Package-on-package assembly with wire bonds to encapsulation surface

Information

  • Patent Grant
  • 10593643
  • Patent Number
    10,593,643
  • Date Filed
    Wednesday, August 8, 2018
    6 years ago
  • Date Issued
    Tuesday, March 17, 2020
    4 years ago
Abstract
Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
Description
TECHNICAL FIELD

The subject matter of this application relates to microelectronic packages and fabrication methods thereof, particularly those which incorporate wire bonds for electrical connection with an element above a surface of an encapsulation layer.


BACKGROUND OF THE INVENTION

Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


Packaged semiconductor chips are often provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board, and another package is mounted on top of the first package. These arrangements can allow a number of different chips to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between packages. Often, this interconnect distance is only slightly larger than the thickness of the chip itself. For interconnection to be achieved within a stack of chip packages, it is necessary to provide structures for mechanical and electrical connection on both sides of each package (except for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the chip is mounted, the pads being connected through the substrate by conductive vias or the like. Solder balls or the like have been used to bridge the gap between the contacts on the top of a lower substrate to the contacts on the bottom of the next higher substrate. The solder balls must be higher than the height of the chip in order to connect the contacts. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129 (“the '129 Publication”), the disclosure of which is incorporated by reference herein in its entirety.


Microcontact elements in the form of elongated posts or pins may be used to connect microelectronic packages to circuit boards and for other connections in microelectronic packaging. In some instances, microcontacts have been formed by etching a metallic structure including one or more metallic layers to form the microcontacts. The etching process limits the size of the microcontacts. Conventional etching processes typically cannot form microcontacts with a large ratio of height to maximum width, referred to herein as “aspect ratio”. It has been difficult or impossible to form arrays of microcontacts with appreciable height and very small pitch or spacing between adjacent microcontacts. Moreover, the configurations of the microcontacts formed by conventional etching processes are limited.


Despite all of the above-described advances in the art, still further improvements in making and testing microelectronic packages would be desirable.


BRIEF SUMMARY OF THE INVENTION

An embodiment of the present disclosure relates to a microelectronic package. The microelectronic package includes a substrate having a first region and a second region and a first surface and a second surface remote from the first surface. At least one microelectronic element overlies the first surface within the first region. Electrically conductive elements are exposed at at least one of the first surface and the second surface of the substrate within the second region, and at least some of the conductive elements are electrically connected to the at least one microelectronic element. The microelectronic package further includes wire bonds having bases joined to respective ones of the conductive elements and end surfaces remote from the substrate and remote from the bases, each wire bond defining an edge surface extending between the base and the end surface thereof. A dielectric encapsulation layer extends from at least one of the first or second surfaces and fills spaces between the wire bonds such that the wire bonds are separated from one another by the encapsulation layer. The encapsulation layer overlies at least the second region of the substrate, and unencapsulated portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the encapsulation layer. The substrate can be a lead frame and the conductive elements can be leads of the lead frame.


The unencapsulated portions of the wire bonds can be defined by the end surfaces of the wire bonds and portions of the edge surfaces adjacent the end surfaces that are uncovered by the encapsulation layer. An oxidation protection layer can be included contacting at least some of the unencapsulated portions of the wire bonds. At least a portion of at least one of the wire bonds adjacent the end surface thereof can be substantially perpendicular to a surface of the encapsulation layer. The conductive elements can be first conductive elements, and the microelectronic package can further include a plurality of second conductive elements electrically connected to the unencapsulated portions of the wire bonds. In such an embodiment, the second conductive elements can be such that they do not contact the first conductive elements. The second conductive elements can include a plurality of stud bumps joined to the end surfaces of at least some of the first wire bonds.


At least one of the wire bonds can extend along a substantially straight line between the base and the unencapsulated portion thereof, and the substantially straight line can form an angle of less than 90° with respect to the first surface of the substrate. Additionally or alternatively, the edge surface of at least one of the wire bonds can have a first portion adjacent the end surface and a second portion separated from the end surface by the first portion, and the first portion can extend in a direction away from a direction in which the second portion extends.


Another embodiment of the present disclosure relates to an alternative microelectronic package. Such a microelectronic package includes a substrate having a first region and a second region, and a first surface and a second surface remote from the first surface. At least one microelectronic element overlies the first surface within the first region. Electrically conductive elements are exposed at at least one of the first surface and the second surface of the substrate within the second region, and at least some of the conductive elements are electrically connected to the at least one microelectronic element. The microelectronic package further includes a plurality of wire bonds having bases joined to respective ones of the conductive elements and end surfaces remote from the substrate and remote from the bases. Each wire bond defines an edge surface extending between the base and the end surface thereof. A dielectric encapsulation layer extends from at least one of the first or second surfaces and fills spaces between wire bonds such that the wire bonds are separated from one another by the encapsulation layer. The encapsulation layer overlies at least the second region of the substrate, and unencapsulated portions of the wire bonds are defined by at least portions of the edge surfaces adjacent the end surfaces of the wire bonds that are uncovered by the encapsulation layer.


The encapsulation layer can be a monolithic layer formed on the substrate by depositing a dielectric material onto the first substrate after forming the wire bonds, and then curing the deposited dielectric material. The forming of the monolithic encapsulation layer can include molding the dielectric material.


At least one of the unencapsulated portions can be further defined by at least a portion of the end surface that is uncovered by the encapsulation layer. The portion of the edge surface that is uncovered by the encapsulation layer can have a longest dimension extending in a direction substantially parallel to the surface of the encapsulation layer. The length of the portion of the edge surface that is uncovered by the encapsulation layer and extends substantially parallel to the surface of the encapsulation layer can be greater than a cross-sectional width of the wire bond.


In either of the aforementioned embodiments, the first surface of the substrate can extend in first and second lateral directions, each lateral direction being transverse to a direction of a thickness of the substrate between the first and second surfaces. The unencapsulated portion of at least one of the wire bonds can further be displaced in at least one of the lateral directions from the conductive element to which the at least one wire bond is joined. At least one of the wire bonds can include a substantially curved portion between the base and the end surface thereof. The unencapsulated portion of the at least one wire bond can overlie a major surface of the microelectronic element.


In either of the aforementioned embodiments, a solder ball can be joined to the unencapsulated portion of least one of the wire bonds.


Additionally, in either of the aforementioned embodiments, the encapsulation layer can include at least one surface, and the unencapsulated portions of the wire bonds can be uncovered by the encapsulation layer at one of the at least one surface. The at least one surface can include a major surface that is substantially parallel to the first surface of the substrate, and the unencapsulated portion of at least one of the wire bonds can be uncovered by the encapsulation layer at the major surface. The unencapsulated portion of at least one wire bond can be substantially flush with the major surface. Alternatively, the unencapsulated portion of at least one wire bond can extend above the major surface. The at least one surface can include a major surface at a first distance from the first surface of the substrate and a recessed surface at a second distance from first surface of the substrate that is less than the first distance, and the unencapsulated portion of at least one of the wire bonds can be uncovered by the encapsulation layer at the recessed surface. The at least one surface can further include a side surface extending away from the first surface of the substrate at a substantial angle therefrom, and the unencapsulated portion of at least one wire bond can be uncovered by the encapsulation layer at the side surface. The encapsulation layer can have a cavity formed therein that extends from a surface of the encapsulation layer toward the substrate, and the unencapsulated portion of one of the wire bonds can be disposed within the cavity.


Further, in either of the aforementioned embodiments, the wire bonds can consist essentially of at least one material selected from the group consisting of copper, gold, aluminum, and solder. At least one of the wire bonds can define a longitudinal axis along a length thereof, and each wire bond can include an inner layer of a first material extending along the longitudinal axis and an outer layer of a second material remote from the longitudinal axis and having a length extending in a lengthwise direction of such wire bond. In such an embodiment, the first material can be one of copper, gold, nickel, and aluminum, and the second material can be one of copper, gold, nickel, aluminum, and solder.


In either of the aforementioned embodiments, the plurality of wire bonds can be first wire bonds, and the microelectronic package can further comprise at least one second wire bond having a base joined to a contact on the microelectronic element and an end surface thereof remote from the contact. The at least one second wire bond can define an edge surface extending between the base and the end surface, and an unencapsulated portion of the at least one second wire bond can be defined by a portion of at least one of the end surface of such second wire bond or of the edge surface of such second wire bond that is uncovered by the encapsulation layer. The at least one microelectronic element can be a first microelectronic element, and the microelectronic package can further comprise at least one second microelectronic element at least partially overlying the first microelectronic element. In such an embodiment, the wire bonds can be first wire bonds, and the microelectronic package can have at least one second wire bond having a base joined to a contact on the microelectronic element and an end surface remote from the contact. The at least one second wire bond can define an edge surface between the base and the end surface, and an unencapsulated portion of the second wire bond can be defined by at least one of a portion of the end surface of such second wire bond or of the edge surface of such second wire bond that is uncovered by the encapsulation layer.


In either of the above embodiments, a first one of the wire bonds can be adapted for carrying a first signal electric potential and a second one of the wire bonds can be adapted for simultaneously carrying a second electric potential different from the first signal electric potential.


Either of the above embodiments can further include a redistribution layer extending along the surface of the encapsulation layer. The redistribution layer can include a redistribution substrate having a first surface adjacent a major surface of the encapsulation layer, and the redistribution layer can further include a second surface remote from the first surface, first conductive pads exposed on the first surface of the redistribution substrate and aligned with and mechanically connected to respective unencapsulated portions of the wire bonds, and second conductive pads exposed on the second surface of the substrate electrically connected to the first conductive pads.


In a further embodiment, a microelectronic assembly can include a first microelectronic package according to either of the above embodiments. The assembly can further include a second microelectronic package having a substrate with a first surface and a second surface. A second microelectronic element can be mounted to the first surface, and contact pads can be exposed at the second surface and can be electrically connected to the second microelectronic element. The second microelectronic package can be mounted to the first microelectronic package such that the second surface of the second microelectronic package overlies at least a portion of the surface of the dielectric encapsulation layer and such that at least some of the contact pads are electrically and mechanically connected to at least some of the unencapsulated portions of the wire bonds.


Another embodiment of the present disclosure can relate to a microelectronic package including a substrate having a first region and a second region, and a first surface and a second surface remote from the first surface and extending in lateral directions. A microelectronic element overlies the first surface within the first region and has a major surface remote from the substrate. Electrically conductive elements are exposed at the first surface of the substrate within the second region with at least some of the conductive elements being electrically connected to the microelectronic element. The microelectronic package further includes wire bonds having bases joined to respective ones of the first electrically conductive elements and end surfaces remote from the substrate and remote from the bases. Each wire bond defines an edge surface extending between the base and the end surface thereof. A dielectric encapsulation layer extends from at least one of the first or second surfaces and fills spaces between the wire bonds such that the wire bonds are separated from one another by the dielectric layer. The encapsulation layer overlies at least the second region of the substrate, and unencapsulated portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the encapsulation layer. The unencapsulated portion of at least one wire bond is displaced in at least one lateral direction along the first surface from the conductive element to which the at least one wire bond is joined such that the unencapsulated portion thereof overlies the major surface of the microelectronic element.


