connecting at least some of the conductive elements of one of the package elements to at least some of the conductive elements of another one of the package elements.
According to a preferred aspect of the invention, the packaged chip further includes interconnect pillars extending between the top and bottom package elements, interconnecting at least some of the conductive elements on the package elements with one another.
According to another aspect, the packaged chip further includes ball interconnect structures extending between the top and bottom package elements, interconnecting at least some of the conductive elements on the package elements with one another.
Desirably, according to a particular preferred aspect, one or more chips are disposed above the top package element and connected to at least some of the terminals of the top package element such that the conductive elements of the top package element substantially block radiative propagation of radio frequency energy between the one or more chips disposed in the interior space and the one or more chips disposed above the top package element.
According to a preferred aspect of the invention, a cap panel is provided, overlying the top package element and defining a top space between the cap panel and the top package element. The cap panel includes conductive elements defining at least a part of an antenna. Desirably, the conductive elements of the cap panel define a shield disposed between the antenna and the top space.
According to another preferred aspect of the invention, the top and bottom package elements and the cap panel include integral portions of a unitary sheet having at least two folds therein.
According to another aspect of the invention, an electronic assembly is provided which includes a first chip including a radio frequency power amplifier (RFPA), and at least one other chip disposed in vertically stacked relation to the first chip. A package is used to hold the chips. The package includes bottom terminals adapted for mounting to a circuit panel, interconnection between the chips and shielding adapted to substantially block radiative propagation of radio frequency energy between the first chip and at least one other chip of the assembly. Shielding is desirably provided between the first chip and a space external to the assembly. The package desirably includes at least a portion of an antenna. The shielding is desirably adapted to shield the at least one other chip from RF energy radiated from the first chip.
According to particular preferred aspects, the electronic assembly forms part of a portable electronic communication device, a handset, and a cellular mobile communication device including a handset.
According to yet another aspect of the invention, an electronic assembly is provided which includes a first chip having a radio frequency power amplifier (RFPA) adapted to produce at least 10 milliwatts RF power. A second chip including a surface acoustic wave chip is also provided in the assembly. The first and second chips are held by a package which includes bottom terminals adapted for mounting to a circuit panel and shielding between the first chip and the second chip. The shielding is desirably adapted to shield the second chip from RF energy radiated from the first chip.
Desirably, the package occupies a volume of less than about 0.5 cm3.
According to yet another preferred aspect of the invention, a packaged chip is provided which includes at least one lower chip. A top package element is provided extending above the lower chip and extending in horizontal directions beyond the lower chip. At least one lower chip is mounted to the top package element. A plurality of leads extend downwardly from the top package element. In such arrangement, the top package element and the leads substantially block radiative propagation of radio frequency energy between the lower chip and a space above the top package element.
Further preferred variants of this aspect include an enclosure extending around edges of the lower chip such that the leads substantially block radiative propagation of radio frequency energy between the lower chip and a space external to the enclosure. According to a preferred aspect of the invention, the leads are such as selected from the group consisting of pre-formed solder features, pillars, wire bonds, and leads formed integrally to a the chip carrier.
In a particularly preferred aspect, at least one lower chip includes a functional element such as selected from the group consisting of radio frequency (RF) transmitter, RF power amplifier, RF energy switch, and filter. The filter can be a surface acoustic wave type filter, for example.
According to yet another particularly preferred aspect of the invention, one or more upper chips are disposed above the package element. The one or more upper chips include one or more functional elements such as selected from the group consisting of RF receiver, low noise amplifier, RF mixer, IF mixer, sampler, oscillator, and signal processor.
These and other objects, features and advantages of the present invention will be more readily apparent from the detailed description set forth below, taken in conjunction with the accompanying drawings.