The conductive elements can be arranged in a first array of a first predetermined configuration, and the unencapsulated portions of the wire bonds can be arranged in a second array of a second predetermined configuration that is different from the first predetermined configuration. The first predetermined configuration can be characterized by a first pitch and the second configuration can be characterized by a second pitch that is finer than the first pitch. An insulating layer can extend over at least a surface of the microelectronic element. The insulating layer can be disposed between the surface of the microelectronic element and the at least one wire bond that has an unencapsulated portion overlying the major surface of the microelectronic element. A plurality of the unencapsulated portions of respective ones of the wire bonds can overlie the major surface of the microelectronic element.


A microelectronic assembly according to an embodiment of the invention can include a first microelectronic package according the above description. The assembly can further include a second microelectronic package including a substrate having a first surface and a second surface, a microelectronic element affixed on the first surface, and contact pads exposed on the second surface and electrically connected to the microelectronic element. The second microelectronic package can be affixed on the first microelectronic package such that the second surface of the second package overlies at least a portion of the surface of the dielectric layer and such that at least some of the contact pads are electrically and mechanically connected to at least some of the unencapsulated portions of the wire bonds.


The electrically conductive elements of the first microelectronic package can be arranged in a first array of a first predetermined configuration, and the contact pads of the second microelectronic package can be arranged in a second array of a second predetermined configuration that is different from the first predetermined configuration. At least some of the unencapsulated portions of the wire bonds of the first microelectronic package can be arranged in a third array that corresponds to the second predetermined configuration. The first predetermined configuration can be characterized by a first pitch, and the second configuration can be characterized by a second pitch that is finer than the first pitch.


A further embodiment of the present invention can relate to a method of making a microelectronic package. The method includes forming a dielectric encapsulation layer on an in-process unit. The in-process unit includes a substrate having a first surface and a second surface remote therefrom, a microelectronic element mounted to the first surface of the substrate, and a plurality of conductive elements exposed at the first surface. At least some of the conductive elements are electrically connected to the microelectronic element. The in-process unit further includes wire bonds having bases joined to the conductive elements and end surfaces remote from the bases. Each wire bond defines an edge surface extending away between the base and the end surface. The encapsulation layer is formed so as to at least partially cover the first surface and portions of the wire bonds and such that unencapsulated portions of the wire bonds are defined by a portion of at least one of the end surface or of the edge surface thereof that is uncovered by the encapsulation layer. The substrate of the in-process unit can be a lead frame and the conductive elements can be leads of the lead frame. A stud bump can be formed on the unencapsulated portion of at least one of the wire bonds. A solder ball can be deposited on the unencapsulated portion of at least one of the wire bonds.


The step of forming the encapsulation layer can include depositing a dielectric material mass over the first surface and substantially all of the wire bonds and removing a portion of the dielectric material mass to uncover portions of the wire bonds to define the unencapsulated portions thereof. In a variation, at least one of the wire bonds can extend in a loop joined to each of at least two of the conductive elements. The dielectric material mass can then be deposited so as to at least partially cover the first surface and the at least one wire bond loop, and removing a portion of the dielectric material mass can further include removing a portion of the at least one wire bond loop so as sever it into first and second wire bonds having respective free ends that are uncovered by the encapsulation layer to form the unencapsulated portions thereof. The loop can be formed by joining a first end of a wire to the conductive element, drawing the wire in a direction away from the first surface, then drawing the wire in at least a lateral direction along the first surface, and then drawing the wire to the second conductive element and joining the wire to the second conductive element.


The encapsulation layer can be formed on the in-process unit by pressing a dielectric material mass over the wire bonds from a location remote from the substrate and into contact with the first surface of the substrate such that the at least one of the wire bonds penetrates the dielectric material mass. The wire bonds can be made of wire consisting substantially of gold, copper, aluminum, or solder. The first wire bonds can include aluminum, and the wire bonds can be joined to the conductive element by wedge bonding. The step of forming the encapsulation layer can additionally or alternatively include forming at least one cavity extending from a major surface of the encapsulation layer toward the substrate, the at least one cavity surrounding the unencapsulated portion of one of the wire bonds. The at least one cavity can be formed after depositing a dielectric encapsulation material onto the substrate by at least one of wet etching, dry etching, or laser etching the encapsulation material. The at least one cavity can further be formed by removing at least a portion of a mass of sacrificial material from a predetermined location of at least one of the wire bonds after depositing a dielectric encapsulation material onto the substrate and the at least one wire bond. The step of forming the encapsulation layer can be carried out such that a portion of the mass of sacrificial material is exposed on a major surface of the encapsulation layer, the exposed portion of the mass of sacrificial material surrounding a portion of the wire bond near the free end thereof and spacing apart a portion of the encapsulation layer therefrom. At least one of the wire bonds can define a longitudinal axis along a length thereof, and each wire bond can include an inner layer of a first material extending along the longitudinal axis and an outer layer formed by the mass of sacrificial material remote from the longitudinal axis and having a length extending in a lengthwise direction of such wire bond. A first portion of the mass of sacrificial material can be removed to form the cavity with a second portion of the mass of sacrificial material remaining adjacent to the base.


The first surface of the substrate can extend in lateral directions, and the unencapsulated portion of at least one of the wire bonds can be formed such that the end surface thereof is displaced in at least one of the lateral directions from the conductive element to which the at least one wire bond is joined. Accordingly, the in-process unit can be formed including a step of forming the wire bonds such that at least one of the wire bonds includes a substantially curved segment positioned between the conductive element and the end surface of the at least one wire bond.


In a further variation, the substrate can include a first region and a second region, and the microelectronic element can overlie the first region and can have a major surface remote from the substrate. The first conductive element can be disposed within the second region, and the in-process unit can be formed including a step of forming the wire bonds such that at least a portion of at least one of the wire bonds extends over the major surface of the microelectronic element.


The wire bonds can define a longitudinal axis along a length thereof, and the wire bonds can include an inner layer of a first material extending along the longitudinal axis and an outer layer of a second material remote from the longitudinal axis and extending along the length of the wire bond. In such a variation, the first material can be copper and the second material can be solder. A portion of the second material can be removed after the step of forming the encapsulation layer to form a cavity extending from a surface of the dielectric layer to uncover a portion of the edge surface of the inner layer of the wire bond.


A further embodiment of the present disclosure relates to a microelectronic package including a substrate having a first region and a second region, the substrate having a first surface and a second surface remote from the first surface. At least one microelectronic element overlies the first surface within the first region, and electrically conductive elements are exposed at the first surface of the substrate within the second region with at least some of the conductive elements electrically connected to the at least one microelectronic element. A plurality of bond elements, each having a first base, a second base, and an edge surface extending between the bases, the first base are joined to one of the conductive elements. The edge surface includes a first portion that extends away from the contact pad to an apex of the edge surface remote from the substrate. The edge surface further includes a second portion that extends from the apex to the second base, which is joined to a feature of the substrate. A dielectric encapsulation layer extends from at least one of the first or second surfaces and fills spaces between the first and second portions of the bond elements and between the plurality of bond elements such that the bond elements are separated from one another by the encapsulation layer. The encapsulation layer overlies at least the second region of the substrate. Unencapsulated portions of the bond elements are defined by at least portions of the edge surfaces of the bond elements surrounding the apexes thereof that are uncovered by the encapsulation layer.


In a variation of the above embodiment, the bond elements are wire bonds. In such a variation, the feature of the substrate to which the second base of the substrate is joined can be the conductive element to which the first base is joined. Alternatively, the feature of the substrate to which the second base is joined can be a respective conductive element different from the conductive element to which the first base is joined. Such a conductive element to which the second base is joined can be not electrically connected to the microelectronic element. In an alternative variation, the bond element can be a bond ribbon. In such a variation, a portion of the first base can extend along a portion of the respective contact pad, and the feature to which the second base is joined can be the length of the first base that extends along a portion of the respective contact pad.


In the embodiment, the first surface of the substrate can extend in first and second lateral directions, each lateral direction being transverse to a direction of a thickness of the substrate between the first and second surfaces. The unencapsulated portion of at least one of the wire bonds can then be displaced in at least one of the lateral directions from the conductive element to which the at least one wire bond is joined. Further, the unencapsulated portion of the at least one wire bond can overlie a major surface of the microelectronic element.


A further embodiment of the present disclosure can relate to a method of making a microelectronic assembly. The method of this embodiment can include joining a first microelectronic package made according to the above embodiment with a second microelectronic package, the second microelectronic package can include a substrate having a first surface and a plurality of contacts exposed at the first surface of the substrate, and joining the first microelectronic package with the second microelectronic package can include electrically and mechanically connecting the unencapsulated portions of the wire bonds of the first microelectronic package with the contacts of the second microelectronic package.


A further embodiment of the present invention can relate to an alternative method of making a microelectronic package. The method of this embodiment includes positioning a dielectric material mass over an in-process unit that includes a substrate having a first surface and a second surface remote therefrom, a plurality of thin conductive elements exposed at the first surface, and wire bonds having bases joined to at respective ones of the thin conductive elements and end surfaces remote from the substrate and remote from the bases. Each wire bond defines an edge surface extending between the base and the end surface thereof. The method also includes forming an encapsulation layer on the in-process unit by pressing the dielectric material mass over the wire bond into contact with the first surface of the substrate such that the wire bonds penetrate the dielectric material mass. The encapsulation layer, thus, fills spaces between the wire bonds such that the wire bonds are separated from one another both the encapsulation layer with the encapsulation layer overlying at least the second region of the substrate. Unencapsulated portions of the first wire bonds are formed by the wire bonds extending through a portion of the encapsulation layer such that portions of the first wire bonds are uncovered by the encapsulation layer.


A still further embodiment of the present disclosure relates to an alternative method for making a microelectronic package. The method of this embodiment includes forming a dielectric encapsulation layer on an in-process unit that includes a substrate having a first surface and a second surface remote therefrom, a plurality of thin conductive elements exposed at the first surface, and wire loops joined at a first base and a second base to respective ones of at least two of the thin conductive elements. The encapsulation is being formed so as to at least partially cover the first surface and the at least one wire loop. The method further includes removing a portion of the encapsulation layer and a portion of the wire loops so as sever each of the wire loops into separate wire bonds corresponding to a respective one of the first and second bases. The wire bonds, thus, have end surfaces remote from the substrate and remote from the bases, and each wire bond defines an edge surface extending between the base and the end surface thereof. The encapsulation layer fills spaces between the wire bonds such that the wire bonds are separated from one another by the encapsulation layer. The wire bonds have unencapsulated portions formed by free ends thereof that are at least partially uncovered by the encapsulation layer.


Another embodiment of the present disclosure relates to system that includes a microelectronic package or assembly according to one of the embodiments thereof discussed above and one or more other electronic components electrically connected to the microelectronic package. The system can further include a housing, in which the microelectronic package or assembly and the other electronic components can be mounted.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a microelectronic package according to an embodiment of the present invention;



FIG. 2 shows a top elevation view of the microelectronic package of FIG. 1;



FIG. 3 shows a microelectronic package according to an alternative embodiment of the present invention;



FIG. 4 shows a microelectronic package according to an alternative embodiment of the present invention;



FIG. 5 shows a microelectronic package according to an alternative embodiment of the present invention;



FIG. 6 shows a stacked microelectronic assembly including a microelectronic package according to an embodiment of the present invention;



FIG. 7 shows a microelectronic package according to an alternative embodiment of the present invention;



FIGS. 8A-8E show a detail view of a portion of a microelectronic package according to various embodiments of the present invention;



FIG. 9 shows a detail view of a portion of a microelectronic package according to an alternative embodiment of the present invention;



FIGS. 10A-10D show a detail view of a portion of a microelectronic package according to various embodiments of the present invention;



FIGS. 11-14 show a microelectronic package during various steps of fabrication thereof according to an embodiment of the present invention;



FIG. 15 shows a microelectronic package during a fabrication step according to an alternative embodiment of the present invention;



FIGS. 16A-16C show a detail view of a portion of a microelectronic package during various steps of fabrication thereof according to an embodiment of the present invention;



FIGS. 17A-17C show a detail view of a portion of a microelectronic package during various steps of fabrication thereof according to an alternative embodiment of the present invention;



FIG. 18 shows a top elevation view of a microelectronic package according to an alternative embodiment of the present invention;



FIG. 19 shows a top elevation view of a portion of a microelectronic package according to an alternative embodiment of the present invention;



FIG. 20 shows a top view of a microelectronic package according to a further alternative embodiment of the present invention;



FIG. 21 shows a front elevation view of the microelectronic package of claim 20;



FIG. 22 shows a front elevation view of a microelectronic package according to a further alternative embodiment of the present invention;



FIG. 23 shows a system according to a further embodiment of the present invention;



FIG. 24 shows a front elevation view of a microelectronic package according to a further alternative embodiment of the present invention;



FIG. 25 shows a front elevation view of a microelectronic package according to a further alternative embodiment of the present invention;



FIG. 26 shows a top view of a microelectronic package according to a variation of the embodiment of FIG. 25;



FIG. 27 shows a front elevation view of a microelectronic package according to a further alternative embodiment of the present invention; and



FIG. 28 shows a top view of a microelectronic package according to a variation of the embodiment of FIG. 27.





DETAILED DESCRIPTION

Turning now to the figures, where similar numeric references are used to indicate similar features, there is shown in FIG. 1 a microelectronic assembly 10 according to an embodiment of the present invention. The embodiment of FIG. 1 is a microelectronic assembly in the form of a packaged microelectronic element such as a semiconductor chip assembly that is used in computer or other electronic applications.


The microelectronic assembly 10 of FIG. 1 includes a substrate 12 having a first surface 14 and a second surface 16. The substrate 12 typically is in the form of a dielectric element, which is substantially flat. The dielectric element may be sheet-like and may be thin. In particular embodiments, the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoroethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials. The first surface 14 and second surface 16 are preferably substantially parallel to each other and are spaced apart at a distance perpendicular to the surfaces 14,16 defining the thickness of the substrate 12. The thickness of substrate 12 is preferably within a range of generally acceptable thicknesses for the present application. In an embodiment, the distance between the first surface 14 and the second surface 16 is between about 25 and 500 μm. For purposes of this discussion, the first surface 14 may be described as being positioned opposite or remote from second surface 16. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the Figures, and is not limiting.


In a preferred embodiment, substrate 12 is considered as divided into a first region 18 and a second region 20. The first region 18 lies within the second region 20 and includes a central portion of the substrate 12 and extends outwardly therefrom. The second region 20 substantially surrounds the first region 18 and extends outwardly therefrom to the outer edges of the substrate 12. In this embodiment, no specific characteristic of the substrate itself physically divides the two regions; however, the regions are demarked for purposes of discussion herein with respect to treatments or features applied thereto or contained therein.


A microelectronic element 22 can be mounted to first surface 14 of substrate 12 within first region 18. Microelectronic element 22 can be a semiconductor chip or another comparable device. In the embodiment of FIG. 1, microelectronic element 22 is mounted to first surface 14 in what is known as a conventional or “face-up” fashion. In such an embodiment, wire leads 24 can be used to electrically connect microelectronic element 22 to some of a plurality of conductive elements 28 exposed at first surface 14. Wire leads 24 can also be joined to traces (not shown) or other conductive features within substrate 12 that are, in turn, connected to conductive elements 28.


Conductive elements 28 include respective “contacts” or pads 30 that are exposed at the first surface 14 of substrate 12. As used in the present description, when an electrically conductive element is described as being “exposed at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a terminal or other conductive structure that is exposed at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. The conductive elements 28 can be flat, thin elements in which pad 30 is exposed at first surface 14 of substrate 12. In one embodiment, conductive elements 28 can be substantially circular and can be interconnected between each other or to microelectronic element 22 by traces (not shown). Conductive elements 28 can be formed at least within second region 20 of substrate 12. Additionally, in certain embodiments, conductive elements 28 can also be formed within first region 18. Such an arrangement is particularly useful when mounting microelectronic element 122 (FIG. 3) to substrate 112 in what is known as a “flip-chip” configuration, where contacts on the microelectronic element 122 can be connected to conductive elements 128 within first region 118 by solder bumps 126 or the like that are positioned beneath microelectronic element 122. In another configuration as shown in FIG. 22, microelectronic element 622 is mounted face-down on substrate 612 and electrically connected to a conductive feature on the chip by wire leads 624 that extend over an outwardly-facing surface, such as surface 616, of substrate 612. In the embodiment shown, wire leads 624 pass through an opening 625 in substrate 612 and can be encapsulated by an overmold 699.


In an embodiment, conductive elements 28 are formed from a solid metal material such as copper, gold, nickel, or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel or combinations thereof.


At least some of conductive elements 28 can be interconnected to corresponding second conductive elements 40, such as conductive pads, exposed at second surface 16 of substrate 12. Such an interconnection can be completed using vias 41 formed in substrate 12 that can be lined or filled with conductive metal that can be of the same material as conductive elements 28 and 40. Optionally, conductive elements 40 can be further interconnected by traces on substrate 12.


Microelectronic assembly 10 further includes a plurality of wire bonds 32 joined to at least some of the conductive elements 28, such as on the pads 30 thereof. Wire bonds 32 are joined at a base 34 thereof to the conductive elements 28 and can extend to a free end 36 remote from the respective bases 34 and from substrate 12. The ends 36 of wire bonds 32 are characterized as being free in that they are not electrically connected or otherwise joined to microelectronic element 22 or any other conductive features within microelectronic assembly 10 that are, in turn, connected to microelectronic element 22. In other words, free ends 36 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature external to assembly 10. The fact that ends 36 held in a predetermined position by, for example, encapsulant layer 42 or otherwise joined or electrically connected to another conductive feature does not mean that they are not “free” as described herein, so long as any such feature is not electrically connected to microelectronic element 22. Conversely, base 34 is not free as it is either directly or indirectly electrically connected to microelectronic element 22, as described herein. As shown in FIG. 1, base 34 can be substantially rounded in shape, extending outward from an edge surface 37 of wire bond 32 defined between base 34 and end 36. The particular size and shape of base 34 can vary according to the type of material used to form wire bond 32, the desired strength of the connection between wire bond 32 and conductive element 28, or the particular process used to form wire bond 32. Exemplary methods for making wire bonds 32 are described in U.S. Pat. No. 7,391,121 to Otremba and in U.S. Pat. App. Pub. No. 2005/0095835 (describing a wedge-bonding procedure that can be considered a form of wire bonding) the disclosures of which are both incorporated herein by reference in their entireties. Alternative embodiments are possible where wire bonds 32 are additionally or alternatively joined to conductive elements 40 exposed on second surface 16 of substrate 12, extending away therefrom.


Wire bond 32 can be made from a conductive material such as copper, gold, nickel, solder, aluminum or the like. Additionally, wire bonds 32 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket. In an embodiment, the wire used to form wire bonds 32 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 μm and 150 μm. In other embodiments, including those in which wedge bonding is used, wire bonds 32 can have a thickness of up to about 500 μm. In general, a wire bond is formed on a conductive element, such as conductive element 28, a pad, trace or the like, using specialized equipment that is known in the art. A leading end of a wire segment is heated and pressed against the receiving surface to which the wire segment bonds, typically forming a ball or ball-like base 34 joined to the surface of the conductive element 28. The desired length of the wire segment to form the wire bond is drawn out of the bonding tool, which can then cut the wire bond at the desired length. Wedge bonding, which can be used to form wire bonds of aluminum, for example, is a process in which the heated portion of the wire is dragged across the receiving surface to form a wedge that lies generally parallel to the surface. The wedge-bonded wire bond can then be bent upward, if necessary, and extended to the desired length or position before cutting. In a particular embodiment, the wire used to form a wire bond can be cylindrical in cross-section. Otherwise, the wire fed from the tool to form a wire bond or wedge-bonded wire bond may have a polygonal cross-section such as rectangular or trapezoidal, for example.


The free end 36 of wire bond 32 has an end surface 38. End surface 38 can form at least a part of a contact in an array formed by respective end surfaces 38 of a plurality of wire bonds 32. FIG. 2 shows an exemplary pattern for such an array of contacts formed by end surfaces 38. Such an array can be formed in an area array configuration, variations of which could be implemented using the structures described herein. Such an array can be used to electrically and mechanically connect the microelectronic assembly 10 to another microelectronic structure, such as to a printed circuit board (“PCB”), or to other packaged microelectronic elements, an example of which is shown in FIG. 6. In such a stacked arrangement, wire bonds 32 and conductive elements 28 and 40 can carry multiple electronic signals therethrough, each having a different signal potential to allow for different signals to be processed by different microelectronic elements in a single stack. Solder masses 52 can be used to interconnect the microelectronic assemblies in such a stack, such as by electronically and mechanically attaching end surfaces 38 to conductive elements 40.