A lead frame 20 in accordance with one embodiment of the invention (
As used in this disclosure with reference to such a lead frame or other generally planar structure, the term “horizontal” is used to refer to directions in the plane of the structure, i.e., the directions along the drawing sheet in
A set of ground leads 40 project upwardly from each ground bus 32. The ground leads associated with each ground bus also project horizontally inwardly from the ground bus toward plate 22. As best seen in
A row of active leads 42 is provided alongside each active edge 24 of central plate 22. The active leads of each row are integral with the temporary element 36 extending alongside the active edge adjacent such row. Each active lead projects inwardly from the temporary element and also projects upwardly above the plane above the temporary elements. As best seen in
Lead frame 20 desirably is provided in the form of a continuous or semi-continuous tape, strip or sheet incorporating numerous lead frames as described above. For example, in
A subassembly 50 (
The circuit panel can have any type of commonly used dielectric layers. For example, the circuit panel can include a dielectric layer 54 of an FR-4 or FR-5 epoxy reinforced fiberglass board, BT resin and/or polyimide. BT resin and/or polyimide can be used in either reinforced or unreinforced circuit panels. Alternatively, the circuit panel can be formed having as a tape having a flexible dielectric layer.
Connecting element 52 may be provided with a set of relatively large pads or lands 70 on bottom surface 58 at the periphery of the connecting element, adjacent edges 53 and 55. The traces and other metallic features interconnect these lands with some or all of the pads 64 and 66 discussed above. The conductive features on the bottom surface 58 include a large, generally rectangular ground plane 62b extending between ground edges 53 and incorporating several lands 70 at the ground edges. The ground plane 62b may have openings 63 (
The subassembly further includes a pair of lower chips 72. Each lower chip has a front surface 74 with contacts 76 exposed at such front surface. Each lower chip also has a rear surface 78 and edges 80 extending between the front and rear surfaces. The lower chips are mounted on the bottom surface 58 of the connecting element and connected to the pads 66 on the bottom surface by solder balls 82 or other conductive bonding material. In one example, fluxless soldering process may be used for joining the chips to the connecting element. Such fluxless process can be carried out, for example, in an atmosphere of nitrogen or other inert atmosphere, or under vacuum. In another example, stud bumps or balls having gold at their surfaces, or formed entirely of gold, can be diffusion-bonded to corresponding lands 66 or other features of connecting element 52 having contacting surface of tin. Desirably, gold stud bumps are formed on the chips by a wire bonder, when such chips are still in pre-diced wafer form. Such process permits the gold stud bumps to be applied at a desirably high rate and the pitch and height of bumps to be well controlled. The reverse variant, with the gold stud bumps provided on the lands and with the compatible bonding surfaces on the chips, may also be used.
Lower chips 72 are mounted side-by-side adjacent the center of the connecting element and, hence, remote from edges 53 and 55. Stated another way, the connecting element extends horizontally outwardly, beyond the lower chips, so that the lands 70 project outwardly beyond the lower chips. The subassembly further includes an upper chip 84 having a front surface 86 with contacts 88 thereon and also having a rear or upwardly-facing surface 90 and edges 92 extending between the front and rear surfaces. The upper chip is mounted on the upper surface 56 of the connecting element in substantially the same way as the lower chip, so that the contacts 88 of the upper chip are bonded to the pads 64 on the upper surface of the connecting element, as by solder balls or other conductive bonding material 94. The chips may be assembled to the connecting element by conventional bonding techniques such as those commonly employed in flip-chip bonding. With the chips mounted in this manner, the chips are interconnected with one another, and with the lands 70 of the connecting element. Because upper chip 84 is mounted over the lower chips 72, some or all the contacts of the upper and lower chips can be aligned with one another. Some or all of the interconnections between the upper and lower chips can be short, straight-through connections, each such straight-through connection being defined by a single conductive via 65 extending between a contact 82 of the lower chip and a contact 88 of the upper chip aligned therewith.
In this embodiment, lower chips 72 are active, radio frequency chips such as radio frequency power amplifier chips, whereas upper chip 84 is an integrated passive chip having passive components such as resistors and capacitors, but having no active components. In the condition illustrated, the subassembly can be tested for proper function as, for example, by engaging lands 70 with contacts on a test fixture. Also, additional contact points or test lands (not shown) can be provided on connecting element 52. Further, the connecting element may itself include passive components such as resistors, capacitors and, particularly, inductors. As described in certain embodiments of the aforementioned international application PCT/US02/27509, inductors can be formed by traces and other electrically conductive elements of a circuit panel and also can be formed by interconnections between elements as, for example, by interconnections between traces of the circuit panel and conductive elements on one of the chips. For example, inductors may be defined by conductive elements on the panel or connecting element 52 in conjunction with conductive elements on the upper or passive chip 84.