Microelectronic assembly 10 further includes an encapsulation layer 42 formed from a dielectric material. In the embodiment of FIG. 1, encapsulation layer 42 is formed over the portions of first surface 14 of substrate 12 that are not otherwise covered by or occupied by microelectronic element 22, or conductive elements 28. Similarly, encapsulation layer 42 is formed over the portions of conductive elements 28, including pad 30 thereof, that are not otherwise covered by wire bonds 32. Encapsulation layer 42 can also substantially cover microelectronic element 22, wire bonds 32, including the bases 34 and at least a portion of edge surfaces 37 thereof. A portion of wire bonds 32 can remain uncovered by encapsulation layer 42, which can also be referred to as unencapsulated, thereby making the wire bond available for electrical connection to a feature or element located outside of encapsulation layer 42. In an embodiment, end surfaces 38 of wire bonds 32 remain uncovered by encapsulation layer 42 within major surface 44 of encapsulation layer 42. Other embodiments are possible in which a portion of edge surface 37 is uncovered by encapsulation layer 42 in addition to or as an alternative to having end surface 38 remain uncovered by encapsulation layer 42. In other words, encapsulation layer 42 can cover all of microelectronic assembly 10 from first surface 14 and above, with the exception of a portion of wire bonds 32, such as end surfaces 38, edge surfaces 37 or combinations of the two. In the embodiments shown in the Figures, a surface, such as major surface 44 of encapsulation layer 42 can be spaced apart from first surface 14 of substrate 12 at a distance great enough to cover microelectronic element 22. Accordingly, embodiments of microelectronic assembly 10 in which ends 38 of wire bonds 32 are flush with surface 44, will include wire bonds 32 that are taller than the microelectronic element 22, and any underlying solder bumps for flip chip connection. Other configurations for encapsulation layer 42, however, are possible. For example, the encapsulation layer can have multiple surfaces with varying heights. In such a configuration, the surface 44 within which ends 38 are positioned can be higher or lower than an upwardly facing surface under which microelectronic element 22 is located.


Encapsulation layer 42 serves to protect the other elements within microelectronic assembly 10, particularly wire bonds 32. This allows for a more robust structure that is less likely to be damaged by testing thereof or during transportation or assembly to other microelectronic structures. Encapsulation layer 42 can be formed from a dielectric material with insulating properties such as that described in U.S. Patent App. Pub. No. 2010/0232129, which is incorporated by reference herein in its entirety.



FIG. 3 shows an embodiment of microelectronic assembly 110 having wire bonds 132 with ends 136 that are not positioned directly above the respective bases 34 thereof. That is, considering first surface 114 of substrate 112 as extending in two lateral directions, so as to substantially define a plane, end 136 or at least one of the wire bonds 132 is displaced in at least one of these lateral directions from a corresponding lateral position of base 134. As shown in FIG. 3, wire bonds 132 can be substantially straight along the longitudinal axis thereof, as in the embodiment of FIG. 1, with the longitudinal axis being angled at an angle 146 with respect to first surface 114 of substrate 112. Although the cross-sectional view of FIG. 3 only shows the angle 146 through a first plane perpendicular to first surface 114, wire bond 132 can also be angled with respect to first surface 114 in another plane perpendicular to both that first plane and to first surface 114. Such an angle can be substantially equal to or different than angle 146. That is the displacement of end 136 relative to base 134 can be in two lateral directions and can be by the same or a different distance in each of those directions.


In an embodiment, various ones of wire bonds 132 can be displaced in different directions and by different amounts throughout the assembly 110. Such an arrangement allows for assembly 110 to have an array that is configured differently on the level of surface 144 compared to on the level of substrate 12. For example, an array can cover a smaller overall area or have a smaller pitch on surface 144 than at the first surface 114 level compared to that at first surface 114 of substrate 112. Further, some wire bonds 132 can have ends 138 that are positioned above microelectronic element 122 to accommodate a stacked arrangement of packaged microelectronic elements of different sizes. In another example, shown in FIG. 19, wire bonds 132 can be configured such that the end 138A of one wire bond 132A is positioned substantially above the base 134B of another wire bond 132B, the end 138B of that wire bond 134B being positioned elsewhere. Such an arrangement can be referred to as changing the relative position of a contact end surface 136 within an array of contacts, compared to the position of a corresponding contact array on second surface 116. Within such an array, the relative positions of the contact end surfaces can be changed or varied, as desired, depending on the microelectronic assembly's application or other requirements.



FIG. 4 shows a further embodiment of a microelectronic subassembly 210 having wire bonds 232 with ends 236 in displaced lateral positions with respect to bases 234. In the embodiment of FIG. 4, the wire bonds 132 achieve this lateral displacement by including a curved portion 248 therein. Curved portion 248 can be formed in an additional step during the wire bond formation process and can occur, for example, while the wire portion is being drawn out to the desired length. This step can be carried out using available wire-bonding equipment, which can include the use of a single machine.


Curved portion 248 can take on a variety of shapes, as needed, to achieve the desired positions of the ends 236 of the wire bonds 232. For example, curved portions 248 can be formed as S-curves of various shapes, such as that which is shown in FIG. 4 or of a smoother form (such as that which is shown in FIG. 5). Additionally, curved portion 248 can be positioned closer to base 234 than to end 236 or vice-versa. Curved portion 248 can also be in the form of a spiral or loop, or can be compound including curves in multiple directions or of different shapes or characters.



FIG. 5 shows a further exemplary embodiment of a microelectronic package 310 having a combination of wire bonds 332 having various shapes leading to various relative lateral displacements between bases 334 and ends 336. Some of wire bonds 332A are substantially straight with ends 336A positioned above their respective bases 334A, while other wire bonds 332B include a subtle curved portion 348B leading to a somewhat slight relative lateral displacement between end 336B and base 334B. Further, some wire bonds 332C include curved portions 348C having a sweeping shape that result in ends 336C that are laterally displaced from the relative bases 334C at a greater distance than that of ends 336B. FIG. 5 also shows an exemplary pair of such wire bonds 332Ci and 332Cii that have bases 334Ci and 334Cii positioned in the same row of a substrate-level array and ends 336Ci and 336Cii that are positioned in different rows of a corresponding surface-level array.


A further variation of a wire bond 332D is shown that is configured to be uncovered by encapsulation layer 342 on a side surface thereof. In the embodiment shown free end 336D is uncovered, however, a portion of edge surface 337D can additionally or alternatively be uncovered by encapsulation layer 342. Such a configuration can be used for grounding of microelectronic assembly 10 by electrical connection to an appropriate feature or for mechanical or electrical connection to other featured disposed laterally to microelectronic assembly 310. Additionally, FIG. 5 shows an area of encapsulation layer 342 that has been etched away, molded, or otherwise formed to define a recessed surface 345 that is positioned closer to substrate 12 than major surface 344. One or more wire bonds, such as wire bond 332A can be uncovered within an area along recessed surface 345. In the exemplary embodiment shown in FIG. 5, end surface 338A and a portion of edge surface 337A are uncovered by encapsulation layer 342. Such a configuration can provide a connection, such as by a solder ball or the like, to another conductive element by allowing the solder to wick along edge surface 337A and join thereto in addition to joining to end surface 338. Other configurations by which a portion of a wire bond can be uncovered by encapsulation layer 342 along recessed surface 345 are possible, including ones in which the end surfaces are substantially flush with recessed surface 345 or other configurations shown herein with respect to any other surfaces of encapsulation layer 342. Similarly, other configurations by which a portion of wire bond 332D is uncovered by encapsulation layer 342 along a side surface can be similar to those discussed elsewhere herein with respect to the variations of the major surface of the encapsulation layer.



FIG. 5 further shows a microelectronic assembly 310 having two microelectronic elements 322 and 350 in an exemplary arrangement where microelectronic element 350 is stacked, face-up, on microelectronic element 322. In this arrangement, leads 324 are used to electrically connect microelectronic element 322 to conductive features on substrate 312. Various leads are used to electronically connect microelectronic element 350 to various other features of microelectronic assembly 310. For example, lead 388 electrically connects microelectronic element 350 to conductive features of substrate 312, and lead 382 electrically connects microelectronic element 350 to microelectronic element 322. Further, wire bond 384, which can be similar in structure to various ones of wire bonds 332, is used to form a contact surface 386 on the surface 344 of encapsulation layer 342 that electrically connected to microelectronic element 350. This can be used to directly electrically connect a feature of another microelectronic assembly to microelectronic element 350 from above encapsulation layer 342. Such a lead could also be included that is connected to microelectronic element 322, including when such a microelectronic element is present without a second microelectronic element 350 affixed thereon. An opening (not shown) can be formed in encapsulation layer 342 that extends from surface 344 thereof to a point along, for example, lead 388, thereby providing access to lead 388 for electrical connection thereto by an element located outside surface 344. A similar opening can be formed over any of the other leads or wire bonds 332, such as over wire bonds 332C at a point away from the ends 336C thereof. In such an embodiment, ends 336C can be positioned beneath surface 344, with the opening providing the only access for electrical connection thereto.



FIG. 6 shows a stacked package of microelectronic assemblies 410 and 488. In such an arrangement solder masses 452 electrically and mechanically connect end surfaces 444 of assembly 410 to conductive elements 440 of assembly 488. The stacked package can include additional assemblies and can be ultimately attached to contacts 492 on a PCB 490 or the like for use in an electronic device. In such a stacked arrangement, wire bonds 432 and conductive elements 440 can carry multiple electronic signals therethrough, each having a different signal potential to allow for different signals to be processed by different microelectronic elements, such as microelectronic element 422 or microelectronic element 489, in a single stack.


In the exemplary configuration in FIG. 6, wire bonds 432 are configured with a curved portion 448 such that at least some of the ends 436 of the wire bonds 432 extend into an area that overlies a major surface of the microelectronic element 422. Such an area can be defined by the outer periphery of microelectronic element 422 and extending upwardly therefrom. An example of such a configuration is shown from a view facing toward first surface of substrate 412 in FIG. 18, where wire bonds 432 overlie a rear major surface of the microelectronic element 422, which is flip chip bonded at a front face thereof to substrate 412. In another configuration (FIG. 5), the microelectronic element 422 can be mounted face up to the substrate 312, with the front face facing away from the substrate 312 and at least one wire bond 332 overlying the front face of microelectronic element 322. In one embodiment, such wire bond 332 is not electrically connected with microelectronic element 322. A wire bond 332 bonded to substrate 312 may also overlie the front or rear face of microelectronic element 350. The embodiment of microelectronic assembly 410 shown in FIG. 18 is such that conductive elements 428 are arranged in a pattern forming a first array in which the conductive elements 428 are arranged in rows and columns surrounding microelectronic element 422 and may have a predetermined pitch between individual conductive elements 428. Wire bonds 432 are joined to the conductive elements 428 such that the respective bases 434 thereof follow the pattern of the first array as set out by the conductive elements 428. Wire bonds 432 are configured, however, such that the respective ends 436 thereof can be arranged in a different pattern according to a second array configuration. In the embodiment shown the pitch of the second array can be different from, and in some cases finer than that of the first array. However, other embodiments are possible in which the pitch of the second array is greater than the first array, or in which the conductive elements 428 are not positioned in a predetermined array but the ends 436 of the wire bonds 432 are. Further still, conductive elements 428 can be configured in sets of arrays positioned throughout substrate 412 and wire bonds 432 can be configured such that ends 436 are in different sets of arrays or in a single array.



FIG. 6 further shows an insulating layer 421 extending along a surface of microelectronic element 422. Insulating layer 421 can be formed from a dielectric or other electrically insulating material prior to forming the wire bonds. The insulating layer 421 can protect microelectronic element from coming into contact with any of wire bonds 432 that extend thereover. In particular, insulating layer 421 can avoid electrical short circuiting between wire bonds and short circuiting between a wire bond and the microelectronic element 422. In this way, the insulating layer 421 can help avoid malfunction or possible damage due to unintended electrical contact between a wire bond 432 and the microelectronic element 422.