In an assembly method according to an embodiment of the invention, subassembly 50 is assembled to the lead frame 20 described above. As best seen in
After the subassemblies have been joined with the lead frames, the resulting assemblies are encapsulated by overmolding with a protective resin as, for example, an epoxy, polyimide or other dielectric composition. This process may be performed in a conventional mold. Desirably, the bottom surface of the lead frame is protected during this process by a film or other temporary covering (not shown) or by one of the surfaces of the mold (not shown), so that the molding processes leaves these bottom surfaces free of the resin.
After encapsulation, the encapsulated assemblies formed on the various lead frames in the strip or tape are cut apart from one another or “singulated.” During the singulation process, the temporary elements 36 and 38 and the outer margins of the ground buses 32 are cut away from the remainder of the lead frame. Because these temporary elements and outer margins lie at the outboard edges of the assembly, they can be removed during the singulation process without damaging the other components. Also, at the time these elements are removed, the other elements of the assembly are supported and held by the encapsulant. The resulting assembly (
The resulting package can be surface-mounted to a circuit board 102 or other circuit panel. Desirably, the circuit board has ground contacts 104, active contact pads 106 (
In a variation of the above embodiment, illustrated in
The assembly of
The assembly of the connecting element 152 and chips 172, 184 is mounted to the lead frame in the same manner as discussed above, by bonding leads 140 to pads 170 and by abutting the rear surfaces of the lower chips with the thermal conductor 123 of the lead frame or bonding the rear surfaces of the lower chips to the thermal conductor.
Encapsulation and singulation of the joined assembly is desirably performed in generally the same manner as described above with respect to
In the embodiment of
A package according to yet another embodiment (
Any number of lower chips and any number of upper chips may be employed. Also, chips other than active RF chips and integrated passive chips may be used. For example, chips such as logic chips, memory chips and the like, can be provided in addition to the integrated passive chip or in place thereof. Further, the package may include discrete electrical components mounted to the connecting element or to the bottom plane element. In the embodiments discussed above, the chips are mounted with their front or contact-bearing surfaces facing toward the connecting element. However, one or more of the chips may have their front surfaces facing away from the connecting element, with the contacts of such chip being electrically connected to the connecting element by leads such as wire bonds.
The connecting element may include any number of layers of dielectric and any number of layers of conductive features. For example, the connecting element may be a multi-layer structure with internal conductive layers as well as layers on its upper and lower surfaces. Merely by way of example, internal conductive layers may include layers of traces or one or more ground planes, or other conductive planes. Alternatively, as seen in
A lead frame in accordance with a further embodiment of the invention (
In the embodiment of
In the embodiment shown in
The bottom plane element 660 is provided as a lower chip carrier generally similar to the bottom plane element 200 discussed above with reference to
One or more lower chips 611, for example, active radio frequency chips are disposed below connecting element 652 and conductively attached as discussed above, to lands 656 on the bottom side of connecting element 652. One or more upper chips 613, for example, passive chips including one or more integrated passive components, are conductively attached to lands 654 of the upper patterned metal layer 664.
As best seen in
The use of solder balls to form the connections between bottom plane element or lower chip carrier and the connecting element or upper chip carrier avoids the need for bond windows in the connecting element or in the bottom plane element, which reduces the cost of these elements. Moreover, such connection is also desirable as it avoids a need for the connecting element to be selectively metallized.
The package of
In use, the active terminals 672, thermal conductor 620 and, optionally, the additional element terminals 676 of the lower chip carrier 660 are bonded to corresponding terminals of a circuit board or other circuit panel by thin masses or layers of solder or other bonding material forming a land grid array, in the same manner as discussed above. Here again, the thermal conductor or continuous layer 620 desirably is mounted to a large, grounded pad on the circuit panel so that the thermal conductor serves as both a ground connection and an RF shielding element. In a variant of this embodiment, the thermal conductor may be omitted and the rear surface of the lower chip may be exposed at the bottom surface of the package, so that the rear surface of the lower chip is bonded directly to the circuit panel when the package is mounted to the panel.
The embodiment of
Desirably, the copper posts 722 are plated with an adhesion-promoting metal such as nickel, and then gold for corrosion resistance. The gold-plated posts 722 are then bonded by masses 732 of bonding material, e.g. solder, tin, eutectic composition, etc., to terminals 772 of the lower chip carrier 760. The embodiment of
One or more of the chips is a passive chip 1415 as discussed above having integrated passive devices. In addition, the passive chip can be provided with one or more discrete passive devices 1441 mounted to the front contact-bearing surface 1417 of the passive chip. One or more chips is an “active chip” 1414 having one or more integrated active devices. The passive chip 1415 is desirably flip-chip attached to the active chips 1414 through a surface mount means such as a solder ball or solder bump array, land grid array, etc. Active chips 1414 have upwardly facing front contact-bearing surfaces 1435 and downwardly facing rear surfaces 1437 which are disposed in contacting relation to the lower chip carrier 1418.
The downwardly-facing rear surfaces 1437 of the active chips 1414 are desirably mounted to the metallic layer 1420 of the lower chip carrier 1418 by a bonding material 1432 having a high thermal conductivity as, for example a metallic bonding material. The passive chip 1415 has a rear surface 1416 which is mounted to upper chip carrier 1430. Upper chip carrier 1430 is disposed above the passive chip 1415. In
Preferably, the upper chip carrier 1430 has larger area than the upper or passive chip 1415 and overhangs the upper chip 1415 relative to at least one edge thereof.
As shown in
As further shown in
The top leads 1428 and bottom leads 1426 may be arranged to connect some or all of the terminals 1431 of the upper chip carrier with some or all of the terminals 1422 of the lower chip carrier. Some or all of such connections may be “straight-through” connections, without passing through any functional element of chips 1414 and 1415. For example, where both a top lead and a bottom lead are connected to a common contact 1401 of the passive chip, or to two contacts 1401 which are connected by a low-resistance conductor on the passive chip, a straight-through connection is made. Other interconnections can be arranged so that signals passing between conductive elements of the top and bottom interposers are routed through one or more functional elements of the chips.
An encapsulant 1436 is desirably provided between the upper chip carrier 1430 and the lower chip carrier, the encapsulant being provided and having characteristics as described above. The assembly of
The assembly 1400 can be mounted to a circuit panel having contact pads 1481 and thermal conductor mounting elements 1482 disposed at a contact surface 1480 thereof, using a solder bonding process or other metallurgical bonding process similar to those discussed above to form metallic connections between terminals 1422 of lower chip carrier 1418 and contact pads 1481 and larger connections between the thermal conductor of the lower chip carrier and thermal conductor mounting elements 1482 of the panel. As described above, the thermal conductor and the mounting elements 1482 of the panel provides thermal communication with the assembly at rear surfaces of active chips 1414 over a large area and spreads the heat transferred from the active chips into the circuit panel.
One or more additional chips or other microelectronic elements 1490 may be mounted on the terminals 1431 of the upper chip carrier. Typically, the additional elements will be arranged to interact with the chips within the assembly. As illustrated, the chips 1490 are flip-chip attached to the upper chip carrier 1430 through a surface mount technique such as a solder ball grid array or land grid. Alternatively, chips 1490 can be mounted face up over the upper chip carrier, and interconnected to upper chip carrier terminals 1431 through wire bonds and the like.