The wire bond configuration shown in FIGS. 6 and 18 can allow for microelectronic assembly 410 to connect to another microelectronic assembly, such as microelectronic assembly 488, in certain instances where the relative sizes of, for example, microelectronic assembly 488 and microelectronic element 422 would not otherwise permit. In the embodiment of FIG. 6 microelectronic assembly 488 is sized such that some of the contact pads 440 are in an array within an area smaller than the area of the front or rear surface of the microelectronic element 422. In a microelectronic assembly having substantially vertical conductive features, such as pillars, in place of wire bonds 432, direct connection between conductive elements 428 and pads 440 would not be possible. However, as shown in FIG. 6, wire bonds 432 having appropriately-configured curved portions 448 can have ends 436 in the appropriate positions to make the necessary electronic connections between microelectronic assembly 410 and microelectronic assembly 488. Such an arrangement can be used to make a stacked package where microelectronic assembly 488 is, for example, a DRAM chip or the like having a predetermined pad array, and wherein microelectronic element 422 is a logic chip configured to control the DRAM chip. This can allow a single type of DRAM chip to be used with several different logic chips of varying sizes, including those which are larger than the DRAM chip because the wire bonds 432 can have ends 436 positioned wherever necessary to make the desired connections with the DRAM chip. In an alternative embodiment, microelectronic package 410 can be mounted on printed circuit board 490 in another configuration, where the unencapsulated surfaces of wire bonds 432 are electrically connected to pads 492 of circuit board 490. Further, in such an embodiment, another microelectronic package, such as a modified version of package 488 can be mounted on package 410 by solder balls 452 joined to pads 440.



FIG. 7 shows a microelectronic assembly 10, of the type shown in FIG. 1 with a redistribution layer 54 extending along surface 44 of encapsulation layer 42. As shown in FIG. 7, traces 58 are electrically connected to inner contact pads 61 which are electrically connected to end surfaces 38 of wire bonds 32 and extend through the substrate 56 of redistribution layer 54 to contact pads 60 exposed on surface 62 of substrate 56. An additional microelectronic assembly can then be connected to contact pads 60 by solder masses or the like. A similar structure to redistribution layer 54 can extend along second surface 16 of substrate 12 in what is known as a fan-out layer. A fan out layer can allow microelectronic assembly 10 to connect to an array of a different configuration than the conductive element 40 array would otherwise permit.



FIGS. 8A-8E show various configurations that can be implemented in the structure of or near the ends 36 of wire bonds 32 in a structure similar to FIGS. 1-7. FIG. 8A shows a structure in which a cavity 64 is formed in a portion of encapsulation layer 42 such that an end 36 of wire bond 32 projects above a minor surface 43 of the encapsulation layer at cavity 64. In the embodiment shown, end surface 38 is positioned below major surface 44 of encapsulation layer 42, and cavity 64 is structured to expose end surface 38 at surface 44 to allow an electronic structure to connect thereto. Other embodiments are possible wherein end surface 38 is substantially even with surface 44 or is spaced above surface 44. Further, cavity 64 can be configured such that a portion of edge surface 37 of wire bond 32 near the end 36 thereof can be uncovered by encapsulation layer 42 within cavity 64. This can allow for a connection to wire bond 32 from outside of assembly 10, such as a solder connection, to be made from both end surface 38 and the uncovered portion of edge surface 37 near end 36. Such a connection is shown in FIG. 8B and can provide a more robust connection to a second substrate 94 using a solder mass 52. In an embodiment cavity 64 can have a depth beneath surface 44 of between about 10 μm and 50 μm and can have a width of between about 100 μm and 300 μm. FIG. 8B shows a cavity having a similar structure to that of FIG. 8A, but with tapered side walls. Further, FIG. 8B shows a second microelectronic assembly 94 electrically and mechanically connected to wire bond 32 by a solder mass 52 at a contact pad 96 exposed at a surface of a substrate 98 thereof.


Cavity 64 can be formed by removing a portion of encapsulation layer 42 in the desired area of cavity 64. This can be done by known processes including, laser etching, wet etching, lapping or the like. Alternatively, in an embodiment where encapsulation layer 42 is formed by injection molding, cavity 64 can be formed by including a corresponding feature in the mold. Such a process is discussed in U.S. Pat. App. Pub. No. 2010/0232129, which is hereby incorporated by reference in its entirety. The tapered shape of cavity 64 shown in FIG. 8B can be the result of a particular etching process used in its formation.



FIGS. 8C and 8E show end structures that include a substantially rounded end portion 70 on wire bond 32. Rounded end portion 70 is configured to have a cross-section that is wider than the cross-section of the portion of wire bond 32 between base 34 and end 36. Further rounded end portion 70 includes an edge surface 71 that extends outward from the edge surface 37 of wire bond 32 at the transition therebetween. The incorporation of a rounded end portion 70 can act to secure wire bond 32 within encapsulation layer 42 by providing an anchoring feature wherein the change in direction of the surface 71 gives encapsulation layer 42 a location to surround end 70 on three sides. This can help prevent wire bond 32 from becoming detached from conductive elements 28 on substrate 12, resulting in a failed electrical connection. Additionally, the rounded end portion 70 can provide increased surface area that is uncovered by encapsulation layer 42 within surface 44 to which an electronic connection can be made. As shown in FIG. 8E, rounded end portion 70 can extend above surface 44. Alternatively, as shown in FIG. 8C, rounded end portion 70 can further, be ground or otherwise flattened to provide a surface that is substantially flush with surface 44 and can have an area greater than the cross-section of wire bond 32.


A rounded end portion 70 can be formed by applying localized heat in the form of a flame or a spark at the end of the wire used to make wire bond 32. Known wire bonding machines can be modified to carry out this step, which can be done immediately after cutting the wire. In this process, the heat melts the wire at the end thereof. This localized portion of liquid metal is made round by the surface tension thereof and is retained when the metal cools.



FIG. 8D shows a configuration for microelectronic assembly 10 where end 36 of wire bond 32 includes a surface 38 that is spaced above major surface 44 of encapsulation layer 42. Such a configuration can present benefits similar to that discussed with respect to cavity 64, above, specifically, by providing a more robust connection with a solder mass 52 that wicks along the portion of edge surface 37 that is uncovered by encapsulation layer 42 above surface 44. In an embodiment, end surface 38 can be spaced above surface 42 at a distance of between about 10 μm and 50 μm. Additionally, in the embodiment of FIG. 8D and any of the other embodiments in which a portion of edge surface 37 is uncovered by encapsulation layer 42 above a surface of encapsulation layer 42, the end can include a protective layer formed thereon. Such a layer can include an oxidation protection layer, including those made from gold, an oxide coating or an OSP.



FIG. 9 shows an embodiment of microelectronic assembly 10 with a stud bump 72 formed on end surface 38 of wire bond 32. Stud bump 72 can be formed after making microelectronic assembly 10 by applying another, modified wire bond on top of end surface 44 and optionally extending along a portion of surface 44. The modified wire bond is cut or otherwise severed near the base thereof without drawing out a length of wire. Stud bumps 72 containing certain metals may be applied directly to ends 38 without first applying a bonding layer such as a UBM, thus providing way of forming conductive interconnects to bond pads which are not directly wettable by solder. This can be useful when wire bond 32 is made from a non-wettable metal. In general, stud bumps consisting essentially of one or more of copper, nickel, silver, platinum and gold can be applied this way. FIG. 9 shows a solder mass 52 formed over stud bump 72 for electronic or mechanical connection to an additional microelectronic assembly.



FIGS. 10A-10D show configurations for ends 36 of wire bonds 32 that include a bent or curved shape. In each embodiment, end 36 of wire bond 32 is bent such that a portion 74 thereof extends substantially parallel to surface 44 of encapsulation layer 42 such that at least a portion of edge surface 76 is not covered by, for example, major surface 44. This portion of edge surface 37 can extend upwards outside of surface 44 or can be ground or otherwise flattened so as to extend substantially flush with surface 44. The embodiment of FIG. 10A includes an abrupt bend in wire bond 32 at the portion 74 of end 36 that is parallel to surface 44 and terminates in an end surface 38 that is substantially perpendicular to surface 44. FIG. 10B shows an end 36 having a more gradual curve near the portion 74 of end 36 that is parallel to surface 44 than that which is shown in FIG. 10A. Other configurations are possible, including those in which a portion of a wire bond according to those shown in FIG. 3, 4, or 5 includes an end with a portion thereof substantially parallel to surface 44 and having a portion of the edge surface thereof uncovered by encapsulation layer 42 at a location within surface 44. Additionally, the embodiment of FIG. 10B includes a hooked portion 75 on the end thereof, which positions end surface 38 below surface 44 within encapsulation layer 42. This can provide a more robust structure for end 36 that is less likely to become dislodged from within encapsulation layer 42. FIGS. 10C and 10D show structures that are, respectively, similar to those shown in FIGS. 10A and 10B, but are uncovered by encapsulation layer 42 at a location along surface 44 by cavities 64 formed in encapsulation layer 42. These cavities can be similar in structure to those discussed above with respect to FIGS. 8A and 8B. The inclusion of ends 36 including a portion 74 thereof that extends parallel to surface 44 can provide increased surface area for connection therewith by virtue of the elongated uncovered edge surface 76. The length of such a portion 74 can be greater than the width of cross-section of the wire used to form wire bond 32.



FIGS. 11-15 show a microelectronic assembly 10 in various steps of a fabrication method thereof. FIG. 11 shows microelectronic assembly 10′ at a step where microelectronic element 22 has been electrically and mechanically connected to substrate 12 on first surface 14 and within first region 18, thereof. Microelectronic element 22 is shown in FIG. 11 as being mounted on substrate 12 in a flip-chip arrangement by solder masses 26. Alternatively face-up bonding, could be used instead, as seen above in FIG. 1. In the embodiment of the method step shown in FIG. 11, a dielectric underfill layer 66 may be provided between microelectronic element 22 and substrate 12.



FIG. 12 shows microelectronic assembly 10″ having wire bonds 32 applied on pads 30 of conductive elements 28 exposed on first surface 14 of substrate 12. As discussed, wire bonds 32 can be applied by heating an end of a wire segment to soften the end such that it forms a deposition bond to conductive element 28 when pressed thereto, forming base 34. The wire is then drawn out away from conductive element 28 and manipulated, if desired, in a specified shape before being cut or otherwise severed to form end 36 and end surface 38 of wire bond 32. Alternatively, wire bonds 32 can be formed from, for example, an aluminum wire by wedge bonding. Wedge bonding is formed by heating a portion of the wire adjacent the end thereof and dragging it along the conductive element 28 with pressure applied thereto. Such a process is described further in U.S. Pat. No. 7,391,121, the disclosure of which is hereby incorporated by reference herein in its entirety.