In a particularly preferred arrangement the chips 1414, 1415 disposed in the spaced between the upper and lower chip carriers include one or more emission chips which emit or radiate energy at radio frequencies. A radio frequency power amplifier (“RFPA”) is an example of an emission chip. RFPAs amplify analog signals of radio frequencies, generally to provide the signals to an antenna for transmitting them over the air or through other generally nonconductive medium as an electric wave. Although substantially all of the amplified output of an RFPA is generally intended to be coupled by way of a conductive line to such antenna, it may still be the case that some radio frequency energy is emitted or radiated as an electric wave from the chip or the conductive line. In this case, the additional microelectronic elements 1490 desirably include one or more functional elements related to receiving or processing signals. Without limitation, such functional elements include RF receivers, low noise amplifiers, filters, RF mixers, IF mixers, samplers, oscillator, and signal processor. Where upper chip carrier 1430 includes a ground plane such as thermal conductor 1403 or other shielding element, it will substantially block stray RF emission from the chips 1414, 1415 disposed between the chip carriers into the space above the upper chip carrier, and hence protect additional microelectronic elements 1490 from such stray emissions. The thermal conductor and other conductive components of the lower chip carrier 1418 likewise substantially block stray RF emission downwardly from the space between the chip carriers. The leads 1426, 1428 may substantially block RF emission toward the edges of the assembly as, for example, where the spacing between grounded leads is less than the wavelength of the RF emission. In some cases, it may be desirable to provide either additional grounded leads extending between the upper and lower chip carriers or other conductive elements such as a continuous or nearly continuous conductive wall structure extending from the vicinity of the upper chip carrier to the vicinity of the lower chip carrier so as to block RF emission toward the edges. In other cases, where the vertical distance between the conductive elements of the upper and lower chip carriers is less than the wavelength of the RF radiation, these elements alone will substantially block edgewise emission. It should be appreciated that in
Additional microelectronic elements 1490 may be mounted to an assembly 1400 so as to form a larger pre-assembled module, which can then be handled and assembled to the circuit panel. In a further variant, the additional elements mounted atop upper chip carrier 1430 may include another multi-chip assembly. For example, in the particular embodiment of FIG. 19, terminals 1431 of the upper chip carrier include terminals 1431a provided in a pattern corresponding to the pattern of terminals 1422 of the lower chip carrier, so that another complete assembly identical to assembly 1400 can be mounted on these terminals in addition to microelectronic elements 1490 or in lieu thereof. For example, large solder balls 1433 can be used to support another assembly (not shown) over elements 1490. Multiple assemblies 1400 may be stacked one atop the other, either as a preassembled unit or during assembly to a circuit panel.
The 1500 assembly of
Bottom leads 1742 and top leads 1744 interconnect the lower chip carrier 1718 to the upper chip 1715 and the upper chip carrier 1730. The leads can be formed integrally to the lower chip carrier and bonded by lead deformation as described above. The bottom and top leads 1742 and 1744 can be individual leads or have a continuous strip construction, such as that described above with reference to
Another variation is illustrated in
In the embodiment of
In one manufacturing process, the active chips 1914 are mounted to the passive chip 1915. Then, the mounted chips are attached, as by an encapsulant or thermally conductive bonding material 1938 to a thermal conductor or ground plate included in the metal layer 1920 on that portion of the dielectric sheet which will form the lower chip carrier 1918, after which the dielectric sheet is folded and the rear surface 1932 of the upper or passive chip 1915 is attached to the upper chip carrier 1930. Alternatively, the assembled chips 1914, 1915 can be mounted by first mounting the rear surface 1932 of the passive chip 1915 to the upper chip carrier 1930, then folding the sheet 1919, and then mounting the rear surface 1934 of the active chips to the metal layer 1920 of the lower chip carrier 1918.
A plurality of bottom leads 1942 interconnect the lower chip carrier 1918 to the passive chip 1915. As shown, the leads 1942 can be formed integrally to the lower chip carrier and bonded to the passive chip 1915 by a bonding tool deforming each lead through a bond window 1940, after the sheet 1919 has been folded to form the upper and lower chip carriers. As in the embodiments described above with reference to
Electrical interconnection between the active chips 1914 and the passive chip 1915 is through the contacts provided on front surfaces 1917, 1935 of the passive chips and active chips. Interconnection between the lower chip carrier 1918 and the passive chip 1915 is through bottom leads 1942 extending from the terminals 1922. In this embodiment, no separately-formed leads are required to interconnect terminals 1922 of the lower chip carrier 1918 with terminals 1924 of the upper chip carrier 1930, since the folded sheet constituting upper and lower chip carriers have a patterned metal layer 1920 thereon which provides the interconnection in the form of traces extending along the sheet and extending around fold 1921. Desirably, selected ones of the terminals 1922 are selectively interconnected only to selected ones of the terminals 1924 by the patterned metal layer 1919, such that paths for signals are provided between the upper chip carrier and lower chip carrier, as well as paths for common interconnections such as power and ground.
In order to reduce interference from the power amplifier, the receiver carrier 2002 is desirably folded in a manner such that it is shielded from radiation emitted by the power amplifier and/or antenna carriers 2001, 2003, and 2004 of the package. For example, the receiver chip carrier 2002 is folded such that chips mounted to that carrier 2002 face away from the chips mounted to the carrier 2001 for the power amplifier. The transmitter carrier 2005 is folded over the folded receiver carrier 2002, preferably such that the chips of the transmitter carrier face away from the chips on the receiver carrier. Thereafter, the antenna carriers 2003, 2004 can then be folded over the three-level stack of power amplifier, receiver and transmitter such that the antenna lies on an upwardly facing surface of the folded package. In each case, an electrically conductive shielding element incorporated in at least one of the carriers lies between the source of emissions, such as PA 2001 or antenna 2003, and the chips or other components to be protected from emission.
A first metal layer 2120 of the sheet is patterned, serving to interconnect chips and/or other elements to each other. The second metal layer 2121 is substantially continuous over a broad area of the sheet, serving as a ground plane, or alternatively, a conductive backplane. Because of its continuity, the second metal layer 2121 serves as an electromagnetic shield for lower chip 2114 and components in the interior space between the upper chip carrier 2130 and the lower chip carrier 2118. As shown in
In a further variation shown in
In an embodiment, the lower chip 2214 includes a functional element having a radio frequency transmitter function such as a radio frequency transmitter, radio frequency power amplifier (RFPA), and/or a transmission filter. Upper chips 2216 desirably include one or more functional elements related to receiving and/or signal processing function. Without limitation, such functional elements include RF receiver, low noise amplifier, filter, RF mixer, IF mixer, one or more analog digital converter elements, e.g. sampler (sample and hold circuit), quantizer, oscillator, and signal processor. Alternatively, or in addition thereto, upper chips 2216 include control circuitry for the RFPAs such as transmitter control circuitry, which may be digital chips provided in complementary metal oxide semiconductor (CMOS) technology or “biCMOS” chips including both bipolar and CMOS transistors, for example.
Preferably, the RFPA outputs sufficient energy to the antenna to permit transmission of communication signals over commonly available wireless interfaces. Thus, The RFPA is adapted to output at least 10 milliwatts radio frequency power, more preferably 100 milliwatts or more, and most preferably 500 milliwatts or more power.
In an embodiment, the upper chips 2216 include one or more surface acoustic wave (SAW) filter devices adapted for use in a receiver of radio frequency signals. Such SAW filter device is desirably mounted to the chip carrier as described in co-pending U.S. Provisional Patent Application No. 60/449,673, incorporated by reference herein.
The package including the lower chips 2214, upper chips 2216 and antenna can be made desirably thin, such that each chip carrier and cap panel has a thickness of about 200 μm or less, each chip has a thickness of less than about 200 μm, and the area of each chip ranges below about 0.5 cm2. Thus, a package including these elements ranges below about [(3×0.2)+(2×0.2)]×0.5 (cm3)=0.5 cm3.
Desirably, the package structure according to any of the variations illustrated in
The large solder balls 2702, 2704 also assist in substantially blocking radiative propagation of radio frequency energy from devices lying between the respective chip carriers and the space external thereto. In addition, the middle and upper chip carriers can be provided with ground planes to assist in blocking radiation. With particular reference to
In another embodiment, instead of large solder balls 2702, 2704, 2802, 2804, conductive pillars can be provided (not shown) for interconnecting the respective chip carriers. In such embodiment, the pillars have a generally cylindrical or frustro-conical shape, or alternatively, a polygonal cross-section.