In FIG. 13 encapsulation layer 42 has been added to microelectronic assembly 10′″ by being applied over first surface 14 of substrate, extending upwardly therefrom and along edge surfaces 37 of wire bonds 32. Encapsulation layer 42 also covers underfill layer 66. Encapsulation layer 42 can be formed by depositing a resin over microelectronic assembly 10″ shown in FIG. 12. This can be done by placing assembly 10″ in an appropriately configured mold having a cavity in the desired shape of the encapsulation layer 42 that can receive assembly 10″. Such a mold and the method of forming a encapsulation layer therewith can be as shown and described in U.S. Pat. App. Pub. No 2010/0232129, the disclosure of which is incorporated by reference herein it its entirety. Alternatively, encapsulation layer 42 can be prefabricated to the desired shape from an at least partially compliant material. In this configuration, compliant properties of the dielectric material allow encapsulation layer 42 to be pressed into position over wire bonds 32 and microelectronic element 22. In such a step, wire bonds 32 penetrate into the compliant material forming respective holes therein, along which encapsulation layer 42 contacts edge surfaces 37. Further, microelectronic element 22 may deform the compliant material so that it can be received therein. The compliant dielectric material can be compressed to expose end surfaces 38 on outer surface 44. Alternatively, any excess compliant dielectric material can be removed from encapsulation layer to form a surface 44 on which ends surfaces 38 of wire bonds 32 are uncovered or cavities 64 can be formed that uncover end surfaces 38 at a location within surface 44.


In the embodiment shown in FIG. 13, encapsulation layer is formed such that, initially, surface 44 thereof is spaced above end surfaces 38 of wire bonds 32. To expose the end surfaces 38, the portion of encapsulation layer 42 that is above end surfaces 38 can be removed, exposing a new surface 44′ that is substantially flush with end surfaces 38, as shown in FIG. 14. Alternatively, cavities 64, such as those shown in FIGS. 8A and 8B can be formed in which end surfaces 38 are uncovered by encapsulation layer 42. In a further alternative, encapsulation layer 42 can be formed such that surface 44 is already substantially flush with end surfaces 38 or such that surface 44 is positioned below end surfaces 38, as shown in FIG. 8D. Removal, if necessary, of a portion of encapsulation layer 42 can be achieved by grinding, dry etching, laser etching, wet etching, lapping, or the like. If desired, a portion of the ends 36 of wire bonds 32 can also be removed in the same, or an additional, step to achieve substantially planar end surface 38 that are substantially flush with surface 44. If desired, cavities 64 can also be formed after such a step, or stud bumps, as shown in FIG. 10 can also be applied. The resulting microelectronic assembly 10 can then be affixed on a PCB or otherwise incorporated in a further assembly, for example a stacked package, as shown in FIG. 6.


In an alternative embodiment shown in FIG. 15, wire bonds 32 are initially formed in pairs as portions 32′ of a wire loop. In this embodiment, the loop is made in the form of a wire bond as discussed above. The wire segment is drawn upward, then bent and drawn in a direction having at least a component thereof in the direction of the first surface 14 of substrate 13 and to a position substantially overlying an adjacent conductive element 28. The wire is then drawn substantially downward to a position near the adjacent conductive element 28 before being cut or otherwise severed. The wire is then heated and connected to the adjacent conductive element 28 by deposition bonding or the like to form the loop. Encapsulation layer 42 is then formed so as to substantially cover the loop. A portion of encapsulation layer 42 is then removed by grinding, etching or the like by a process that also removes a portion of the loop such that the loop is severed and divided into its two portions 32′, thereby forming wire bonds 32 with end surfaces 38 uncovered by encapsulation layer 42 at a location along surface 44 which is formed on encapsulation layer 42. Subsequent finishing steps can then be applied to assembly 10, as discussed above.



FIGS. 16A-16C show steps in an alternative embodiment for making cavities 64, as discussed above, surrounding ends 36 of wire bonds 32. FIG. 16A shows a wire bond 32, of the general type discussed above with respect to FIGS. 1-6. Wire bond 32 has a mass of sacrificial material 78 applied on end 36 thereof. The sacrificial material mass 78 can be substantially spherical in shape, which can result from the material's surface tension during formation thereof, or other desired shapes that would be understood by a person of ordinary skill in the art. Sacrificial material mass 78 can be formed by dipping the ends 36 of wire bonds 32 in solder paste to coat the ends thereof. The viscosity of the solder paste can be adjusted prior to dipping to control the amount of solder mass that wicking and surface tension cause to adhere to ends 36. This can, accordingly, affect the size of masses 78 that are applied on ends 36. Alternatively, masses 78 can be formed by depositing a soluble material onto the ends 36 of the wire bonds 32. Other possible masses 78 can be individual solder balls or other masses on ends or by other means using other materials, such as copper or gold flashing, used in microelectronic component fabrication, that can later be removed.


In FIG. 16B, a dielectric layer 42 is shown having been added to assembly 10, including upward along edge surfaces 37 of wire bonds 32. The dielectric layer also extends along a portion of the surface of the sacrificial material mass 78, such that it is spaced apart from the end 36 of the wire bond 32 thereby. Subsequently, sacrificial material mass 78 is removed, such as by washing or rinsing in a solvent, melting, chemical etching or other technique, leaving cavity 64 in dielectric layer 42 substantially in the negative shape of mass 78 before removal thereof, and exposing a portion of edge surface 37 near end 36 of wire bond 32.


Alternatively, sacrificial material mass 78 can be formed to coat substantially all of wire bond 32 by extending along the edge surface 37 thereof. This arrangement is shown in FIG. 17A. Such a coating can be applied over wire bonds 32 after formation on assembly 10, as discussed above, or can be applied as a coating to the wire used to make wire bonds 32. This would, essentially, be in the form of a coated wire or a two-part wire, for example, with an inner core of copper and a solder coating. FIG. 17B shows dielectric layer 42 applied over wire bonds 32 and the sacrificial mass 78 so as to extend along the edge surface 79 of the sacrificial mass 78, thereby spacing apart dielectric layer 42 from wire bond 32 substantially along the length thereof.



FIG. 17C shows the structure that results from removing a portion of the sacrificial material mass 78 to form cavity 64 around end 36 and exposing a portion of edge surface 37. In such an embodiment a majority of, or at least a portion of, the sacrificial material mass 78 can be left in place between dielectric layer 42 and wire bond 32. FIG. 17C further shows a solder mass 52 electrically and mechanically connecting wire bond 32 to a contact pad 40A of another microelectronic structure 10A.



FIGS. 20 and 21 show a further embodiment of a microelectronic assembly 510 in which wire bonds 532 are formed on a lead-frame structure. Examples of lead frame structures are shown and described in U.S. Pat. Nos. 7,176,506 and 6,765,287 the disclosures of which are hereby incorporated by reference herein. In general, a lead frame is a structure formed from a sheet of conductive metal, such as copper, that is patterned into segments including a plurality of leads and can further include a paddle, and a frame. The frame is used to secure the leads and the paddle, if used, during fabrication of the assembly. In an embodiment, a microelectronic element, such as a die or chip, can be joined face-up to the paddle and electrically connected to the leads using wire bonds. Alternatively, the microelectronic element can be mounted directly onto the leads, which can extend under the microelectronic element. In such an embodiment, contacts on the microelectronic element can be electrically connected to respective leads by solder balls or the like. The leads can then be used to form electrical connections to various other conductive structures for carrying an electronic signal potential to and from the microelectronic element. When the assembly of the structure is complete, which can include forming an encapsulation layer thereover, temporary elements of the frame can be removed from the leads and paddle of the lead frame, so as to form individual leads. For purposes of this disclosure, the individual leads 513 and the paddle 515 are considered to be segmented portions of what, collectively, forms a substrate 512 that includes conductive elements 528 in portions that are integrally formed therewith. Further, in this embodiment, paddle 515 is considered to be within first region 518 of substrate 512, and leads 513 are considered to be within second region 520. Wire bonds 524, which are also shown in the elevation view of FIG. 21, connect microelectronic element 522, which is carried on paddle 515, to conductive elements 528 of leads 513. Wire bonds 532 can be further joined at bases 534 thereof to additional conductive elements 528 on leads 513. Encapsulation layer 542 is formed onto assembly 510 leaving ends 538 of wire bonds 532 uncovered at locations within surface 544. Wire bonds 532 can have additional or alternative portions thereof uncovered by encapsulation layer 542 in structures that correspond to those described with respect to the other embodiments herein.



FIGS. 24-26 show a further alternative embodiment of a microelectronic package 810 having closed-loop wire bonds 832. The wire bonds 832 of this embodiment include two bases 834a and 834b that can be joined to adjacent conductive elements 828a and 828b, as shown in FIG. 24. Alternatively, the bases 834a,834b can both be joined on a common conductive element 828, as shown in FIGS. 25 and 26. In such an embodiment, wire bonds 832 define an edge surface 837 that extends between the two bases 834a,834b in a loop such that the edge surface 837 extends upward in respective portions 837a and 837b from the bases to an apex 839 at a surface 844 of the encapsulation layer above the substrate 812. The encapsulation layer extends along at least some of edge surface portions 837a,837b, separating the respective portions from one another, as well as from other wire bonds 832 in package 810. At apex 839, at least a portion of the edge surface 837 is uncovered by the encapsulation layer, such that the wire bond 832 is available for electrical interconnection with another component, which can be another microelectronic component or other component, e.g., a discrete element such as a capacitor or inductor. As shown in FIGS. 24-26, wire bonds 832 are formed such that apex 839 is offset from conductive element 828 in at least one lateral direction across the surface of the substrate 812. In one example, apex 839 can overlie a major surface of microelectronic element 820 or otherwise overlie a first region of the substrate 812 with which the microelectronic element 820 is aligned. Other configurations for wire bonds 832 are possible, including configurations in which apex 839 is positioned in any of the locations of the end surfaces of the wire bonds discussed in the other embodiments. Further, apex 839 can be uncovered within a hole, such as shown in FIG. 8A. Still further, apex 839 can be elongated and can be uncovered on surface 844 extending over a length thereof, as shown with respect to the edge surfaces in FIGS. 10A-10D. By providing a connection feature in the form of the uncovered edge surface 837 surrounding apex 839 that is supported a wire bond 832 extending between two bases 834a,834b, rather than one, more accurate placement of the connection feature in the directions defined by major surface 844 can be achieved.



FIGS. 27 and 28 show a variation of the embodiment of in FIGS. 24-26, in which bond ribbons 934 are used in place of wire bonds 832. Bond ribbons can be a generally flat piece of conductive material, such as any of the materials discussed previously for the formation of wire bonds. A bond ribbon structure can be wider than it is thick, in contrast to a wire bond, which can be generally circular in cross section. As shown in FIG. 27, bond ribbons 934 each include a first base 934a that can be bonded extending along a portion of conductive element 928. A second base 934b of ribbon bond 934 can be joined to a portion of first base 934a. Edge surface 937 extends between bases 934a and 934b in two corresponding portions 937a and 937b to apex 939. A portion of edge surface in the area of apex 939 is uncovered by an encapsulant along a portion of major surface 944, thereof. Further variations are possible, such as those described with respect to the wire bonds used in the other embodiments disclosed herein.