In the embodiments discussed above, use of a connecting element in the form of a circuit panel separate from the integrated passive chip provides significant economic advantages. The circuit panel has a lower cost per unit area. However, in a further variant, the features and methods discussed above can be employed in arrangements where a passive chip serves as the connecting element. For example, the lead frames discussed above can be used in such embodiments.
As these and other variations and combinations of the features discussed above can be utilized without departing from the present invention, the foregoing discussion of the preferred embodiment should be taken by way of illustration rather than by way of limitation of the present invention.
The present application is a continuation-in-part of commonly assigned, co-pending international application PCT/US02/27509, filed Aug. 28, 2002, (hereinafter, the “'509 application”) which designates the United States. Said international application claims the benefit of U.S. Provisional Patent Application No. 60/315,408 filed Aug. 28, 2001. Said international application is also a continuation-in-part of U.S. patent application Ser. No. 10/210,160, filed Aug. 1, 2002 now U.S. Pat. No. 6,856,007, which application also claims the benefit of said U.S. Provisional Patent Application No. 60/315,408. The present application is also a continuation-in-part of said U.S. patent application Ser. No. 10/210,160, filed Aug. 1, 2002. The present application also claims the benefit of U.S. Provisional Patent Application No. 60/449,673 filed Feb. 25, 2003 and U.S. Provisional Patent Application No. 60/462,170 filed Apr. 11, 2003. The disclosures of all of the aforesaid applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4774630 | Reisman et al. | Sep 1988 | A |
4827376 | Voss | May 1989 | A |
5148265 | Khandros et al. | Sep 1992 | A |
5148266 | Khandros et al. | Sep 1992 | A |
5187122 | Bonis | Feb 1993 | A |
5198963 | Gupta et al. | Mar 1993 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5382829 | Inoue | Jan 1995 | A |
5390844 | Distefano et al. | Feb 1995 | A |
5398863 | Grube et al. | Mar 1995 | A |
5438305 | Hikita et al. | Aug 1995 | A |
5473190 | Inoue et al. | Dec 1995 | A |
5486720 | Kierse | Jan 1996 | A |
5491302 | Distefano et al. | Feb 1996 | A |
5518964 | DiStefano et al. | May 1996 | A |
5530288 | Stone | Jun 1996 | A |
5536909 | DiStefano et al. | Jul 1996 | A |
5557501 | DiStefano et al. | Sep 1996 | A |
5576680 | Ling | Nov 1996 | A |
5608262 | Degani et al. | Mar 1997 | A |
5629239 | DiStefano et al. | May 1997 | A |
5629241 | Matloubian et al. | May 1997 | A |
5633785 | Parker et al. | May 1997 | A |
5642261 | Bond et al. | Jun 1997 | A |
5659952 | Kovac et al. | Aug 1997 | A |
5677569 | Choi et al. | Oct 1997 | A |
5679977 | Khandros et al. | Oct 1997 | A |
5688716 | DiStefano et al. | Nov 1997 | A |
5706174 | Distefano et al. | Jan 1998 | A |
5717245 | Pedder | Feb 1998 | A |
5747870 | Pedder | May 1998 | A |
5757074 | Matloubian et al. | May 1998 | A |
5766987 | Mitchell et al. | Jun 1998 | A |
5787581 | DiStefano et al. | Aug 1998 | A |
5798286 | Faraci et al. | Aug 1998 | A |
5821609 | DiStefano et al. | Oct 1998 | A |
5830782 | Smith et al. | Nov 1998 | A |