The structures discussed above can be utilized in construction of diverse electronic systems. For example, a system 711 in accordance with a further embodiment of the invention includes microelectronic assembly 710, as described above, in conjunction with other electronic components 713 and 715. In the example depicted, component 713 is a semiconductor chip whereas component 715 is a display screen, but any other components can be used. Of course, although only two additional components are depicted in FIG. 23 for clarity of illustration, the system may include any number of such components. The microelectronic assembly 710 as described above may be, for example, a microelectronic assembly as discussed above in connection with FIG. 1, or a structure incorporating plural microelectronic assemblies as discussed with reference to FIG. 6. Assembly 710 can further include any one of the embodiments described in FIGS. 2-22. In a further variant, multiple variations may be provided, and any number of such structures may be used.


Microelectronic assembly 710 and components 713 and 715 are mounted in a common housing 719, schematically depicted in broken lines, and are electrically interconnected with one another as necessary to form the desired circuit. In the exemplary system shown, the system includes a circuit panel 717 such as a flexible printed circuit board, and the circuit panel includes numerous conductors 721, of which only one is depicted in FIG. 23, interconnecting the components with one another. However, this is merely exemplary; any suitable structure for making electrical connections can be used.


The housing 719 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 715 is exposed at the surface of the housing. Where microelectronic assembly 710 includes a light-sensitive element such as an imaging chip, a lens 723 or other optical device also may be provided for routing light to the structure. Again, the simplified system shown in FIG. 23 is merely exemplary; other systems, including systems commonly regarded as fixed structures, such as desktop computers, routers and the like can be made using the structures discussed above.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A method for forming a microelectronic package, comprising: obtaining a substrate having first contacts on an upper surface thereof;attaching a microelectronic die having a lower surface to face the upper surface of the substrate, the microelectronic die having second contacts on an upper surface of the microelectronic die;bonding wire bonds to the first contacts including forming bases of the wire bonds during the bonding, the wire bonds having edge surfaces between the bases and corresponding end surfaces;wherein a first portion of the wire bonds is interconnected between a first portion of the first contacts and the second contacts;wherein the end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die;forming a dielectric layer above the upper surface of the substrate and between the wire bonds;bending uppermost portions of the second portion of the wire bonds over to be parallel with an upper surface of the dielectric layer; andforming a redistribution layer above and on the upper surface of the dielectric layer and interconnected to the end surfaces of the second portion of the first wire bonds for electrical conductivity.
  • 2. The method according to claim 1, wherein the uppermost portions have corresponding sections of the edge surfaces flush with the upper surface of the dielectric layer.
  • 3. The method according to claim 1, wherein the uppermost portions have corresponding sections of the edge surfaces above the upper surface of the dielectric layer.
  • 4. A method for forming a microelectronic package, comprising: obtaining a substrate having first contacts on an upper surface thereof;attaching a microelectronic die having a lower surface to face the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die;bonding wire bonds to the first contacts including forming bases of the wire bonds during the bonding on the first contacts, the wire bonds having edge surfaces between the bases and corresponding end surfaces, the edges surfaces of the wire bonds having bends between the bases and the end surfaces;wherein a first portion of the wire bonds is interconnected between a first portion of the first contacts and the second contacts;wherein the end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die;forming a dielectric layer above the upper surface of the substrate and between the wire bonds; andwherein an upper surface of the dielectric layer defines recesses around uppermost portions of the second portion of the wire bonds, the uppermost portions extending in the recesses corresponding thereto.
  • 5. The method according to claim 4, further comprising: forming coatings respectively disposed around portions of the edge surfaces corresponding to the uppermost portions of the second portion of the wire bonds;removing uppermost portions of the coatings; andwherein the recesses are defined responsive to removal of the uppermost portions of coatings respectively disposed around portions of the edge surfaces of the second portion of the wire bonds.
  • 6. The method according to claim 4, further comprising forming a redistribution layer above and on the upper surface of the dielectric layer and interconnected to the end surfaces of the second portion of the first wire bonds for electrical conductivity.
  • 7. A method for forming a microelectronic package, comprising: obtaining a substrate having first contacts on an upper surface thereof and second contacts on a lower surface thereof, the substrate defining a hole therein;attaching a microelectronic die having a lower surface to face the upper surface of the substrate, the microelectronic die having third contacts on the lower surface thereof and positioned over the hole for alignment with the third contacts;bonding first wire bonds to the first contacts including forming bases of the first wire bonds during the bonding, the first wire bonds having edge surfaces between the bases and corresponding end surfaces;bonding second wire bonds for interconnection between the second contacts and the third contacts; andforming a dielectric layer above the upper surface of the substrate and between the first and the second wire bonds.
  • 8. The method according to claim 7, wherein the end surfaces of the first wire bonds are above the upper surface of the microelectronic die.
  • 9. The method according to claim 8, wherein an upper surface of the dielectric layer defines recesses around uppermost portions of the first wire bonds, the uppermost portions extending in the recesses corresponding thereto.
  • 10. The method according to claim 7, further comprising bending uppermost portions of the first wire bonds over to be parallel with an upper surface of the dielectric layer.
  • 11. The method according to claim 7, further comprising forming a redistribution layer above and on the upper surface of the dielectric layer and interconnected to the end surfaces of the first wire bonds for electrical conductivity.
  • 12. The method according to claim 9, further comprising: forming coatings respectively disposed around portions of the edge surfaces corresponding to the uppermost portions of the first wire bonds;removing uppermost portions of the coatings; andwherein the recesses are defined responsive to removal of the uppermost portions of coatings respectively disposed around portions of the edge surfaces of the first wire bonds.
  • 13. The method according to claim 10, wherein the uppermost portions of the first wire bonds have corresponding sections of the edge surfaces flush with the upper surface of the dielectric layer.
  • 14. The method according to claim 10, wherein the uppermost portions of the first wire bonds have corresponding sections of the edge surfaces located above the upper surface of the dielectric layer.
Priority Claims (1)
Number Date Country Kind
10-2011-0041843 May 2011 KR national
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of and claims benefit of priority to U.S. patent application Ser. No. 15/628,851, filed Jun. 21, 2017, which is a continuation of U.S. patent application Ser. No. 14/979,053, filed Dec. 22, 2015, now U.S. Pat. No. 9,691,731, which is a continuation of U.S. patent application Ser. No. 14/564,640, filed Dec. 9, 2014, now U.S. Pat. No. 9,224,717, which is a continuation of U.S. patent application Ser. No. 13/792,521, filed Mar. 11, 2013, now U.S. Pat. No. 9,093,435, which is a divisional of U.S. patent application Ser. No. 13/462,158, filed May 2, 2012, now U.S. Pat. No. 8,618,659, which claims the benefit of the filing date of Korean Patent Application No. 10-2011-0041843, filed May 3, 2011, the disclosures of each of which are incorporated herein by reference in their entirety.

US Referenced Citations (806)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4867267 Carlson Sep 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman et al. Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 DiFrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DeStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5977640 Bertin et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6469373 Funakura et al. Oct 2002 B2
6472743 Huang et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6489676 Taniguchi et al. Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6550666 Chew et al. Feb 2003 B2
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6563217 Corisis et al. May 2003 B2
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth et al. Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6693363 Tay et al. Feb 2004 B2
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6740981 Hosomi May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6754407 Chakravorty et al. Jun 2004 B2
6756252 Nakanishi Jun 2004 B2
6756663 Shiraishi et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774317 Fjelstad Aug 2004 B2
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6780746 Kinsman et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6800941 Lee et al. Oct 2004 B2
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6825552 Light et al. Nov 2004 B2
6828665 Pu et al. Dec 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabirzi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6909181 Aiba et al. Jun 2005 B2
6917098 Yamunan Jul 2005 B1
6930256 Huemoeller et al. Aug 2005 B1
6933598 Kamezos Aug 2005 B2
6933608 Fujisawa Aug 2005 B2
6939723 Corisis et al. Sep 2005 B2
6946380 Takahashi Sep 2005 B2
6951773 Ho et al. Oct 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7017794 Nosaka Mar 2006 B2
7021521 Sakurai et al. Apr 2006 B2
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7052935 Pai et al. May 2006 B2
7053477 Kamezos et al. May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071028 Koike et al. Jul 2006 B2
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7078788 Vu et al. Jul 2006 B2
7078822 Dias et al. Jul 2006 B2
7095105 Cherukuri et al. Aug 2006 B2
7112520 Lee et al. Sep 2006 B2
7115986 Moon et al. Oct 2006 B2
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7138722 Miyamoto et al. Nov 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176043 Haba et al. Feb 2007 B2
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7187072 Fukitomi et al. Mar 2007 B2
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7216794 Lange et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Baninetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7256069 Akram et al. Aug 2007 B2
7259445 Lau et al. Aug 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276785 Bauer et al. Oct 2007 B2
7276799 Lee et al. Oct 2007 B2
7287322 Mahieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7298033 Yoo Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7307348 Wood et al. Dec 2007 B2
7321164 Hsu Jan 2008 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7342803 Inagaki et al. Mar 2008 B2
7344917 Gautham Mar 2008 B2
7345361 Malik et al. Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7368924 Beaman et al. May 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7378726 Punzalan et al. May 2008 B2
7390700 Gerber et al. Jun 2008 B2
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7425758 Corisis et al. Sep 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7456495 Pohl et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7485969 Corisis et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7495644 Hirakata Feb 2009 B2
7504284 Ye et al. Mar 2009 B2
7504716 Abbott Mar 2009 B2
7517733 Camacho et al. Apr 2009 B2
7527505 Murata May 2009 B2
7528474 Lee May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7560360 Cheng et al. Jul 2009 B2
7564116 Ahn et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7605479 Mohammed Oct 2009 B2
7612638 Chung et al. Nov 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7629695 Yoshimura et al. Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659612 Hembree et al. Feb 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7670940 Mizukoshi et al. Mar 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682960 Wen Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7683482 Nishida et al. Mar 2010 B2
7692931 Chong et al. Apr 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7723839 Yano et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7759782 Haba et al. Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7800233 Kawano et al. Sep 2010 B2
7807512 Lee et al. Oct 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7808439 Yang et al. Oct 2010 B2
7815323 Saeki Oct 2010 B2
7834464 Meyer et al. Nov 2010 B2
7838334 Yu et al. Nov 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7855464 Shikano Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7859033 Brady Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7876180 Uchimura Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7898083 Castro Mar 2011 B2
7901989 Haba et al. Mar 2011 B2
7902644 Huang et al. Mar 2011 B2
7902652 Seo et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7919871 Moon et al. Apr 2011 B2
7923295 Shim et al. Apr 2011 B2
7923304 Choi et al. Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7944034 Gerber et al. May 2011 B2
7956456 Gurrum et al. Jun 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Robert et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
7994622 Mohammed et al. Aug 2011 B2
8004074 Mori et al. Aug 2011 B2
8004093 Oh et al. Aug 2011 B2
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8017437 Yoo et al. Sep 2011 B2
8017452 Ishihara et al. Sep 2011 B2
8018033 Moriya Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8021907 Pagaila et al. Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039960 Lin Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8048479 Hedler et al. Nov 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8053906 Chang et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8063475 Choi et al. Nov 2011 B2
8071424 Kang et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076765 Chen et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8106498 Shin et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8119516 Endo Feb 2012 B2
8120054 Seo et al. Feb 2012 B2
8120186 Yoon Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8143141 Sun et al. Mar 2012 B2
8143710 Cho Mar 2012 B2
8158888 Shen et al. Apr 2012 B2
8169065 Kohl et al. May 2012 B2
8174119 Pendse May 2012 B2
8183682 Groenhuis et al. May 2012 B2
8183684 Nakazato May 2012 B2
8193034 Pagaila et al. Jun 2012 B2
8194411 Leung et al. Jun 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8225982 Pirkle et al. Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8237257 Yang Aug 2012 B2
8258010 Pagaila et al. Sep 2012 B2
8258015 Chow et al. Sep 2012 B2
8263435 Choi et al. Sep 2012 B2
8264091 Cho et al. Sep 2012 B2
8269335 Osumi Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8293580 Kim et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8318539 Cho et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8330272 Haba Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8373264 Welch Feb 2013 B2
8390108 Cho et al. Mar 2013 B2
8390117 Shimizu et al. Mar 2013 B2
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau et al. Mar 2013 B1
8409922 Camacho et al. Apr 2013 B2
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8435899 Miyata et al. May 2013 B2
8450839 Corisis et al. May 2013 B2
8476115 Choi et al. Jul 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8487421 Sato et al. Jul 2013 B2
8492201 Pagaila et al. Jul 2013 B2
8502387 Choi et al. Aug 2013 B2
8507297 Iida et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558379 Kwon Oct 2013 B2
8558392 Chua et al. Oct 2013 B2
8564141 Lee et al. Oct 2013 B2
8567051 Val Oct 2013 B2
8569892 Mori et al. Oct 2013 B2
8580607 Haba Nov 2013 B2
8598717 Masuda Dec 2013 B2
8618646 Sasaki et al. Dec 2013 B2
8618659 Sato et al. Dec 2013 B2
8624374 Ding et al. Jan 2014 B2
8633059 Do et al. Jan 2014 B2
8637991 Haba Jan 2014 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8653676 Kim et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8664780 Han et al. Mar 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680662 Haba et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8685792 Chow et al. Apr 2014 B2
8686570 Semmelmeyer et al. Apr 2014 B2
8697492 Haba et al. Apr 2014 B2
8723307 Jiang et al. May 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson Jun 2014 B2
8766436 Delucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8785245 Kim Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8796135 Oganesian et al. Aug 2014 B2
8796846 Lin et al. Aug 2014 B2
8802494 Lee et al. Aug 2014 B2
8810031 Chang et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8816505 Mohammed et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836140 Ma et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8846521 Sugizaki Sep 2014 B2
8847376 Oganesian et al. Sep 2014 B2
8853558 Gupta et al. Oct 2014 B2
8878353 Haba et al. Nov 2014 B2
8884416 Lee et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8912651 Yu et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8937309 England et al. Jan 2015 B2
8940630 Damberg et al. Jan 2015 B2
8940636 Pagaila et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8970049 Kamezos Mar 2015 B2
8975726 Chen Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9006031 Camacho et al. Apr 2015 B2
9012263 Mathew et al. Apr 2015 B1
9041227 Chau et al. May 2015 B2
9054095 Pagaila Jun 2015 B2
9082763 Yu et al. Jul 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9105552 Yu et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9128123 Liu et al. Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9142586 Wang et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9167710 Mohammed et al. Oct 2015 B2
9171790 Yu et al. Oct 2015 B2
9177832 Camacho Nov 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9258922 Chen et al. Feb 2016 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9299670 Yap et al. Mar 2016 B2
9318449 Hasch Apr 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9349706 Co et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9378982 Lin et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9405064 Herbsommer et al. Aug 2016 B2
9412661 Lu et al. Aug 2016 B2
9418940 Hoshino et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9496152 Cho et al. Nov 2016 B2
9502390 Caskey et al. Nov 2016 B2
9508622 Higgins Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9653442 Yu et al. May 2017 B2
9659877 Bakalski et al. May 2017 B2
9663353 Ofner et al. May 2017 B2
9685365 Mohammed Jun 2017 B2
9735084 Katkar et al. Aug 2017 B2
9788466 Chen Oct 2017 B2
9812402 Awujoola et al. Nov 2017 B2
9842798 Marimuthu et al. Dec 2017 B2
9859203 Kim et al. Jan 2018 B2
9871599 Chen et al. Jan 2018 B2
20010042925 Yamamoto et al. Nov 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020171152 Miyazaki Nov 2002 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030094666 Clayton et al. May 2003 A1
20030162378 Mikami Aug 2003 A1
20040041757 Yang et al. Mar 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050161814 Mizukoshi et al. Jul 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20060087013 Hsieh Apr 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060255449 Lee et al. Nov 2006 A1
20070010086 Hsieh Jan 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070190747 Hup Aug 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080042265 Menlo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee et al. May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080123319 Beaman et al. Jun 2008 A1
20080123320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080246126 Bowles et al. Oct 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Chung et al. Aug 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110157834 Wang Jun 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120126431 Kim et al. May 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130040423 Tung Feb 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130153646 Ho Jun 2013 A1
20130200524 Han et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130323409 Read et al. Dec 2013 A1
20140035892 Shenoy et al. Feb 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140312503 Seo Oct 2014 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee et al. May 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20170229432 Lin et al. Oct 2017 A1
Foreign Referenced Citations (146)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
1118364 May 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10135220 May 1998 JP
H10135221 May 1998 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11260856 Sep 1999 JP
11317476 Nov 1999 JP
2000156461 Jun 2000 JP
2000323516 Nov 2000 JP
3157134 Apr 2001 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003197668 Jul 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
2004047702 Feb 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004-200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009508324 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
2004-319892 Nov 2014 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
10-2007-0058680 Jun 2007 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
101215271 Dec 2012 KR
20130048810 May 2013 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200721327 Jun 2007 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
I605558 Nov 2017 TW
9615458 May 1996 WO
02-13256 Feb 2002 WO
03-045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2007116544 Oct 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (70)
Entry
Chinese Office Action Search Report for Application No. 2014800551784 dated Jan. 23, 2018.
European Search Report for Appln. No. EP12712792, dated Feb. 27, 2018, 2 pages.
International Search Report and Written Opinion for Appln. No. PCT/US2017/064437, dated Mar. 29, 2018.
Taiwan Office Action for 103103350, dated Mar. 21, 2016.
Taiwan Search Report for 105128420, dated Sep. 26, 2017.
U.S. Appl. No. 13/477,532, mailed May 22, 2012.
U.S. Office Action for 12/769,930, dated May 5, 2011.
“Wafer Level Stack—WDoD”, [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Written Opinion for Appln. No. PCT/US2014/050125, dated Jul. 15, 2015.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” May 2010, STATS ChipPAC Ltd.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
EE Times Asia “3D Plus Wafer Level Stack” [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.eetasia.com/ART_8800428222_280300_NT_DEC52276.htm>, 2 pages.
Extended European Search Report for Appln. No. EP13162975, dated Sep. 5, 2013.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report for Appln. No. PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Sep. 14, 2011.
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Jan. 17, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/060551, dated Apr. 18, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044342, dated May 7, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044346, dated May 11, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2012/060402, dated Apr. 2, 2011.
International Search Report and Written Opinion for Appln. No. PCT/US2013/026126, dated Jul. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/052883, dated Oct. 21, 2011.
International Search Report and Written Opinion for Appln. No. PCT/US2013/041981, dated Nov. 13, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/053437, dated Nov. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/075672, dated Apr. 22, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/014181, dated Jun. 13, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050125, dated Feb. 4, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050148, dated Feb. 9, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Mar. 20, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2015/011715, dated Apr. 20, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2015/032679, dated Nov. 11, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Dec. 15, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056526, dated Jan. 20, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2016/068297, dated Apr. 17, 2017.
Japanese Office Action for Appln. No. 2013-509325, dated Oct. 18, 2013.
Japanese Office Action for Appln. No. 2013-520776, dated Apr. 21, 2015.
Japanese Office Action for Appln. No. 2013-520777, dated May 22, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France, May 21, 2010.
Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages.
Korean Office Action for Appn. 10-2011-0041843, dated Jun. 20, 2011.
Korean Office Action for Appn. 2014-7025992, dated Feb. 5, 2015.
Korean Search Report KR10-2010-0113271, dated Jan. 12, 2011.
Korean Search Report KR10-2011-0041843, dated Feb. 24, 2011.
Meiser, S., “Klein Und Komplex,” Elektronik Irl Press Ltd, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992) pp. 72-77, XP000277326, [ISR Appln. No. PCT/US2012/060402, dated Feb. 21, 2013 provides concise stmt. Of relevance).
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates and 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, Processed intra-Layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil], NMBITM, Version 2001.6, 1 p.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report from Invitation to Pay Additional Fees for Appln. No. PCT/US2012/028738, dated Jun. 6, 2012.
Partial International Search Report for Appln. No. PCT/US2012/060402, dated Feb. 21, 2013.
Partial International Search Report for Appln. No. PCT/US2013/026126, dated Jun. 17, 2013.
Partial International Search Report for Appln. No. PCT/US2013/075672, dated Mar. 12, 2014.
Partial International Search Report for Appln. No. PCT/US2014/014181, dated May 8, 2014.
Partial International Search Report for Appln. No. PCT/US2015/032679, dated Sep. 4, 2015.
Partial International Search Report for Appln. No. PCT/US2015/033004, dated Sep. 9, 2015.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
Taiwan Office Action for 100125521, dated Dec. 20, 2013.
Taiwan Office Action for 100125522, dated Jan. 27, 2014.
Taiwan Office Action for 100141695, dated Mar. 19, 2014.
Taiwan Office Action for 100138311, dated Jun. 27, 2014.
Taiwan Office Action for 100140428, dated Jan. 26, 2015.
Taiwan Office Action for 102106326, dated Sep. 8, 2015.
Related Publications (1)
Number Date Country
20180350766 A1 Dec 2018 US
Divisions (1)
Number Date Country
Parent 13462158 May 2012 US
Child 13792521 US
Continuations (4)
Number Date Country
Parent 15628851 Jun 2017 US
Child 16058425 US
Parent 14979053 Dec 2015 US
Child 15628851 US
Parent 14564640 Dec 2014 US
Child 14979053 US
Parent 13792521 Mar 2013 US
Child 14564640 US