5869887 | Urushima | Feb 1999 | A |
5869894 | Degani et al. | Feb 1999 | A |
5886393 | Merrill et al. | Mar 1999 | A |
5892417 | Johnson et al. | Apr 1999 | A |
5895972 | Paniccia | Apr 1999 | A |
5905639 | Warren | May 1999 | A |
5913109 | Distefano et al. | Jun 1999 | A |
5915752 | DiStefano et al. | Jun 1999 | A |
5918112 | Shah et al. | Jun 1999 | A |
5929517 | Distefano et al. | Jul 1999 | A |
5973391 | Bischoff et al. | Oct 1999 | A |
5976913 | Distefano et al. | Nov 1999 | A |
6005466 | Pedder | Dec 1999 | A |
6037659 | Weixel | Mar 2000 | A |
6046076 | Mitchell et al. | Apr 2000 | A |
6049972 | Link et al. | Apr 2000 | A |
6054756 | DiStefano et al. | Apr 2000 | A |
6075289 | Distefano | Jun 2000 | A |
6081035 | Warner et al. | Jun 2000 | A |
6093888 | Laureanti et al. | Jul 2000 | A |
6104272 | Yamamoto et al. | Aug 2000 | A |
6124546 | Hayward et al. | Sep 2000 | A |
6133626 | Hawke et al. | Oct 2000 | A |
6156980 | Peugh et al. | Dec 2000 | A |
6165814 | Wark et al. | Dec 2000 | A |
6169328 | Mitchell et al. | Jan 2001 | B1 |
6181015 | Gotoh et al. | Jan 2001 | B1 |
6194774 | Cheon | Feb 2001 | B1 |
6214644 | Glenn | Apr 2001 | B1 |
6218729 | Zavrel, Jr. et al. | Apr 2001 | B1 |
6228686 | Smith et al. | May 2001 | B1 |
6229200 | Mclellan et al. | May 2001 | B1 |
6238949 | Nguyen et al. | May 2001 | B1 |
6238950 | Howser et al. | May 2001 | B1 |
6249039 | Harvey et al. | Jun 2001 | B1 |
6252778 | Tonegawa et al. | Jun 2001 | B1 |
6255714 | Kossives et al. | Jul 2001 | B1 |
6274937 | Ahn et al. | Aug 2001 | B1 |
6281570 | Kameyama et al. | Aug 2001 | B1 |
6292086 | Chu | Sep 2001 | B1 |
6309910 | Haba et al. | Oct 2001 | B1 |
6310386 | Shenoy | Oct 2001 | B1 |
6323735 | Welland et al. | Nov 2001 | B1 |
6326696 | Horton et al. | Dec 2001 | B1 |
6329715 | Hayashi | Dec 2001 | B1 |
6344688 | Wang | Feb 2002 | B1 |
6353263 | Dotta et al. | Mar 2002 | B1 |
6362525 | Rahim | Mar 2002 | B1 |
6377464 | Hashemi et al. | Apr 2002 | B1 |
6387747 | Cha et al. | May 2002 | B1 |
6492194 | Bureau et al. | Dec 2002 | B1 |
6492201 | Haba | Dec 2002 | B1 |
6493240 | Broglia et al. | Dec 2002 | B2 |
6498099 | McLellan et al. | Dec 2002 | B1 |
6521987 | Glenn et al. | Feb 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6583513 | Utagikar et al. | Jun 2003 | B1 |
6621163 | Weekamp et al. | Sep 2003 | B2 |
6657296 | Ho et al. | Dec 2003 | B2 |
6670206 | Kim et al. | Dec 2003 | B2 |
6670215 | Miyazaki et al. | Dec 2003 | B2 |
6678167 | Degani et al. | Jan 2004 | B1 |
6710456 | Jiang et al. | Mar 2004 | B1 |
20010033478 | Ortiz et al. | Oct 2001 | A1 |
20020017699 | Shenoy | Feb 2002 | A1 |
20020074668 | Hofstee et al. | Jun 2002 | A1 |
20020195700 | Li | Dec 2002 | A1 |
20030001252 | Ku et al. | Jan 2003 | A1 |
20030047797 | Kuan et al. | Mar 2003 | A1 |
20040041249 | Tsai et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
05-04762 | Feb 1993 | JP |
WO-9711588 | Mar 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20040238857 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60462170 | Apr 2003 | US | |
60449673 | Feb 2003 | US | |
60315408 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US02/27509 | Aug 2002 | US |
Child | 10746810 | US | |
Parent | 10210160 | Aug 2002 | US |
Child | PCT/US02/27509 | US |